
benchdamic: benchmarking of differential abundance method for
microbiome data
supplementary material

Matteo Calgaro Chiara Romualdi Davide Risso Nicola Vitulo

Contents
1 Introduction 3

1.1 Installation . 3
1.2 Data loading . 3

2 Goodness of Fit 5
2.1 GOF structure . 5
2.2 Parametric distributions . 5
2.3 Comparing estimated and observed values . 7
2.4 Visualization . 9
2.5 Discussion about GOF . 13

3 DA methods 14
3.1 Add a custom DA method . 16

4 Type I Error Control 17
4.1 TIEC structure . 17
4.2 Create mock comparisons . 18
4.3 Set up normalizations and DA methods . 18
4.4 Counting the False Positives . 24
4.5 Visualization . 25
4.6 Discussion about TIEC . 32

5 Concordance 33
5.1 Concordance structure . 33
5.2 Split datasets . 33
5.3 Set up normalizations and DA methods . 34
5.4 Comparing the concordances . 37
5.5 Visualization . 39
5.6 Discussion about Concordance . 41

6 Enrichment analysis 42
6.1 Enrichment structure . 42
6.2 A priori knowledge . 42
6.3 Set up normalizations and DA methods . 43
6.4 Testing the enrichment . 44
6.5 Visualization . 45
6.6 True and False Positives . 48
6.7 Enrichment without direction . 49
6.8 Enrichment analysis for simulated data . 52

1

6.9 Discussion about Enrichment . 58

7 Session Info 61

References 65

2

1 Introduction
This document is a static version of the vignette for R/Bioconductor package benchdamic. It provides an
introductory example on how to work with the analysis framework firstly proposed in (Calgaro et al., 2020).

Some methods for differential abundance (DA) analysis are tested on microbiome datasets. Performances of
each method are evaluated with respect to i) suitability of distributional assumptions (GOF), ii) ability to
control false positives (TIEC), iii) concordance of the findings, and iv) enrichment of DA microbial species in
specific conditions.

1.1 Installation
To install this package, start R (version “4.2”) and enter:
if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("benchdamic")

or use:
if (!require("devtools", quietly = TRUE))

install.packages("devtools")

devtools::install_github("mcalgaro93/benchdamic")

Then, load some packages for basic functions and data:
library(benchdamic)
Parallel computation
library(BiocParallel)
Generate simulated data
library(SPsimSeq)
Data management
library(phyloseq)
library(SummarizedExperiment)
library(plyr)
Graphics and tables
library(ggplot2)
library(cowplot)
library(kableExtra)

1.2 Data loading
All datasets used in benchdamic are downloaded using the HMP16SData Bioconductor package (Schiffer et al.,
2019).

For GOF and TIEC analyses a homogeneous group of samples (e.g., only samples from a specific experimental
condition, phenotype, treatment, body site, etc.) ps_stool_16S is used (use help("ps_stool_16S") for
details). It contains 16S data from:

• 32 stool samples from participants of the Human Microbiome Project;

• 71 taxa, all features having the same genus-level taxonomic classification are collapsed together (a total
of 71 taxa corresponding to 71 genera).

data("ps_stool_16S")
ps_stool_16S

3

phyloseq-class experiment-level object
otu_table() OTU Table: [71 taxa and 32 samples]
sample_data() Sample Data: [32 samples by 7 sample variables]
tax_table() Taxonomy Table: [71 taxa by 6 taxonomic ranks]
phy_tree() Phylogenetic Tree: [71 tips and 70 internal nodes]

For Concordance and Enrichment analyses the ps_plaque_16S dataset is used (use help("ps_plaque_16S")
for details). It contains 16S data from:

• 30 participants of the Human Microbiome Project;

• samples collected from subgingival plaque and supragingival plaque for each subject (a total of 60
samples);

• 88 taxa, all features having the same genus-level taxonomic classification are collapsed together (a total
of 88 taxa corresponding to 88 genera).

data("ps_plaque_16S")
ps_plaque_16S

phyloseq-class experiment-level object
otu_table() OTU Table: [88 taxa and 60 samples]
sample_data() Sample Data: [60 samples by 7 sample variables]
tax_table() Taxonomy Table: [88 taxa by 6 taxonomic ranks]
phy_tree() Phylogenetic Tree: [88 tips and 87 internal nodes]

4

2 Goodness of Fit
Assumption: Many DA detection methods are based on parametric distributions.

Research question: Which are the parametric distributions that can fit both the proportion of zeros and
the counts in your data?

2.1 GOF structure
As different methods rely on different statistical distributions to perform DA analysis, the goodness of fit
(GOF) of the statistical models underlying some of the DA methods on a 16S dataset is assessed. For each
model, its ability to correctly estimate the average counts and the proportion of zeroes by taxon is evaluated.

Five distributions are considered: (1) the negative binomial (NB) used in edgeR and DeSeq2 (Robinson et
al., 2010; Love et al., 2014), (2) the zero-inflated negative binomial (ZINB) used in ZINB-WaVE (Risso et al.,
2018), (3) the truncated Gaussian Hurdle model of MAST (Finak et al., 2015), (4) the zero-inflated Gaussian
(ZIG) mixture model of metagenomeSeq (Paulson et al., 2013), and (5) the Dirichlet-Multinomial (DM)
distribution underlying ALDEx2 Monte-Carlo sampling (Fernandes et al., 2014) and multivariate extension of
the beta-binomial distribution used by conrcob (Martin et al., 2020).

The relationships between the functions used in this section are explained by the diagram in Figure 1. To
help with the reading: green boxes represent the inputs or the outputs, red boxes are the methods and blue
boxes are the main parameters of those method.

fitNB

assay_name = "counts"

fitZINB

assay_name = "counts"

fitDM

assay_name = "counts"

fitHURDLE

assay_name = "counts"
scale = "default" or "median"

fitZIG

assay_name = "counts"

prepareObserved

assay_name = "counts"
scale = "default" or "median"

Estimated values

Y = ln(Ŷ+1)
Y0 = P(Ŷ = 0)

Observed values

Y = ln(counts*+1)
Y0 = P(counts = 0)

* transformed according to
scale (if not NULL)

meanDifferences RMSE

object
Estimated - Observed

MD
ZPD

RMSE

fitModels

assay_name = "counts"
models = "NB", "ZINB", "DM",

"ZIG", "HURDLE"
scale_HURDLE = "default" or

"median"

GOF data

Y
Y0
MD
ZPD

plotMD

difference = "MD" or "ZPD"
split = TRUE or FALSE

plotRMSE

difference = "MD" or "ZPD"
plotIt = TRUE or FALSE

Legend

function

parameters

input data

output data

wrapped function

parameters

Figure 1: Goodness of Fit diagram.

2.2 Parametric distributions
2.2.1 Negative Binomial and Zero-Inflated Negative Binomial Models

For any µ ≥ 0 and θ > 0, let fNB(·;µ, θ) denote the probability mass function (PMF) of the negative binomial
(NB) distribution with mean µ and inverse dispersion parameter θ, namely:

fNB = Γ(y + θ)
Γ(y + 1)Γ(θ)

(
θ

θ + 1

)θ (
µ

µ+ θ

)y

,∀y ∈ N

5

Note that another parametrization of the NB PMF is in terms of the dispersion parameter ψ = θ−1 (although
θ is also sometimes called dispersion parameter in the literature). In both cases, the mean of the NB
distribution is µ and its variance is:

σ2 = µ+ µ2

θ
= µ+ ψµ2

In particular, the NB distribution boils down to a Poisson distribution when ψ = 0 ⇐⇒ θ = +∞.

For any π ∈ [0, 1], let fZINB(·;µ, θ, π) be the PMF of the ZINB distribution given by:

fZINB(·;µ, θ, π) = πδ0(y) + (1 − π)fNB(y;µ, θ),∀y ∈ N

where δ0(·) is the Dirac function. Here, π can be interpreted as the probability that a 0 is observed instead of
the actual count, resulting in an inflation of zeros compared to the NB distribution, hence the name ZINB.

To fit these distributions on real count data the edgeR (Robinson et al., 2010) and zinbwave (Risso et al.,
2018) packages are used. In benchdamic they are implemented in the fitNB() and fitZINB() functions.

2.2.2 Zero-Inflated Gaussian Model

The raw count for sample j and feature i is denoted by cij . The zero-inflated model is defined for the
continuity-corrected logarithm of the raw count data: yij = log2(cij + 1) as a mixture of a point mass at zero
I0(y) and a count distribution fcount(y;µ, σ2) ∼ N(µ, σ2). Given mixture parameters πj , we have that the
density of the ZIG distribution for feature i, in sample j with sj total counts is:

fZIG(yij ; sj , β, µi, σ
2
i) = πj(sj) · I0(yij) + (1 − πj(sj)) · fcount(yij ;µ, σ2)

The mean model is specified as:

E(yij) = πj + (1 − πj) ·

(
bi0 + ηilog2

(
sl̂

j

N
+ 1
))

In this case, parameter bi0 is the intercept of the model while the term including the logged normalization

factor log2

(
sl̂

j

N + 1
)

captures feature-specific normalization factors through parameter ηi. In details, sl̂
j is

the median scaling factor resulted from the Cumulative Sum Scaling (CSS) normalization procedure. N is
a constant fixed by default at 1000 but it should be a number close to the scaling factors to be used as a
reference, for this reason a good choice could be the median of the scaling factors (which is used instead of
1000). The mixture parameters πj(sj) are modeled as a binomial process:

log
πj

1 − πj
= β0 + β1 · log(sj)

To fit this distribution on real count data the metagenomeSeq package (Paulson et al., 2013) is used. In
benchdamic it is implemented in the fitZIG() function.

2.2.3 Truncated Gaussian Hurdle Model

The original field of application of this method was the single-cell RNAseq data, where y = log2(TPM + 1)
expression matrix was modeled as a two-part generalized regression model (Finak et al., 2015).
In microbiome data that starting point translates to a yij = log2

(
countsij · 106

libSizej
+ 1
)

or a

log2

(
countsij · median(libSize)

libSizej
+ 1
)

.

The taxon presence rate is modeled using logistic regression and, conditioning on a sample with the taxon,
the transformed abundance level is modeled as Gaussian.

6

Given normalized, possibly thresholded, abundance yij , the rate of presence and the level of abundance for
the samples were the taxon is present, are modeled conditionally independent for each gene i. Define the
indicator zij , indicating whether taxon i is expressed in sample j (i.e., zij = 0 if yij = 0 and zij = 1 if
yij > 0). We fit logistic regression models for the discrete variable Z and a Gaussian linear model for the
continuous variable (Y |Z = 1) independently, as follows:

logit(Pr(Zij = 1)) = Xjβ
D
i

P (Yij = y|Zij = 1) ∼ N(Xjβ
C
i , σ

2
i)

To estimate this distribution on real count data the MAST package (Finak et al., 2015) is used. In benchdamic
it is implemented in the fitHURDLE() function.

2.2.4 Dirichlet-Multinomial Mixture Model

The probability mass function of a n dimensional multinomial sample y = (y1, ..., yn)T with library size
libSize =

∑n
i=1 yi and parameter p = (p1, ..., pn) is:

f(y; p) =
(
libSize

y

) n∏
i=1

pyi

i

The mean-variance structure of the MN model doesn’t allow over-dispersion, which is common in real data.
DM distribution models the probability parameter p in the MN model by a Dirichlet distribution. The
probability mass of a n-category count vector y over libSize trials under DM with parameter α = (α1, ..., αn),
ai > 0 and proportion vector p ∈ ∆n = {(p1, ..., pn) : pi ≥ 0,

∑
i pi = 1} is:

f(y|α) =
(
libSize

y

) ∏n
i=1(ai)yi

(
∑

i αi) · libSize

The mean value for the ith taxon and jth sample of the count matrix is given by libSizej · αij∑
i

aij
.

To estimate this distribution on real count data the MGLM package (Zhang et al., 2017; Zhang and Zhou, 2022)
is used. In benchdamic it is implemented in the fitDM() function.

2.3 Comparing estimated and observed values
The goodness of fit for the previously described distributions is assessed comparing estimated and observed
values. For each taxon the following measures are compared:

• the Mean Difference (MD) i.e. the difference between the estimated mean and the observed mean
abundance (log scale);

• the Zero Probability Difference (ZPD) i.e. the difference between the probability to observe a zero and
the observed proportion of samples which have zero counts.

To easily compare estimated and observed mean values the natural logarithm transformation, with the
continuity correction (log(counts+ 1)), is well suited, indeed it reduces the count range making the differences
more stable.

Except for the fitHURDLE() function, which performs a CPM transformation on the counts (or the one with
the median library size), and the fitZIG() function which models the log2(counts+ 1), the other methods,
fitNB(), fitZINB(), and fitDM(), model the counts directly. For these reasons, fitHURDLE()’s output
should not be compared directly to the observed log(counts + 1) mean values as for the other methods.
Instead, the logarithm of the observed CPM (or the one with the median library size) should be used.

7

Here an example on how to fit a Truncated Gaussian hurdle model:
example_HURDLE <- fitHURDLE(

object = ps_stool_16S,
scale = "median"

)
head(example_HURDLE)

Y Y0
OTU_97.192 2.152592 0.312760011
OTU_97.1666 NA 0.967681879
OTU_97.31213 4.057621 0.094509772
OTU_97.39094 1.123198 0.749635900
OTU_97.40451 7.327534 0.001949454
OTU_97.19587 4.716914 0.063341989

The values above are those estimated by the fitHURDLE() function. Some NA values could be present
due to taxa sparsity. The internally used function to prepare for the comparisons the observed counts is
prepareObserved(), specifying the scale parameter if the HURDLE model is considered (if scale = “median”,
the median library size is used to scale counts instead of 106):
observed_hurdle <- prepareObserved(

object = ps_stool_16S,
scale = "median")

head(observed_hurdle)

Y Y0
OTU_97.192 3.21387169 0.31250
OTU_97.1666 0.03923904 0.96875
OTU_97.31213 4.88350981 0.09375
OTU_97.39094 4.89778959 0.75000
OTU_97.40451 7.51646781 0.00000
OTU_97.19587 5.26661203 0.06250

Which are different from the non-scaled observed values:
head(prepareObserved(object = ps_stool_16S))

Y Y0
OTU_97.192 3.34109346 0.31250
OTU_97.1666 0.03077166 0.96875
OTU_97.31213 4.77675725 0.09375
OTU_97.39094 4.44081133 0.75000
OTU_97.40451 7.53824550 0.00000
OTU_97.19587 5.36801832 0.06250

The function to compute MD and ZPD values, is meanDifferences():
head(meanDifferences(

estimated = example_HURDLE,
observed = observed_hurdle

))

MD ZPD
1 -1.0612798 0.0002600107
2 NA -0.0010681206
3 -0.8258883 0.0007597716
4 -3.7745917 -0.0003641001

8

5 -0.1889343 0.0019494545
6 -0.5496976 0.0008419888

A wrapper function to simultaneously perform the estimates and the mean differences is fitModels():
GOF_stool_16S <- fitModels(

object = ps_stool_16S,
models = c("NB", "ZINB", "DM", "ZIG", "HURDLE"),
scale_HURDLE = c("median", "default"),
verbose = FALSE # TRUE is always suggested

)

Exploiting the internal structure of the fitModels()’s output the Root Mean Squared Error (RMSE) values
for MD values can be extracted (the lower, the better):
plotRMSE(GOF_stool_16S, difference = "MD", plotIt = FALSE)

Model RMSE
1 NB 0.07057518
2 ZINB 0.14298816
3 DM 0.97766699
4 ZIG 0.53150840
5 HURDLE_median 0.85437589
6 HURDLE_default 3.11439757

Similarly, they are extracted for ZPD values:
plotRMSE(GOF_stool_16S, difference = "ZPD", plotIt = FALSE)

Model RMSE
1 NB 0.0741340631
2 ZINB 0.0219382366
3 DM 0.0436436801
4 ZIG 0.1129285606
5 HURDLE_median 0.0008776059
6 HURDLE_default 0.0008832596

2.4 Visualization
2.4.1 Mean Differences

To plot estimated and observed values the plotMD() function can be used (Figure 2). No systematic trend
are expected, moreover, the closer the values to the dotted line are (representing equality between observed
and estimated values), the better the goodness of fit relative to the model.
plotMD(

data = GOF_stool_16S,
difference = "MD",
split = TRUE

)

If some warning messages are shown with this graph, they are likely due to sparse taxa. To address this, the
number of NA values generated by each model can be investigated (which are 24 for each HURDLE model):
plyr::ldply(GOF_stool_16S, function(model)

c("Number of NAs" = sum(is.na(model))),
.id = "Distribution")

To summarize the goodness of fit, the Root Mean Squared Error (RMSE) metric is also displayed for each
model. For the HURDLE_default model, a quite different range of values of mean differences is displayed

9

RMSE:0.07 RMSE:0.14 RMSE:0.98 RMSE:0.53 RMSE:0.85 RMSE:3.11

Model: NB Model: ZINB Model: DM Model: ZIG Model: HURDLE_median Model: HURDLE_default

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

Observed

E
st

im
at

ed
−

O
bs

er
ve

d

Model
NB

ZINB

DM

ZIG

HURDLE_median

HURDLE_default

Observed = log(mean(counts*)+1)
Estimated = log(mean(fitted*)+1)

Mean Differences plot

Figure 2: MD plot. Mean-difference (MD) between the estimated and observed count values for each
distribution.

because of the excessive default scaling proposed (1 million). It is also possible to plot only a subset of the
estimated models (Figure 3).
plotMD(

data = GOF_stool_16S[1:5],
difference = "MD",
split = TRUE

)

RMSE:0.07 RMSE:0.14 RMSE:0.98 RMSE:0.53 RMSE:0.85

Model: NB Model: ZINB Model: DM Model: ZIG Model: HURDLE_median

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
−4

−2

0

2

Observed

E
st

im
at

ed
−

O
bs

er
ve

d

Model NB ZINB DM ZIG HURDLE_median

Observed = log(mean(counts*)+1)
Estimated = log(mean(fitted*)+1)

Mean Differences plot

Figure 3: MD plot reduced. Mean-difference (MD) between the estimated and observed count values for the
first 5 distributions.

From the Figure 3, DM distribution slightly overestimates the logarithm of the average counts for low values,
while the HURDLE_median distribution presents an overestimation that increases as the observed values
increase. ZIG, but especially NB and ZINB distributions produce very similar estimated and observed values.
Similarly, to plot the mean differences for Zero Probability/Proportion the plotMD() function is used (Figure
4).
plotMD(

data = GOF_stool_16S[1:5],
difference = "ZPD",
split = TRUE

)

From the figure 4, ZIG and NB models underestimate the probability to observe a zero for sparse features,
while the HURDLE_median model presents a perfect fit as the probability to observe a zero is the zero rate
itself by construction. DM and ZINB models produce estimated values very similar to the observed ones.
MDs and ZPDs are also available in the Figure 5 with a different output layout.

10

RMSE:0.0741 RMSE:0.0219 RMSE:0.0436 RMSE:0.1129 RMSE:9e−04

Model: NB Model: ZINB Model: DM Model: ZIG Model: HURDLE_median

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

−0.2

−0.1

0.0

0.1

Observed

E
st

im
at

ed
−

O
bs

er
ve

d

Model NB ZINB DM ZIG HURDLE_median

Observed = mean(counts=0)
Estimated = mean(P(Y=0))

Zero Probability Differences plot

Figure 4: ZPD plot. Mean-difference between the estimated probability to observe a zero and the observed
proportion of zero values (ZPD) for the first 5 distributions.

plot_grid(plotMD(data = GOF_stool_16S[1:5], difference = "MD", split = FALSE),
plotMD(data = GOF_stool_16S[1:5], difference = "ZPD", split = FALSE),
ncol = 2

)

−1

0

1

0 2 4 6
Observed

E
st

im
at

ed
−

O
bs

er
ve

d

Model NB ZINB DM ZIG HURDLE_median

Observed = log(mean(counts*)+1)
Estimated = log(mean(fitted*)+1)

Mean Differences plot

−0.1

0.0

0.00 0.25 0.50 0.75 1.00
Observed

E
st

im
at

ed
−

O
bs

er
ve

d

Model NB ZINB DM ZIG HURDLE_median

Observed = mean(counts=0)
Estimated = mean(P(Y=0))

Zero Probability Differences plot

Figure 5: MD and ZPD plots. MD and ZPD plotted together for the first 5 distributions.

2.4.2 RMSE

As already mentioned, to summarize the goodness of fit, the Root Mean Squared Error (RMSE) metric is
used. The summary statistics for the overall performance are visible in Figure 6.
plot_grid(plotRMSE(GOF_stool_16S, difference = "MD"),

plotRMSE(GOF_stool_16S, difference = "ZPD"),
ncol = 2

)

The lower the RMSE value, the better the goodness of fit of the model.

11

0.07
0.14

0.98

0.53

0.85

3.11

0

1

2

3

N
B

Z
IN

B

Z
IG

H
U

R
D

LE
_m

ed
ia

n

D
M

H
U

R
D

LE
_d

ef
au

lt

Model

R
M

S
E

Model
NB

ZINB

DM

ZIG

HURDLE_median

HURDLE_default

Mean Difference

RMSE

0.07

0.02

0.04

0.11

0 00.00

0.03

0.06

0.09

H
U

R
D

LE
_m

ed
ia

n

H
U

R
D

LE
_d

ef
au

lt

Z
IN

B

D
M N
B

Z
IG

Model

R
M

S
E

Model
NB

ZINB

DM

ZIG

HURDLE_median

HURDLE_default

Zero Probability Difference

RMSE

Figure 6: RMSE plot. Root Mean Squared Errors (RMSE) for both the MD and ZPD values for all the
distributions.

12

2.5 Discussion about GOF
The Goodness of Fit chapter is focused on some existing parametric models: NB, ZINB, HURDLE, ZIG,
DM. The assumption of this analysis is that if a model estimates the data well, then a method based on
that model may be a possibly good choice for studying the differential abundance. Other distributions could
also be investigated (Poisson, Zero-Inflated Poisson. . .) but what about DA methods which are based on
non-parametric models such as ANCOM? GOF framework can’t be used to compare the parametric models
to non-parametric models. However, non-parametric methods may work well in real scenarios due to their
added robustness and other evaluations are necessary in order not to favor one group of methods over another.

13

3 DA methods
Differential abundance analysis is the core of benchdamic. DA analysis steps can be performed both directly,
using the DA_<name_of_the_method>() methods, or indirectly, using the set_<name_of_the_method>()
functions.

set_<name_of_the_method>() functions allow to create lists of instructions for DA methods which can be
used by the runDA(), runMocks(), and runSplits() functions (more details in each chapter).

This framework grants a higher flexibility allowing users to set up the instructions for many DA methods
only at the beginning of the analysis. If some modifications are needed, the users can re-set the methods or
modify the list of instructions directly.

A list of the available methods is presented below (Table 1). They are native to different application fields
such as RNA-Seq, single-cell RNA-Seq, or Microbiome data analysis. Some basic information are reported for
each DA method, for more details please refer to functions’ manual.

14

Table 1: DA methods available in benchdamic.

Method
(package)

Short description Test Normalization / Transformation Suggested input Output Application

DA_basic (stats) Simple Student’s t and Wilcox tests are
used to assess differences between
groups

test = ’t’, ’wilcox’ No normalization all types p-values and
statistics

General

DA_edgeR (edgeR) A Negative Binomial (NB) generalized
linear model is used to describe the
counts

Empirical Bayes + moderated t, robust
estimation of priors (if robust =
TRUE), with or without weights
(generated by weights_ZINB)

norm = ’TMM’, ’TMMwsp’, ’RLE’,
’upperquartile’, ’posupperquartile’,
’none’ (produced by norm_edgeR)

raw counts with
edgeR
normalization
factors

p-values and
statistics

RNA-Seq

DA_limma
(limma)

A Linear model of the log2-transformed
CPMs with weights is used to describe
differences between groups

Empirical Bayes + moderated t, with
or without weights (generated by
weights_ZINB)

norm = ’TMM’, ’TMMwsp’, ’RLE’,
’upperquartile’, ’posupperquartile’,
’none’ (produced by norm_edgeR)

raw counts with
edgeR
normalization
factors

p-values and
statistics

RNA-Seq and
Microarray

DA_DESeq2
(DESeq2)

A Negative Binomial (NB) generalized
linear model is used to describe the
counts

Empirical Bayes + LRT, with or
without weights (generated by
weights_ZINB)

norm = ’ratio’, ’poscounts’, ’iterate’
(produced by norm_DESeq2)

raw counts with
DESeq2 size factors

p-values and
statistics

RNA-Seq

DA_NOISeq
(NOISeq)

A non-parametric approach for the
comparison of tag-wise statistics and a
noise distribution to detect differential
abundance

M and D statistics compared with the
noise distribution

norm = ’rpkm’, ’uqua’, ’tmm’, ’n’ raw counts or
normal-
ized/transformed
counts setting norm
= "n"

adjusted p-values
and statistics

RNA-Seq

DA_dearseq
(dearseq)

A variance component score test
accounting for data heteroscedasticity
through precision weights is used to
assess differences between groups

test = ’asymptotic’, ’permutation’ automatically transforms raw counts
into log(CPM) if preprocessed =
FALSE

raw counts or log
transformed counts
setting
preprocessed =
TRUE

p-values RNA-Seq

DA_metagenomeSeq
(metagenomeSeq)

Zero-Inflated Gaussian (ZIG) mixture
model or Zero-Inflated Log-Gaussian
(ZILG) mixture model are used to
describe the counts

model = ’fitZig’, ’fitFeatureModel’ norm = ’CSS’ (produced by
norm_CSS)

raw counts with
CSS normalization
factors

p-values and
statistics

Microbiome

DA_corncob
(corncob)

A Beta-Binomial regression model is
used to descrive the relative counts

test = ’LRT’, ’Wald’ with (if boot =
TRUE) or without bootstrap

Automatically transforms raw counts
into relative abundances (like using
TSS)

raw counts p-values and
statistics

Microbiome

DA_ALDEx2
(ALDEx2)

Compositional approach - Monte-Carlo
sampling from a Dirichlet distribution
to estimate the real relative abundances
and CLR-like transformation to assess
differences between groups

test = ’t’, ’wilcox’, ’kw’, ’ANOVA’,
’glm’

denom = ’all’, ’iqlr’, ’zero’, ’lvha’,
’median’, or decided by the user. With
test = ’glm’, denom = ’all’

raw counts p-values and
statistics

Microbiome

DA_ANCOM
(ANCOMBC)

Compositional approach - Analysis of
microbiome compositions with or
without "sampling fraction" bias
correction

ANCOM-II ANOVA models for
log-ratios (if BC = FALSE) or linear
model with offsets for log-counts (if BC
= TRUE)

Automatic in-method transformation
and zero types imputation

raw counts p-values and
statistics if BC =
TRUE, only
statistics otherwise

Microbiome

DA_Seurat
(Seurat)

A test is performed on transformed,
normalized, and/or scaled data to
assess differences between groups

test = ’wilcox’, ’bimod’, ’roc’, ’t’,
’negbinom’, ’poisson’, ’LR’, ’MAST’,
’DESeq2’

norm = ’LogNormalize’, ’CLR’, ’RC’,
’none’ (with test = ’negbinom’,
’poisson’, or ’DESeq2’, data are not
transformed). scale.factor parameter to
scale data

raw counts p-values and
statistics

scRNA-Seq

DA_MAST
(MAST)

A Truncated Gaussian hurdle model is
used to describe the counts

Standard Empirical Bayes + LRT log(CPM) transformation + in-method
normalization

raw counts p-values and
statistics

scRNA-Seq

15

Please remember that the data pre-processing, including QC analysis, filtering steps, and normalization, are
not topics treated in benchdamic. In real life situations those steps precede the DA analysis and they are of
extreme importance to obtain reliable results.

Some exceptions are present for the normalization step. In benchdamic, norm_edgeR(), norm_DESeq2(),
norm_CSS(), and norm_TSS() are implemented functions to add the normalization/scaling factors to the
phyloseq or TreeSummarizedExperiment objects, needed by DA methods. As for DA methods, normaliza-
tion instructions list, including the previous functions, can be set using set_<normalization_name>() or
setNormalizations() too. To run the normalization instructions the function runNormalizations() can
be used (more examples will follow).

Many DA methods already contain options to normalize or transform counts. If more complex normal-
izations/transformations are needed, all the DA methods support the use of TreeSummarizedExperiment
objects. In practice, users can put the modified count matrix in a named assay (the counts assay is the default
one which contains the raw counts) and run the DA method on that assay using the parameter assay_name
= “assay_to_use”.

3.1 Add a custom DA method
To add a custom method to the benchmark, it must:

• include a verbose = TRUE (or FALSE) parameter to let the user know what the method is doing;

• return a pValMat matrix which contains the raw p-values and adjusted p-values in rawP and adjP
columns respectively;

• return a statInfo matrix which contains the summary statistics for each feature, such as the logFC,
standard errors, test statistics and so on;

• return a name which contains the complete name of the used method.

An example is proposed:
DA_yourMethod <- function(

object,
assay_name = "counts",
param1,
param2,
verbose = TRUE)

{
if(verbose)

message("Reading data")
Extract the data from phyloseq or TreeSummarizedExperiment
counts_metadata <- get_counts_metadata(

object = object,
assay_name = assay_name)

counts <- counts_metadata[[1]] # First position = counts
metadata <- counts_metadata[[2]] # Second position = metadata

your method's code
Many things here
if(verbose)

message("I'm doing this step.")
Many other things here
end of your method's code

if(verbose)
message("Extracting important statistics")

16

vector_of_pval <- NA # contains the p-values
vector_of_adjusted_pval <- NA # contains the adjusted p-values
name_of_your_features <- NA # contains the OTU, or ASV, or other feature

names. Usually extracted from the rownames of
the count data

vector_of_logFC <- NA # contains the logFCs
vector_of_statistics <- NA # contains other statistics

if(verbose)
message("Preparing the output")

pValMat <- data.frame("rawP" = vector_of_pval,
"adjP" = vector_of_adjusted_pval)

statInfo <- data.frame("logFC" = vector_of_logFC,
"statistics" = vector_of_statistics)

name <- "write.here.the.name"
Be sure that the algorithm hasn't changed the order of the features. If it
happens, re-establish the original order.
rownames(pValMat) <- rownames(statInfo) <- name_of_your_features

Return the output as a list
return(list("pValMat" = pValMat, "statInfo" = statInfo, "name" = name))

} # END - function: DA_yourMethod

Once the custom method is set, it can be run by using the DA_yourMethod() function or manually, by setting
a list of instructions of the custom method with the desired combination of parameters:
my_custom_method <- list(

customMethod.1 = list(# First instance
method = "DA_yourMethod", # The name of the function to call
assay_name = "counts",
param1 = "A", # Its combination of parameters
param2 = "B"), # No need of verbose and object parameters

customMethod.2 = list(# Second instance
method = "DA_yourMethod",
assay_name = "counts",
param1 = "C",
param2 = "D")

Other istances
)

The method field, containing the name of the method to call is mandatory, while the verbose parameter is
not necessary. Instead, the object is not needed in order to keep the my_custom_method object only a list of
instructions.

4 Type I Error Control
Assumption: Many DA methods do not control the number of false discoveries.

Research question: Which are the DA methods which can control the number of false positives in your
data?

4.1 TIEC structure
The Type I Error is the probability of a statistical test to call a feature DA when it is not, under the null
hypothesis. To evaluate the Type I Error rate Control (TIEC) for each differential abundance detection

17

method:

1. using the createMocks() function, homogeneous samples (e.g., only the samples from one experimental
group) are randomly assigned to a group (‘grp1’ or ‘grp2’);

2. DA methods are run to find differences between the two mock groups using runMocks();

3. the number of DA feature for each method is counted, these are False Positives (FP) by construction;

4. points 1-3 are repeated many times (N = 10, but at least 1000 is suggested) and the results are averaged
using the createTIEC() function.

In this setting, the p-values of a perfect test should be uniformly distributed between 0 and 1 and the false
positive rate (FPR or observed α), which is the observed proportion of significant tests, should match the
nominal value (e.g., α = 0.05).

The relationships between the functions used in this section are explained by the diagram in Figure 7.

4.2 Create mock comparisons
Using createMocks() function, samples are randomly grouped, N = 10 times. A higher N is suggested (at
least 1000) but in that case a longer running time is required.
set.seed(123)
my_mocks <- createMocks(

nsamples = phyloseq::nsamples(ps_stool_16S),
N = 10

) # At least N = 1000 is suggested

4.3 Set up normalizations and DA methods
Once the mocks have been generated, DA analysis is performed. Firstly, some normalization factors, such as
TMM from edgeR and CSS from metagenomeSeq, and some size factors such as poscounts from DESeq2 are
added to the phyloseq object (or TreeSummarizedExperiment object). This can be done, manually, using
the norm_edgeR(), norm_DESeq2(), and norm_CSS() methods:
ps_stool_16S <- norm_edgeR(

object = ps_stool_16S,
method = "TMM"

)
ps_stool_16S <- norm_DESeq2(

object = ps_stool_16S,
method = "poscounts"

)
ps_stool_16S <- norm_CSS(

object = ps_stool_16S,
method = "CSS"

)

Or automatically, using the setNormalizations() and runNormalizations() methods:
my_normalizations <- setNormalizations(

fun = c("norm_edgeR", "norm_DESeq2", "norm_CSS"),
method = c("TMM", "poscounts", "CSS"))

ps_stool_16S <- runNormalizations(normalization_list = my_normalizations,
object = ps_stool_16S, verbose = TRUE)

Some messages “Found more than one”phylo” class in cache. . . ” could be shown after running the previous
functions. They are caused by duplicated class names between phyloseq and tidytree packages and can be

18

Legend

function

parameters

input data

output data

customly implemented
by the user

getStatistics

slot = "pValMat"
colName = "rawP"

type = "pvalue"
direction = NULL
verbose = FALSE

vector or data.frame
with p-values and/or

logFC

extractStatistics

slot = "pValMat"
colName = "rawP"

type = "pvalue"
direction = NULL
verbose = FALSE

Generic DA output

MethodX

pValMat
statInfo
name

Generic DA output list

Method1

pValMat
statInfo
name

Method2

pValMat
statInfo
name

...

list of vectors or
data.frames with p-
values and/or logFC

List of results

Comparison1
Method1
Method2
...

...
Method1
Method2
...

ComparisonN
Method1
Method2
...

colsvector of method
names

createTIEC

createColors

plotFPR

plotKS

plotQQ

zoom
split = FALSE

TIEC statistics

df_pval
df_QQ
df_KS

df_FPR
df_FDR

Normalization
framework

DA framework

Normalization names
and their parameters

DA_method
instructions list runNormalizations

object

object + normFacts or
normalized slots

weights
weights_ZINB

assay_name = "counts"
design

other zinbwave::zinbFit
parameters

runMocks

BPPARAM

createMocks

nsamples
N

matrix of random
labels

plotLogP

plotFDR

Figure 7: Type I Error Control diagram.

19

ignored.

After the normalization/size factors have been added to the phyloseq or TreeSummarizedExperiment object,
the user could decide to filter rare taxa which do not carry much information. In this example vignette a
simple filter is applied to keep only features with a count in at least 3 samples:
ps_stool_16S <- phyloseq::filter_taxa(

physeq = ps_stool_16S,
flist = function(x) sum(x > 0) >= 3, prune = TRUE)

ps_stool_16S

phyloseq-class experiment-level object
otu_table() OTU Table: [47 taxa and 32 samples]
sample_data() Sample Data: [32 samples by 10 sample variables]
tax_table() Taxonomy Table: [47 taxa by 6 taxonomic ranks]
phy_tree() Phylogenetic Tree: [47 tips and 46 internal nodes]

Some zero-inflated negative binomial weights using the weights_ZINB() function are computed. They can
be used as observational weights in the generalized linear model frameworks of DA_edgeR(), DA_DESeq2(),
and DA_limma(), as described in (Van den Berge et al., 2018).
zinbweights <- weights_ZINB(

object = ps_stool_16S,
K = 0,
design = "~ 1",

)

For each row of the mock_df data frame a bunch of DA methods is run. In this demonstrative example the
following DA methods are used:

• basic t and wilcox tests;

• edgeR with TMM scaling factors (Robinson et al., 2010) with and without ZINB weights (Risso et al.,
2018; Van den Berge et al., 2018);

• DESeq2 with poscounts normalization factors (Love et al., 2014) with and without ZINB weights (Risso
et al., 2018; Van den Berge et al., 2018);

• limma-voom with TMM scaling factors (Ritchie et al., 2015; Law et al., 2014; Phipson et al., 2016)
with and without ZINB weights (Risso et al., 2018; Van den Berge et al., 2018);

• ALDEx2 with all and iqlr data transformation (denom parameter) performing the wilcox test (Fernandes
et al., 2014);

• metagenomeSeq with CSS normalization factors using both the fitFeatureModel (for a zero-inflated
log-normal distribution, mixture model, as suggested in the package vignette) and the fitZig (for a
zero-inflated gaussian distribution, mixture model) algorithms (Paulson et al., 2013);

• corncob with a focus on average differences (not dispersion, regulated by phi.formula and
phi.formula_null parameters) using both Wald and LRT tests (Martin et al., 2020);

• MAST with both rescalings, default (i.e. 106, for CPMs) and median (Finak et al., 2015);

• Seurat with LogNormalize and CLR normalization/transformations, t and wilcox tests, and 105 as
scaling factor (Butler et al., 2018);

• ANCOM based on ANCOM-II algorithm with sampling fraction bias correction (BC parameter) (Lin and
Peddada, 2020; Kaul et al., 2017);

• dearseq with permutation and asymptotic tests (Gauthier et al., 2020);

20

Among the available methods, NOISeq (Tarazona et al., 2015) has not been used since it does not return
p-values but only adjusted ones. Many combination of parameters are still possible for all the methods.
my_basic <- set_basic(pseudo_count = FALSE,

contrast = c("group", "grp2", "grp1"),
test = c("t", "wilcox"),
paired = FALSE,
expand = TRUE)

my_edgeR <- set_edgeR(
pseudo_count = FALSE,
group_name = "group",
design = ~ group,
robust = FALSE,
coef = 2,
norm = "TMM",
weights_logical = c(TRUE, FALSE),
expand = TRUE)

my_DESeq2 <- set_DESeq2(
pseudo_count = FALSE,
design = ~ group,
contrast = c("group", "grp2", "grp1"),
norm = "poscounts",
weights_logical = c(TRUE, FALSE),
alpha = 0.05,
expand = TRUE)

my_limma <- set_limma(
pseudo_count = FALSE,
design = ~ group,
coef = 2,
norm = "TMM",
weights_logical = c(FALSE, TRUE),
expand = TRUE)

my_ALDEx2 <- set_ALDEx2(
pseudo_count = FALSE,
design = "group",
mc.samples = 128,
test = "wilcox",
paired.test = FALSE,
denom = c("all", "iqlr"),
contrast = c("group", "grp2", "grp1"),
expand = TRUE)

my_metagenomeSeq <- set_metagenomeSeq(
pseudo_count = FALSE,
design = "~ group",
coef = "groupgrp2",
norm = "CSS",
model = c("fitFeatureModel", "fitZig"),
expand = TRUE)

21

my_corncob <- set_corncob(
pseudo_count = FALSE,
formula = ~ group,
formula_null = ~ 1,
phi.formula = ~ group,
phi.formula_null = ~ group,
test = c("Wald", "LRT"),
boot = FALSE,
coefficient = "groupgrp2")

my_MAST <- set_MAST(
pseudo_count = FALSE,
rescale = c("default", "median"),
design = "~ 1 + group",
coefficient = "groupgrp2",
expand = TRUE)

my_Seurat <- set_Seurat(
pseudo_count = FALSE,
test = c("t", "wilcox"),
contrast = c("group", "grp2", "grp1"),
norm = c("LogNormalize", "CLR"),
scale.factor = 10ˆ5,
expand = TRUE

)

my_ANCOM <- set_ANCOM(
pseudo_count = FALSE,
fix_formula = "group",
contrast = c("group", "grp2", "grp1"),
BC = TRUE,
expand = TRUE

)

my_dearseq <- set_dearseq(
pseudo_count = FALSE,covariates = NULL,
variables2test = "group",
preprocessed = FALSE,
test = c("permutation", "asymptotic"),
expand = TRUE)

my_methods <- c(my_basic, my_edgeR, my_DESeq2, my_limma, my_metagenomeSeq,
my_corncob, my_ALDEx2, my_MAST, my_Seurat, my_ANCOM, my_dearseq)

After concatenating all the DA instructions, they are run on the mock comparisons using the runMocks()
function:
Random grouping each time
Stool_16S_mockDA <- runMocks(

mocks = my_mocks,
method_list = my_methods,
object = ps_stool_16S,
weights = zinbweights,
verbose = FALSE)

22

If some warnings are reported, verbose = TRUE can be used to obtain the method name and the mock
comparison where the warnings occured.

The structure of the output in this example is the following:

• Comparison1 to Comparison10 on the first level, which contains:

– Method1 to Method23 output lists on the second level:

∗ pValMat which contains the matrix of raw p-values and adjusted p-values in rawP and adjP
columns respectively;

∗ statInfo which contains the matrix of summary statistics for each feature, such as the logFC,
standard errors, test statistics and so on;

∗ dispEsts which contains the dispersion estimates for methods like edgeR and DESeq2;

∗ name which contains the complete name of the used method.

The list of methods can be run in parallel leveraging the BiocParallel package. In details, parallelization is
supported in Linux/Mac OS through the MulticoreParam() function (using the FORK implementation), as
long as ANCOM functions are not included in the list of methods due to a different parallelization management
of those functions.
bpparam = BiocParallel::MulticoreParam()
Stool_16S_mockDA <- runMocks(

mocks = my_mocks,
method_list = my_methods[-21], # Remove ANCOM
object = ps_stool_16S,
weights = zinbweights,
verbose = FALSE,
BPPARAM = bpparam)

ANCOM based methods are usually the most time consuming. Parallel computing is still possible as long as it
is directly managed by those methods (n_cl parameter). In the following example, each mock dataset is
analyzed in serial mode but ANCOM is run in more than one core.
Modify the n_cl parameter
my_ANCOM_parallel <- set_ANCOM(

pseudo_count = FALSE,
fix_formula = "group",
contrast = c("group", "grp2", "grp1"),
BC = TRUE,
n_cl = 2, # Set this number according to your machine
expand = TRUE

)

bpparam = BiocParallel::SerialParam()
Stool_16S_mockDA_ANCOM <- runMocks(

mocks = my_mocks,
method_list = my_ANCOM_parallel, # Only ANCOM
object = ps_stool_16S,
weights = zinbweights,
verbose = FALSE,
BPPARAM = bpparam)

23

4.3.1 Add a new DA method later in the analysis

It may happen that at a later time the user wants to add to the results already obtained, the results of
another group of methods. For example a new version of limma:
my_new_limma <- set_limma(

pseudo_count = FALSE,
design = ~ group,
coef = 2,
norm = "CSS",
weights_logical = FALSE)

Which returns a new set of limma instructions and a warning for using CSS normalization factors instead of
those native to edgeR.

First of all, the same mocks and the same object must be used to obtain the new results. To run the new
instructions the runMocks() function is used:
Stool_16S_mockDA_new_limma <- runMocks(

mocks = my_mocks,
method_list = my_new_limma,
object = ps_stool_16S,
verbose = FALSE)

To put everything together a mapply() function is used to exploit the output structures:
Stool_16S_mockDA_merged <- mapply(

Stool_16S_mockDA, # List of old results
Stool_16S_mockDA_new_limma, # List of new results
FUN = function(old, new){

c(old, new) # Concatenate the elements
}, SIMPLIFY = FALSE)

4.4 Counting the False Positives
The createTIEC() function counts the FPs and evaluates the p-values distributions:
TIEC_summary <- createTIEC(Stool_16S_mockDA)

A list of 5 data.frames is produced:

1. df_pval is a 5 columns and number_of_features x methods x comparisons rows data frame. The five
columns are called Comparison, Method, variable (which contains the feature names), pval and padj;

2. df_FPR is a 5 columns and methods x comparisons rows data frame. For each set of method and
comparison, the proportion of FPs, considering 3 threshold (0.01, 0.05, 0.1) is reported;

3. df_FDR is a 4 columns and number of methods rows data frame. For each method, the average False
Discovery Rate is computed averaging the results across all comparisons (considering 3 threshold, 0.01,
0.05, and 0.1);

4. df_QQ contains the average p-value for each theoretical quantile, i.e. the QQ-plot coordinates to compare
the mean observed p-values distribution across comparisons, with the theoretical uniform distribution.
Indeed, the observed p-values should follow a uniform distribution under the null hypothesis of no
differential abundant features presence;

5. df_KS is a 5 columns and methods x comparisons rows data frame. For each set of method and
comparison, the Kolmogorov-Smirnov test statistics and p-values are reported in KS and KS_pval
columns respectively.

24

4.5 Visualization
4.5.1 False Positive Rate

The false positive rate (FPR or observed α), which is the observed proportion of significant tests, should match
the nominal value because all the findings are false positive by construction. In this example edgeR.TMM,
edgeR.TMM.weighted, limma.TMM.weighted, and metagenomeSeq.CSS.fitZig appear to be quite over all
the thresholds (liberal behavior), differently ALDEx2.all.wilcox.unpaired and basic_t methods are below
(conservative behavior) or in line with the thresholds (Figure 8).
cols <- createColors(variable = levels(TIEC_summarydf_pvalMethod))
plotFPR(df_FPR = TIEC_summary$df_FPR, cols = cols)

FPR 0.01 FPR 0.05 FPR 0.1

A
LD

E
x2

.a
ll.

w
ilc

ox
.u

np
ai

re
d

A
LD

E
x2

.iq
lr.

w
ilc

ox
.u

np
ai

re
d

ba
si

c.
t

ba
si

c.
w

ilc
ox

D
E

S
eq

2.
po

sc
ou

nt
s

M
A

S
T.

de
fa

ul
t

M
A

S
T.

m
ed

ia
n

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tF

ea
tu

re
M

od
el

S
eu

ra
t.C

LR
.S

F
1e

+
05

.t
S

eu
ra

t.C
LR

.S
F

1e
+

05
.w

ilc
ox

S
eu

ra
t.L

og
N

or
m

al
iz

e.
S

F
1e

+
05

.t
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.w

ilc
ox

A
N

C
O

M
.B

C
co

rn
co

b.
LR

T
de

ar
se

q.
pe

rm
ut

at
io

n.
10

00
D

E
S

eq
2.

po
sc

ou
nt

s.
w

ei
gh

te
d

lim
m

a.
T

M
M

co
rn

co
b.

W
al

d
de

ar
se

q.
as

ym
pt

ot
ic

ed
ge

R
.T

M
M

ed
ge

R
.T

M
M

.w
ei

gh
te

d
lim

m
a.

T
M

M
.w

ei
gh

te
d

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tZ

ig

A
LD

E
x2

.iq
lr.

w
ilc

ox
.u

np
ai

re
d

A
LD

E
x2

.a
ll.

w
ilc

ox
.u

np
ai

re
d

ba
si

c.
t

M
A

S
T.

de
fa

ul
t

S
eu

ra
t.L

og
N

or
m

al
iz

e.
S

F
1e

+
05

.t
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.w

ilc
ox

ba
si

c.
w

ilc
ox

M
A

S
T.

m
ed

ia
n

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tF

ea
tu

re
M

od
el

S
eu

ra
t.C

LR
.S

F
1e

+
05

.t
S

eu
ra

t.C
LR

.S
F

1e
+

05
.w

ilc
ox

A
N

C
O

M
.B

C
D

E
S

eq
2.

po
sc

ou
nt

s
lim

m
a.

T
M

M
co

rn
co

b.
LR

T
de

ar
se

q.
pe

rm
ut

at
io

n.
10

00
D

E
S

eq
2.

po
sc

ou
nt

s.
w

ei
gh

te
d

co
rn

co
b.

W
al

d
de

ar
se

q.
as

ym
pt

ot
ic

ed
ge

R
.T

M
M

lim
m

a.
T

M
M

.w
ei

gh
te

d
ed

ge
R

.T
M

M
.w

ei
gh

te
d

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tZ

ig

A
LD

E
x2

.a
ll.

w
ilc

ox
.u

np
ai

re
d

A
LD

E
x2

.iq
lr.

w
ilc

ox
.u

np
ai

re
d

ba
si

c.
t

A
N

C
O

M
.B

C
ba

si
c.

w
ilc

ox
M

A
S

T.
de

fa
ul

t
m

et
ag

en
om

eS
eq

.C
S

S
.fi

tF
ea

tu
re

M
od

el
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.w

ilc
ox

M
A

S
T.

m
ed

ia
n

S
eu

ra
t.C

LR
.S

F
1e

+
05

.w
ilc

ox
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.t

D
E

S
eq

2.
po

sc
ou

nt
s

de
ar

se
q.

pe
rm

ut
at

io
n.

10
00

D
E

S
eq

2.
po

sc
ou

nt
s.

w
ei

gh
te

d
lim

m
a.

T
M

M
S

eu
ra

t.C
LR

.S
F

1e
+

05
.t

co
rn

co
b.

LR
T

co
rn

co
b.

W
al

d
de

ar
se

q.
as

ym
pt

ot
ic

ed
ge

R
.T

M
M

lim
m

a.
T

M
M

.w
ei

gh
te

d
ed

ge
R

.T
M

M
.w

ei
gh

te
d

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tZ

ig

0.0

0.2

0.4

Method

O
bs

er
ve

d
α

by FPR level

False Positive Rate

Figure 8: FPR plot. Boxplots of the proportion of raw p-values lower than the commonly used thresholds for
the nominal α (i.e. the False Positive Rate) for each DA method.

4.5.2 False Discovery Rate

The false discovery rate FDR = E
[

F P
F P +T P

]
is the expected value of the ratio between the false positives and

all the positives. By construction, mock comparisons should not contain any TPs and when all the hypotheses
are null, FDR and FWER (Family Wise Error Rate) coincide. For each set of method and comparison, the
FDR is set equal to 1 (if at least 1 DA feature is found) or 0 (if no DA features are found). Hence, the
estimated FDR is computed by averaging the values across all the mock comparisons. As the number of mock
comparisons increases, the more precise the estimated FDR will be. Just as alpha is set as a threshold for the
p-value to control the FPR, a threshold for the adjusted p-value, which is the FDR analog of the p-value, can
be set. FDR values should match the nominal values represented by the red dashed lines. In this example,
the number of mock comparisons is set to 10, so the estimates are unprecise. That said, ALDEx2 based
methods, basic_t, and Seurat.CLR.SF1e+05.t methods are able to control the FDR for all the considered
thresholds (Figure 9).

25

plotFDR(df_FDR = TIEC_summary$df_FDR, cols = cols)

FDR 0.01 FDR 0.05 FDR 0.1

A
LD

E
x2

.a
ll.

w
ilc

ox
.u

np
ai

re
d

A
LD

E
x2

.iq
lr.

w
ilc

ox
.u

np
ai

re
d

A
N

C
O

M
.B

C
ba

si
c.

t
co

rn
co

b.
LR

T
de

ar
se

q.
pe

rm
ut

at
io

n.
10

00
D

E
S

eq
2.

po
sc

ou
nt

s
D

E
S

eq
2.

po
sc

ou
nt

s.
w

ei
gh

te
d

M
A

S
T.

de
fa

ul
t

M
A

S
T.

m
ed

ia
n

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tF

ea
tu

re
M

od
el

S
eu

ra
t.C

LR
.S

F
1e

+
05

.t
ba

si
c.

w
ilc

ox
lim

m
a.

T
M

M
S

eu
ra

t.C
LR

.S
F

1e
+

05
.w

ilc
ox

S
eu

ra
t.L

og
N

or
m

al
iz

e.
S

F
1e

+
05

.t
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.w

ilc
ox

co
rn

co
b.

W
al

d
de

ar
se

q.
as

ym
pt

ot
ic

ed
ge

R
.T

M
M

ed
ge

R
.T

M
M

.w
ei

gh
te

d
lim

m
a.

T
M

M
.w

ei
gh

te
d

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tZ

ig

A
LD

E
x2

.a
ll.

w
ilc

ox
.u

np
ai

re
d

A
LD

E
x2

.iq
lr.

w
ilc

ox
.u

np
ai

re
d

ba
si

c.
t

co
rn

co
b.

LR
T

S
eu

ra
t.C

LR
.S

F
1e

+
05

.t
A

N
C

O
M

.B
C

ba
si

c.
w

ilc
ox

M
A

S
T.

de
fa

ul
t

M
A

S
T.

m
ed

ia
n

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tF

ea
tu

re
M

od
el

S
eu

ra
t.C

LR
.S

F
1e

+
05

.w
ilc

ox
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.w

ilc
ox

D
E

S
eq

2.
po

sc
ou

nt
s

D
E

S
eq

2.
po

sc
ou

nt
s.

w
ei

gh
te

d
lim

m
a.

T
M

M
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.t

co
rn

co
b.

W
al

d
de

ar
se

q.
pe

rm
ut

at
io

n.
10

00
ed

ge
R

.T
M

M
de

ar
se

q.
as

ym
pt

ot
ic

lim
m

a.
T

M
M

.w
ei

gh
te

d
ed

ge
R

.T
M

M
.w

ei
gh

te
d

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tZ

ig

A
LD

E
x2

.a
ll.

w
ilc

ox
.u

np
ai

re
d

A
LD

E
x2

.iq
lr.

w
ilc

ox
.u

np
ai

re
d

ba
si

c.
t

S
eu

ra
t.C

LR
.S

F
1e

+
05

.t
A

N
C

O
M

.B
C

ba
si

c.
w

ilc
ox

M
A

S
T.

de
fa

ul
t

M
A

S
T.

m
ed

ia
n

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tF

ea
tu

re
M

od
el

S
eu

ra
t.C

LR
.S

F
1e

+
05

.w
ilc

ox
S

eu
ra

t.L
og

N
or

m
al

iz
e.

S
F

1e
+

05
.w

ilc
ox

co
rn

co
b.

LR
T

D
E

S
eq

2.
po

sc
ou

nt
s

lim
m

a.
T

M
M

S
eu

ra
t.L

og
N

or
m

al
iz

e.
S

F
1e

+
05

.t
D

E
S

eq
2.

po
sc

ou
nt

s.
w

ei
gh

te
d

co
rn

co
b.

W
al

d
de

ar
se

q.
as

ym
pt

ot
ic

de
ar

se
q.

pe
rm

ut
at

io
n.

10
00

ed
ge

R
.T

M
M

ed
ge

R
.T

M
M

.w
ei

gh
te

d
lim

m
a.

T
M

M
.w

ei
gh

te
d

m
et

ag
en

om
eS

eq
.C

S
S

.fi
tZ

ig

0.00

0.25

0.50

0.75

1.00

Method

A
ve

ra
ge

 F
D

R

by significance thresholds

False Discovery Rate

Figure 9: FDR plot. Average nominal False Discovery Rate values for several commonly used thresholds for
each DA method.

4.5.3 QQ-Plot

The p-values distribution under the null hypothesis should be uniform. This is qualitatively summarized
in the QQ-plot in Figure 10 where the bisector represents a perfect correspondence between observed and
theoretical quantiles of p-values. For each theoretical quantile, the corresponding observed quantile is obtained
averaging the observed p-values’ quantiles from all 10 mock datasets. The plotting area is zoomed-in to show
clearly the area between 0 and 0.1.

Methods over the bisector show a conservative behavior, while methods below the bisector a liberal one.

The starting point is determined by the total number of features. In our example the starting point for the
theoretical p-values is computed as 1 divided by the number of taxa, rounded to the second digit. In real
experiments, where the number of taxa is higher, the starting point is closer to zero.
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1), cols = cols) +

guides(colour = guide_legend(ncol = 1))

As the number of methods increases, distinguishing their curves becomes more difficult. For this reason it is
also possible to plot each method singularly (Figure 11).
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 1), cols = cols, split = TRUE)

4.5.4 Kolmogorov-Smirnov test

Departure from uniformity is quantitatively evaluated through the Kolmogorov-Smirnov test which is reported
for each method across all mock datasets using the the plotKS function in Figure 12.

26

0.000

0.025

0.050

0.075

0.100

0.000 0.025 0.050 0.075 0.100
Theoretical p−value

O
bs

er
ve

d
p−

va
lu

e

Method

basic.t

basic.wilcox

edgeR.TMM

edgeR.TMM.weighted

DESeq2.poscounts

DESeq2.poscounts.weighted

limma.TMM

limma.TMM.weighted

metagenomeSeq.CSS.fitFeatureModel

metagenomeSeq.CSS.fitZig

corncob.LRT

corncob.Wald

ALDEx2.all.wilcox.unpaired

ALDEx2.iqlr.wilcox.unpaired

MAST.default

MAST.median

Seurat.CLR.SF1e+05.t

Seurat.CLR.SF1e+05.wilcox

Seurat.LogNormalize.SF1e+05.t

Seurat.LogNormalize.SF1e+05.wilcox

ANCOM.BC

dearseq.asymptotic

dearseq.permutation.1000

From 0 to 0.1

Average QQ−plot

Figure 10: QQ plot. Quantile-quantile plot from 0 to 0.1 for each DA methods. Average curves are reported

27

ANCOM.BC dearseq.asymptotic dearseq.permutation.1000

MAST.median Seurat.CLR.SF1e+05.t Seurat.CLR.SF1e+05.wilcox Seurat.LogNormalize.SF1e+05.t Seurat.LogNormalize.SF1e+05.wilcox

corncob.LRT corncob.Wald ALDEx2.all.wilcox.unpaired ALDEx2.iqlr.wilcox.unpaired MAST.default

DESeq2.poscounts.weighted limma.TMM limma.TMM.weighted metagenomeSeq.CSS.fitFeatureModel metagenomeSeq.CSS.fitZig

basic.t basic.wilcox edgeR.TMM edgeR.TMM.weighted DESeq2.poscounts

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Theoretical p−value

O
bs

er
ve

d
p−

va
lu

e

From 0 to 1

Average QQ−plot

Figure 11: QQ plot. Quantile-quantile plots from 0 to 1 for each DA method are displayed separately. Average
curves are reported

28

plotKS(df_KS = TIEC_summary$df_KS, cols = cols)

metagenomeSeq.CSS.fitZig
edgeR.TMM.weighted
ALDEx2.iqlr.wilcox.unpaired
ALDEx2.all.wilcox.unpaired
limma.TMM.weighted
edgeR.TMM
dearseq.asymptotic
dearseq.permutation.1000
DESeq2.poscounts
corncob.Wald
corncob.LRT
Seurat.CLR.SF1e+05.t
metagenomeSeq.CSS.fitFeatureModel
basic.t
Seurat.LogNormalize.SF1e+05.wilcox
Seurat.LogNormalize.SF1e+05.t
MAST.default
basic.wilcox
ANCOM.BC
MAST.median
limma.TMM
DESeq2.poscounts.weighted
Seurat.CLR.SF1e+05.wilcox

0.1 0.2 0.3 0.4 0.5
KS statistics

M
ethods

Methods ordered by median K−S

K−S statistics

Figure 12: KS plot. Kolmogorov-Smirnov (KS) statistic boxplots for each DA methods where the raw p-values
distribution is compared with a uniform distribution.

High KS values indicates departure from the uniformity while low values indicates closeness. All the clues
obtained in the previous figures 10 and 11 are confirmed by the KS statistics: metagenomeSeq.CSS.fitZig,
which was very liberal and its distribution of p-values is the farthest from uniformity among the tested
methods. Also ALDEx2 based methods show high KS values, indeed they showed a very conservative
behaviour.

4.5.5 Log distribution of p-values

Looking at the p-values’ log-scale can also be informative. This is because behavior in the tail may be poor
even when the overall p-value distribution is uniform, with a few unusually small p-values in an otherwise
uniform distribution. Figure 13 displays the distributions of all the p-values (in negative log scale) generated
by each DA method across all the mock comparisons.
plotLogP(df_pval = TIEC_summary$df_pval, cols = cols)

Similarly, figure 14 exploits the structure of the df_QQ data.frame generated by the createTIEC() function
to display the distribution of the p-values (in negative log scale) generated by each DA method, averaged
among mock comparisons (only ten in this example). As this second graphical representation is only based
on 1 averaged p-value for each quantile, it is also less influenced by anomalously large values.
plotLogP(df_QQ = TIEC_summary$df_QQ, cols = cols)

29

0.
1

0.
05

0.
01

metagenomeSeq.CSS.fitZig

limma.TMM.weighted

edgeR.TMM.weighted

edgeR.TMM

corncob.Wald

dearseq.asymptotic

dearseq.permutation.1000

DESeq2.poscounts.weighted

limma.TMM

corncob.LRT

DESeq2.poscounts

basic.wilcox

ANCOM.BC

Seurat.LogNormalize.SF1e+05.wilcox

Seurat.CLR.SF1e+05.wilcox

Seurat.CLR.SF1e+05.t

MAST.median

Seurat.LogNormalize.SF1e+05.t

metagenomeSeq.CSS.fitFeatureModel

MAST.default

basic.t

ALDEx2.iqlr.wilcox.unpaired

ALDEx2.all.wilcox.unpaired

IDEAL

0 4 8 12

p−value

− log10(p − value)

M
et

ho
d

IDEAL method as reference, red bars represents the 90, 95, and 99 percentiles

All p−values log distribution

Figure 13: -log10(p-value) plot. Negative logarithm distribution of p-values. Red-shaded vertical bars
represent the 90, 95, and 99 percentiles for the negative log distribution of p-values for each method. They
should align with the dotted lines which represent the percentiles of the IDEAL distribution.

30

0.
1

0.
05

0.
01

metagenomeSeq.CSS.fitZig

edgeR.TMM.weighted

limma.TMM.weighted

edgeR.TMM

corncob.Wald

corncob.LRT

DESeq2.poscounts.weighted

limma.TMM

dearseq.asymptotic

dearseq.permutation.1000

DESeq2.poscounts

MAST.median

Seurat.CLR.SF1e+05.wilcox

Seurat.CLR.SF1e+05.t

basic.wilcox

MAST.default

Seurat.LogNormalize.SF1e+05.t

Seurat.LogNormalize.SF1e+05.wilcox

ANCOM.BC

metagenomeSeq.CSS.fitFeatureModel

basic.t

ALDEx2.all.wilcox.unpaired

ALDEx2.iqlr.wilcox.unpaired

IDEAL

0 2 4

p−value

− log10(p − value)

M
et

ho
d

IDEAL method as reference, red bars represents the 90, 95, and 99 percentiles

Average p−values log distribution

Figure 14: -log10(average p-value) plot (‘average’ refers to the average p-value computed for each quantile
across mocks comparisons). Negative logarithm distribution of average p-values. Red-shaded vertical bars
represent the 90, 95, and 99 percentiles for the negative log distribution of average p-values for each method.
They should align with the dotted lines which represent the percentiles of the IDEAL distribution.

31

In the figure 13 and 14, the − log10(p − value) IDEAL distribution is reported in red color as the first
method. To highlight tail’s behaviors, 3 percentiles (0.9, 0.95, 0.99) are reported using red-shaded vertical
segments for each method. If the method’s distribution of negative log-transformed p-values or average
p-values is still uniform in the 3 selected quantiles of the tail, the 3 red vertical segments will align to the
respective dotted line. Methods are ordered using the distances between the observed quantiles and the ideal
ones. Usually, when a method has its red segments to the left of the IDEAL’s ones is conservative (e.g.,
ALDEx2.iqlr.wilcox.unpaired and MAST.default). Indeed, for those methods, little p-values are fewer
than expected. On the contrary, methods with red segments to the right of the IDEAL’s ones are liberal
(e.g., edgeR.TMM). Mixed results could be present: a method that has a lower quantile for one threshold and
higher quantiles for the others (e.g., limma.TMM).

4.6 Discussion about TIEC
Putting all the previous graphical representations together gives a general overview of methods’ ability to
control FPs and p-values distribution under the null hypothesis (i.e. no differential abundance). It is clear
that only methods that produce p-values can be included in this analysis. While figures 10 and 11 have a
main exploratory scope regarding the p-values distribution based on quantile-quantile comparison, figures 8,
12, and 14 are able to rank methods according to False Positive Rate, uniformity of p-values distribution,
and departure from uniformity in the tail. The latter graphical representations could be used as a first tool
to establish which DA method to consider for further analyses and which DA methods to exclude. Finally,
the figure 9 can be used to assess FDR control under the null scenario. This exposes the problem of a few
extremely small p-values among a collection that looks roughly uniform. If that is the case, the Type I error
would be under control but the FDR would be inflated.

32

5 Concordance
Assumption: Applying different methods to the same data may produce different results.

Questions: How much do the methods agree with each other? How much does a method agree with itself?

5.1 Concordance structure
To measure the ability of each method to produce replicable results from a dataset with two or more groups:

1. samples are divided to obtain the Subset1 and Subset2 datasets using the createSplits() function;

2. DA methods are run on both subsets using the runSplits() function;

3. the Concordance At the Top metric (CAT) between the lists of p-values is computed to obtain the
Between Methods Concordance (BMC) and the Within Method Concordance (WMC);

4. steps 1-3 are repeated many times (N = 10, but at least 100 are suggested) and the results are averaged
using the createConcordance() function.

The relationships between the functions used in this section are explained by the diagram in Figure 15.

getStatistics

slot = "pValMat" or "statInfo"
colName

type = "pvalue" or "logfc"
direction

verbose = TRUE or FALSE

vector or data.frame
with p-values and/or

logFC

extractStatistics

slot = "pValMat" or "statInfo"
colName

type = "pvalue" or "logfc"
direction

verbose = TRUE or FALSE

Generic DA output

MethodX

pValMat
statInfo
name

Generic DA output list

Method1

pValMat
statInfo
name

Method2

pValMat
statInfo
name

...

list of vectors or
data.frames with p-
values and/or logFC

createSplits

assay_name
varName
paired

balanced = TRUE or FALSE
N

Normalization
framework

List of data.frames

Subset1

Comparison1
...
ComparisonN

Subset2

Comparison1
...
ComparisonN

runSplits

assay_name
min_counts

min_samples
verbose

BPPARAM

DA framework

object

Normalization names
and their parameters

DA_method
instructions list

List of results

Subset1
Comparison1

Method1
Method2
...

...
ComparisonN

Method1
Method2
...

Subset2
Comparison1

Method1
Method2
...

...
ComparisonN

Method1
Method2
...

createConcordance

slot = "pValMat" or "statInfo"
colName

type = "pvalue" or "logfc"
verbose = TRUE or FALSE

Concordance data.frame

comparison
n_features
method1
method2

rank
concordance

areaCAT

plotIt = TRUE or FALSE

plotConcordance

threshold

Concordance data.frame

comparison
n_features
method1
method2

rank
concordance
heightOver
areaOver

colsvector of method
names createColors

Legend

function

parameters

input data

output data

customly implemented
by the user

wrapped function

parameters

Figure 15: Concordance diagram.

5.2 Split datasets
Using the createSplits() function, the ps_plaque_16S dataset is randomly divided by half. In this dataset,
samples are paired: 1 sample for supragingival plaque and 1 sample for subgingival plaque are considered
for each subject. The paired parameter is passed to the method (it contains the name of the variable which
describes the subject IDs) so the paired samples are inside the same split. In this specific case, the two groups
of samples are balanced between conditions, reflecting the starting dataset. However, if the starting dataset
had been unbalanced, the balanced option would have allowed to keep the two splits unbalanced or not.
set.seed(123)

Make sure that groups and subject IDs are factors
sample_data(ps_plaque_16S)$HMP_BODY_SUBSITE <-

factor(sample_data(ps_plaque_16S)$HMP_BODY_SUBSITE)

33

sample_data(ps_plaque_16S)$RSID <-
factor(sample_data(ps_plaque_16S)$RSID)

my_splits <- createSplits(
object = ps_plaque_16S,
varName = "HMP_BODY_SUBSITE",
paired = "RSID",
balanced = TRUE,
N = 10

) # At least 100 is suggested

The structure produced by createSplits() function consists in a list of two matrices: Subset1 and Subset2.
Each matrix contains the randomly chosen sample IDs. The number of rows of both matrices is equal to the
number of comparisons/splits (10 in this example, but at least 100 are suggested).

5.3 Set up normalizations and DA methods
For some of the methods implemented in this package it is possible to perform differential abundance testings
for the repeated measurements experimental designs (e.g., by adding the subject ID in the model formula of
DESeq2).

Once again, to set the differential abundance methods to use, the set_<name_of_the_method>() methods
can be exploited. For a faster demonstration, differential abundance methods without weighting are used:
my_edgeR_noWeights <- set_edgeR(

group_name = "HMP_BODY_SUBSITE",
design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque",
norm = "TMM")

my_DESeq2_noWeights <- set_DESeq2(
contrast = c("HMP_BODY_SUBSITE",
"Supragingival Plaque", "Subgingival Plaque"),
design = ~ 1 + RSID + HMP_BODY_SUBSITE,
norm = "poscounts")

my_limma_noWeights <- set_limma(
design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque",
norm = "TMM")

my_ALDEx2 <- set_ALDEx2(
pseudo_count = FALSE,
design = "HMP_BODY_SUBSITE",
mc.samples = 128,
test = "wilcox",
paired.test = TRUE,
denom = "all",
contrast = c("HMP_BODY_SUBSITE", "Supragingival Plaque", "Subgingival Plaque"))

my_MAST <- set_MAST(
pseudo_count = FALSE,
rescale = "median",
design = "~ 1 + RSID + HMP_BODY_SUBSITE",
coefficient = "HMP_BODY_SUBSITESupragingival Plaque")

34

my_dearseq <- set_dearseq(
pseudo_count = FALSE,
covariates = NULL,
variables2test = "HMP_BODY_SUBSITE",
sample_group = "RSID",
test = "asymptotic",
preprocessed = FALSE)

Very time consuming
my_ANCOM <- set_ANCOM(

pseudo_count = FALSE,
adj_formula = NULL,
rand_formula = "~ 1 | RSID",
contrast = c("HMP_BODY_SUBSITE",
"Supragingival Plaque", "Subgingival Plaque"),
BC = FALSE)

my_methods_noWeights <- c(
my_edgeR_noWeights,
my_DESeq2_noWeights,
my_limma_noWeights,
my_ALDEx2,
my_MAST,
my_dearseq,
my_ANCOM)

Similarly, to set the normalization methods, the setNormalizations() function can be used. In this case it
has already been set up for the TIEC analysis:
str(my_normalizations)

List of 3
$ norm_edgeR :List of 2
..$ fun : chr "norm_edgeR"
..$ method: chr "TMM"
$ norm_DESeq2:List of 2
..$ fun : chr "norm_DESeq2"
..$ method: chr "poscounts"
$ norm_CSS :List of 2
..$ fun : chr "norm_CSS"
..$ method: chr "CSS"

The runSplits() function generates the subsets and performs DA analysis on the features with at least 1
(min_counts > 0) count in more than 2 samples (min_samples > 2). As for runMocks() function, also
runSplits() supports parallel computing.
Set the parallel framework
Remember that ANCOMBC based methods are only compatible with SerialParam()
bpparam <- BiocParallel::SerialParam()

Make sure the subject ID variable is a factor
phyloseq::sample_data(ps_plaque_16S)[, "RSID"] <- as.factor(

phyloseq::sample_data(ps_plaque_16S)[["RSID"]])

Plaque_16S_splitsDA <- runSplits(

35

split_list = my_splits,
method_list = my_methods_noWeights,
normalization_list = my_normalizations,
object = ps_plaque_16S,
min_counts = 0, min_samples = 2,
verbose = FALSE,
BPPARAM = bpparam)

The structure of the output in this example is the following:

• Subset1 and Subset2 on the first level, which contains:

– Comparison1 to Comparison10 output lists on the second level:

∗ results of 7 methods on the third level: edgeR with TMM scaling factors, DESeq2 with
poscounts normalization factors, limma-voom with TMM scaling factors (all the 3 previous
methods have the Subject identifier in the design formula), ALDEx2 with paired wilcox test and
denom equals to all, MAST with median scaling and the subject identifier in the design formula,
dearseq for repeated measures with asymptotic test, and ANCOM without bias correction. Their
outputs are organized as always:

· pValMat which contains the matrix of raw p-values and adjusted p-values in rawP and
adjP columns respectively;

· statInfo which contains the matrix of summary statistics for each feature, such as the
logFC, standard errors, test statistics and so on;

· dispEsts which contains the dispersion estimates for methods like edgeR and DESeq2 ;

· name which contains the complete name of the used method.

5.3.1 Add a new DA method later in the analysis

Again, it may happen that at a later time the user wants to add to the results already obtained, the results
of another group of methods. First of all, the same splits and the same object must be used to obtain the
new results:
my_basic <- set_basic(

pseudo_count = FALSE,
contrast = c("HMP_BODY_SUBSITE",
"Supragingival Plaque", "Subgingival Plaque"),
test = "wilcox",
paired = TRUE)

Plaque_16S_splitsDA_basic <- runSplits(
split_list = my_splits,
method_list = my_basic,
normalization_list = NULL,
object = ps_plaque_16S,
min_counts = 0, min_samples = 2,
verbose = FALSE)

To put everything together, two nested mapplys can be used to exploit the output structures:
Plaque_16S_splitsDA_all <- mapply(

Plaque_16S_splitsDA, # List of old results
Plaque_16S_splitsDA_basic, # List of new results
FUN = function(subset_old, subset_new){

mapply(

36

subset_old,
subset_new,
FUN = function(old, new){

return(c(old, new))
}, SIMPLIFY = FALSE)

}, SIMPLIFY = FALSE)

5.4 Comparing the concordances
For each pair of methods the concordance is computed by the createConcordance() function. It produces a
long format data frame object with several columns:

• comparison which indicates the comparison number;
• n_features which indicates the total number of taxa in the comparison dataset;
• name of method1 ;
• name of method2 ;
• rank;
• concordance which is defined as the cardinality of the intersection of the top rank elements of each list,

divided by rank, i.e., L1:rank

⋂
M1:rank

rank , where L and M represent the lists of p-values of method1 and
method2 respectively. A noise value (< 10−10) is added to each p-value (or statistic) in order to avoid
duplicated values which could not be ordered.

concordance <- createConcordance(
object = Plaque_16S_splitsDA_all,
slot = "pValMat",
colName = "rawP",
type = "pvalue"

)

head(concordance)

rank concordance n_features method1 method2 comparison
1 1 0.0000000 47 edgeR.TMM edgeR.TMM Comparison1
2 2 0.5000000 47 edgeR.TMM edgeR.TMM Comparison1
3 3 0.6666667 47 edgeR.TMM edgeR.TMM Comparison1
4 4 1.0000000 47 edgeR.TMM edgeR.TMM Comparison1
5 5 0.8000000 47 edgeR.TMM edgeR.TMM Comparison1
6 6 0.6666667 47 edgeR.TMM edgeR.TMM Comparison1

The createConcordance() method is very flexible. In the example below the concordances are built using
the log fold changes or other statistics instead of the p-values. To do so, it is necessary to know the column
names generated by each differential abundance method in the statInfo matrix.

Firstly, the method order is extracted using the name slot:
names(Plaque_16S_splitsDA_all$Subset1$Comparison1)

[1] "edgeR.TMM" "DESeq2.poscounts"
[3] "limma.TMM" "ALDEx2.all.wilcox.paired"
[5] "MAST.median" "dearseq.repeated.asymptotic"
[7] "ANCOM" "basic.wilcox.paired"

Then, the column names of the statInfo slot are investigated:
cat("edgeR.TMM", "\n")

edgeR.TMM

37

names(Plaque_16S_splitsDA_all$Subset1$Comparison1$edgeR.TMM$statInfo)

[1] "logFC" "logCPM" "F" "PValue"
cat("DESeq2.poscounts", "\n")

DESeq2.poscounts
names(Plaque_16S_splitsDA_all$Subset1$Comparison1$DESeq2.poscounts$statInfo)

[1] "baseMean" "log2FoldChange" "lfcSE" "stat"
[5] "pvalue" "padj"
cat("limma.TMM", "\n")

limma.TMM
names(Plaque_16S_splitsDA_all$Subset1$Comparison1$limma.TMM$statInfo)

[1] "logFC" "AveExpr" "t" "P.Value" "adj.P.Val" "B"
cat("ALDEx2.all.wilcox.paired", "\n")

ALDEx2.all.wilcox.paired
names(Plaque_16S_splitsDA_all$Subset1$Comparison1$ALDEx2.all.wilcox.paired$

statInfo)

[1] "rab.all" "rab.win.Subgingival Plaque"
[3] "rab.win.Supragingival Plaque" "diff.btw"
[5] "diff.win" "effect"
[7] "overlap" "we.ep"
[9] "we.eBH" "wi.ep"
[11] "wi.eBH"
cat("MAST.median", "\n")

MAST.median
names(Plaque_16S_splitsDA_all$Subset1$Comparison1$MAST.median$statInfo)

[1] "logFC" "logFC.lo" "logFC.hi" "rawP" "adjP"
cat("dearseq.repeated.asymptotic", "\n")

dearseq.repeated.asymptotic
names(Plaque_16S_splitsDA_all$Subset1$Comparison1$dearseq.repeated.asymptotic$

statInfo)

[1] "rawP" "adjP"
cat("ANCOM", "\n")

ANCOM
names(Plaque_16S_splitsDA_all$Subset1$Comparison1$ANCOM$statInfo)

[1] "taxon" "W" "detected_0.9" "detected_0.8" "detected_0.7"
[6] "detected_0.6"
cat("basic.wilcox.paired", "\n")

basic.wilcox.paired

38

names(Plaque_16S_splitsDA_all$Subset1$Comparison1$basic.wilcox.paired$statInfo)

[1] "taxon" "statistic" "pvalue" "logFC"

All methods, except for DESeq2, ALDEx2, dearseq, and ANCOM, contain the log fold change values in the logFC
column of statInfo matrix. Knowing this, the alternative concordance data frame can be built using:
concordance_alternative <- createConcordance(

object = Plaque_16S_splitsDA_all,
slot = "statInfo",
colName = c("logFC", "log2FoldChange", "logFC", "effect", "logFC", "rawP",

"W", "logFC"),
type = c("logfc", "logfc", "logfc", "logfc", "logfc", "pvalue", "logfc",

"logfc")
)

5.5 Visualization
Starting from the table of concordances, the plotConcordance() function can produce 2 graphical results
visible in Figure 16:

• the dendrogram of methods, clustered by the area over the concordance bisector in concordanceDendro-
gram slot;

• the heatmap of the between and within method concordances in concordanceHeatmap slot. For each
tile of the symmetric heatmap, which corresponds to a pair of methods, the concordance from rank 1 to
a threshold rank is drawn.

The area between the curve and the bisector is colored to highlight concordant methods (blue) and non-
concordant ones (red). The two graphical results should be drawn together for the best experience.
pC <- plotConcordance(

concordance = concordance,
threshold = 30)

cowplot::plot_grid(
plotlist = pC,
ncol = 2,
align = "h",
axis = "tb",
rel_widths = c(1, 3))

The WMC and BMC from rank 1 to rank 30 are reported in Figure 16. More than 40 (use
table(concordance$rank) to find out) is the maximum rank obtained by all split comparisons, i.e.
the number of taxa for which all methods calculated p-values (in all comparisons). However, a custom
threshold of 30 was supplied.

It is common that WMC values (in red rectangles) are lower than BMC ones. Indeed, BMC is computed
between different methods on the same data, while WMC is computed for a single method, run in different
datasets (some taxa are dataset-specific).

limma.TMM and edgeR.TMM methods show the highest BMC values but they are also concordant
with dearseq.repeated.asymptotic and basic.wilcox.paired. Differently, DESeq2.poscounts and
MAST.median are not concordant with the other methods. ANCOM shows a completely random pattern (the
lines are always close to the dashed line) because all the chosen statistics are equal to 1 and they can’t be
ordered.

Regarding the WMC, ALDEx2.all.wilcox.paired has the highest value while MAST.median has the lowest

39

MAST.median

basic.wilcox.paired

dearseq.repeated.asymptotic

edgeR.TMM

limma.TMM

ANCOM

ALDEx2.all.wilcox.paired

DESeq2.poscounts

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

Rank

A
verage concordance

0.0 0.1 0.2 0.3 0.4
Average area over the bisector:

Figure 16: BMC and WMC plot. Between-method concordance (BMC) and within-method concordance
(WMC) (main diagonal) averaged values from rank 1 to 30.

40

values, maybe because it has not been implemented properly for repeated measure designs. Other methods
have comparable WMC values.

5.6 Discussion about Concordance
Random splits allow to evaluate concordance between methods and within a method. These analyses do
not assess the correctness of the discoveries. Even the method with the highest WMC could nonetheless
consistently identify false positive DA taxa. For this reason, the concordance analysis framework should be
used as a tool to detect groups of similar methods.

41

6 Enrichment analysis
Assumption: Previous analyses did not assess the correctness of the discoveries.

Question: If some prior knowledge about the experiment is available, would the findings be coherent with
that knowledge?

6.1 Enrichment structure
While the lack of ground truth makes it challenging to assess the validity of DA results in real data, enrichment
analysis can provide an alternative solution to rank methods in terms of their ability to identify, as significant,
taxa that are known to be differentially abundant between two groups. To run methods, the runDA() function
is used. Leveraging the prior knowledge (if present), the correctness of the findings is checked using the
createEnrichment() and createPositives() functions. Many graphical outputs are available through the
plotContingency(), plotEnrichment(), plotMutualFindings(), and plotPositives() functions.

The relationships between the functions used in this section are explained by the diagram in Figure 17.

createPositives

enrichmentCol
namesCol = NULL

slot = "pValMat"
colName = "adjP"
type = "pvalue"

direction = NULL
threshold_pvalue = 1
threshold_logfc = 0

top = 1:20
alternative = "greater"

TP
FP

verbose = TRUE or FALSE

getStatistics

slot = "pValMat" or "statInfo"
colName

type = "pvalue" or "logfc"
direction

verbose = TRUE or FALSE

vector or data.frame
with p-values and/or

logFC

extractStatistics

slot = "pValMat" or "statInfo"
colName

type = "pvalue" or "logfc"
direction

verbose = TRUE or FALSE
Generic DA output

MethodX

pValMat
statInfo
name

Generic DA output list

Method1

pValMat
statInfo
name

Method2

pValMat
statInfo
name

...

list of vectors or
data.frames with p-
values and/or logFC

getDA

slot = "pValMat" or "statInfo"
colName

type = "pvalue" or "logfc"
direction

threshold_pvalue = 1
threshold_logfc = 0

top = NULL
verbose = TRUE or FALSE

extractDA

slot = "pValMat" or "statInfo"
colName

type = "pvalue" or "logfc"
direction

threshold_pvalue = 1
threshold_logfc = 0

top = NULL
verbose = TRUE or FALSE

DA info list

Method1

stat
direction
DA

Method2

stat
direction
DA

...

DA info

MethodX

stat
direction
DA

addKnowledge

enrichmentCol
namesCol = NULL

priorKnowledge

DA info enrichment

MethodX

stat
direction
DA
enrichmentCol
feature

enrichmentTest

enrichmentCol
alternative = "greater"

Enrichment info

data

stat
direction
DA
enrichmentCol
feature

tables
2x2 contingency tables

tests
Fisher's test p-values for
each contingency table

summary
list with the first element of a
contingency table and its p-

value

createEnrichment

enrichmentCol
namesCol = NULL

slot = "pValMat"
colName = "adjP"
type = "pvalue"

direction = NULL
threshold_pvalue = 1
threshold_logfc = 0

top = NULL
alternative = "greater"

verbose = TRUE or FALSE

Enrichment info list

Method1
data
tables
tests
summaries

Method2
data
tables
tests
summaries
...

data
tables
tests
summaries

getPositives

enrichmentCol
TP
FP

Positives

TP
FP

Positives data.frame

Top
method

TP
FP

plotPositives

plotMutualFindings

enrichmentCol
levels_to_plot
n_methods = 1

plotEnrichment

enrichmentCol
levels_to_plot

plotContingency

method
levels_to_plot

Legend

function

parameters

input data

output data

wrapped function

parameters

Figure 17: Enrichment analysis diagram.

6.2 A priori knowledge
Here, we leveraged the peculiar environment of the gingival site (Thurnheer et al., 2016):

• the supragingival biofilm is directly exposed to the open atmosphere of the oral cavity, favoring the
growth of aerobic species;

• in the subgingival biofilm, the atmospheric conditions gradually become strict anaerobic, favoring
the growth of anaerobic species.

From the comparison of the two sites, an abundance of aerobic microbes in the supragingival plaque
and of anaerobic bacteria in the subgingival plaque is expected. DA analysis should reflect this
difference by finding an enrichment of aerobic (anaerobic) bacteria among the DA taxa with a positive
(negative) log-fold-change.

42

Firstly, the microbial metabolism information is necessary. These data comes from (Beghini et al., 2019)
research article’s github repository (https://github.com/waldronlab/nychanesmicrobiome), but they can be
loaded using data("microbial_metabolism"):
data("microbial_metabolism")
head(microbial_metabolism)

Genus Type
1 Acholeplasma F Anaerobic
2 Actinomycetaceae F Anaerobic
3 Aeriscardovia Aerobic
4 Aerococcus F Anaerobic
5 Aggregatibacter F Anaerobic
6 Alloscardovia Anaerobic

The microbial genus and its type of metabolism are specified in the first and second column respectively. To
match each taxon of the phyloseq object to its type of metabolism the next chunk of code can be used:
Extract genera from the phyloseq tax_table slot
genera <- tax_table(ps_plaque_16S)[, "GENUS"]

Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus

Match OTUs to their metabolism
priorInfo <- data.frame(genera, "Type" = microbial_metabolism[genera, "Type"])
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"

Relabel 'F Anaerobic' to 'F_Anaerobic' to remove space
priorInfo$Type <- factor(priorInfo$Type,

levels = c("Aerobic","Anaerobic","F Anaerobic","Unknown"),
labels = c("Aerobic","Anaerobic","F_Anaerobic","Unknown"))

Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), "|",

priorInfo[, "GENUS"])

6.3 Set up normalizations and DA methods
Both the normalization/scaling factors and the DA methods’ instructions are available since the dataset is
the same used in the previous section.

In concordance analysis, normalizations factor were added inside the runSlits() function, so the original
object ps_plaque_16S does not contain the values. The normalization/scaling factors are added to the object:
ps_plaque_16S <- runNormalizations(my_normalizations, object = ps_plaque_16S)

A simple filter to remove rare taxa is applied:
ps_plaque_16S <- phyloseq::filter_taxa(physeq = ps_plaque_16S,

flist = function(x) sum(x > 0) >= 3, prune = TRUE)
ps_plaque_16S

phyloseq-class experiment-level object
otu_table() OTU Table: [58 taxa and 60 samples]
sample_data() Sample Data: [60 samples by 10 sample variables]
tax_table() Taxonomy Table: [58 taxa by 6 taxonomic ranks]

43

https://github.com/waldronlab/nychanesmicrobiome

phy_tree() Phylogenetic Tree: [58 tips and 57 internal nodes]

Differently from the Type I Error Control and Concordance analyses, the enrichment analysis rely on a single
phyloseq or TreeSummarizedExperiment object (no mocks, no splits, no comparisons). For this reason
many methods can be assessed without computational trade-offs (e.g., ANCOM without sampling fraction bias
correction and methods which use ZINB weights).

The observational weights are computed:
plaque_weights <- weights_ZINB(object = ps_plaque_16S, design = ~ 1,

zeroinflation = TRUE)

The existing instructions are concatenated with the instructions of methods which use observational weights:
my_edgeR <- set_edgeR(

group_name = "HMP_BODY_SUBSITE",
design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque",
norm = "TMM",
weights_logical = TRUE)

my_DESeq2 <- set_DESeq2(
contrast = c("HMP_BODY_SUBSITE",
"Supragingival Plaque", "Subgingival Plaque"),
design = ~ 0 + RSID + HMP_BODY_SUBSITE,
norm = "poscounts",
weights_logical = TRUE)

my_limma <- set_limma(
design = ~ 1 + RSID + HMP_BODY_SUBSITE,
coef = "HMP_BODY_SUBSITESupragingival Plaque",
norm = "TMM",
weights_logical = TRUE)

my_methods <- c(my_methods_noWeights, my_edgeR, my_DESeq2, my_limma)

All the ingredients are ready to run DA methods:
Plaque_16S_DA <- runDA(method_list = my_methods,

object = ps_plaque_16S, weights = plaque_weights, verbose = FALSE)

6.4 Testing the enrichment
Plaque_16_DA object contains the results for 10 methods. In order to extract p-values, the optional direction
of DA (DA vs non-DA, or UP Abundant vs DOWN Abundant), and to add any a priori information, the
createEnrichment() function can be used.

In the direction argument, which is set to NULL by default, the column name containing the direction (e.g.,
logfc, logFC, logFoldChange. . .) of each method’s statInfo matrix can be supplied.

Firstly, the order of methods is investigated:
names(Plaque_16S_DA)

[1] "edgeR.TMM" "DESeq2.poscounts"
[3] "limma.TMM" "ALDEx2.all.wilcox.paired"
[5] "MAST.median" "dearseq.repeated.asymptotic"
[7] "ANCOM" "edgeR.TMM.weighted"
[9] "DESeq2.poscounts.weighted" "limma.TMM.weighted"

44

Following the methods’ order, the direction parameter is supplied together with other parameters:

• threshold_pvalue, threshold_logfc, and top (optional), to set differential abundance thresholds;

• slot, colName, and type, which specify where to apply the above thresholds;

• priorKnowledge, enrichmentCol, and namesCol, to add enrichment information to DA analysis;

The createEnrichment() function, with the direction parameter for all method except ANCOM and dearseq
(the first has the W statistic which is only positive, while the second has only p-values), is used:
enrichment <- createEnrichment(

object = Plaque_16S_DA[-c(6:7)],
priorKnowledge = priorInfo,
enrichmentCol = "Type",
namesCol = "newNames",
slot = "pValMat",
colName = "adjP",
type = "pvalue",
direction = c(

"logFC", # edgeR
"log2FoldChange", # DEseq2
"logFC", # limma
"effect", # ALDEx2
"logFC", # MAST
"logFC", # edgeR with weights
"log2FoldChange", # DESeq2 with weights
"logFC"), # limma with weights

threshold_pvalue = 0.1,
threshold_logfc = 0,
top = NULL,
alternative = "greater",
verbose = TRUE

)

The produced enrichment object consists in a list of elements as long as the number of tested methods:

• the data slot contains information for each feature. P-values, adjusted p-values (or other statistics)
in stats column, log fold changes (or other statistics, if specified) in direction column, differential
abundance information in the DA column (according to the thresholds), the variable of interest for the
enrichment analysis, and the name of the feature in the feature column;

• in the tables slot a maximum of 2 x (levels of enrichment variable) contingency tables (2x2) are present;

• in the tests slot, the list of Fisher exact tests produced by the fisher.test() function are saved for
each contingency table;

• in the summaries slot, the first elements of the contingency tables and the respective p-values are
collected for graphical purposes.

6.5 Visualization
6.5.1 Contingency tables

Considering one of the methods, DESeq2.poscounts, 8 contingency tables are obtained. Both UP Abundant
and DOWN Abundant taxa are found and the enrichment variable has Aerobic, Anaerobic, F_Anaerobic, and
Unknown levels. For each level, 2 contingency tables could be built: one for DOWN Abundant vs non-DOWN
Abundant features and one for UP Abundant vs non-UP Abundant features. The enrichment is tested using
Fisher exact test. The plotContingency() function summarize all these information (Figure 18).

45

plotContingency(enrichment = enrichment,
levels_to_plot = c("Aerobic", "Anaerobic"),
method = "DESeq2.poscounts")

8

0

38

12

2

6

39

11

18

9

28

3

22

5

19

12

Aerobic Anaerobic
D

O
W

N
 A

bundant
U

P
 A

bundant

A
er

ob
ic

no
n.

A
er

ob
ic

A
na

er
ob

ic

no
n.

A
na

er
ob

ic

non−DOWN Abundant

DOWN Abundant

non−UP Abundant

UP Abundant

variable

di
re

ct
io

n

0.00

0.02

0.04

0.06

0.08

0.10
pvalue

Colored by Fisher p−value

Enrichment tables − DESeq2.poscounts

Figure 18: Contingency tables plot. Contingency tables for Aerobic and Anaerobic taxa found as differentially
abundant by DESeq2.poscounts DA method. Fisher exact test has been performed on each contingency table.
If the enrichment is signficantly present, the corresponding cell will be highlighted.

6.5.2 Enrichment plot

To summarize enrichment analysis for all the methods simultaneously, the plotEnrichment() function can
be used. Only Aerobic and Anaerobic levels are plotted in Figure 19.
plotEnrichment(enrichment = enrichment, enrichmentCol = "Type",

levels_to_plot = c("Aerobic", "Anaerobic"))

Since Subgingival Plaque is the reference level for each method, the coefficients extracted from the methods
are referred to the Supragingival Plaque class. Six out of eight methods identify, as expected, a statistically
significant (0.001 < p ≤ 0.05) amount of DOWN Abundant Anaerobic features in Supragingival Plaque
(Figure 19). Moreover, all of them find an enriched amount of UP Abundant Aerobic genera in Supragingival
Plaque. Unexpectedly, both DESeq2.poscounts and DESeq2.poscounts.weighted find many Anaerobic
genera as UP Abundant, they could be FPs.

6.5.3 Mutual Findings

To investigate the DA features, the plotMutualFindings() function can be used (Figure 20). While
levels_to_plot argument allows to choose which levels of the enrichment variable to plot, n_methods argument
allows to extract only features which are mutually found as DA by more than 1 method.

46

.

.

*

**

*

*

*

.

*

*
*

**

**

−10

0

10

D
O

W
N

 A
bundant

U
P

 A
bundant

D
E

S
eq

2.
po

sc
ou

nt
s

D
E

S
eq

2.
po

sc
ou

nt
s.

w
ei

gh
te

d

lim
m

a.
T

M
M

.w
ei

gh
te

d

ed
ge

R
.T

M
M

.w
ei

gh
te

d

ed
ge

R
.T

M
M

M
A

S
T.

m
ed

ia
n

lim
m

a.
T

M
M

A
LD

E
x2

.a
ll.

w
ilc

ox
.p

ai
re

d

method

N
um

be
r

of
 D

A
 ta

xa D
A

 direction

Type Aerobic Anaerobic

Fisher exact test pvalue: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Enrichment analysis

Figure 19: Enrichment plot. Number of differentially abundant features, colored by aerobic or anaerobic
metabolism, and directed according to differential abundance direction (UP or DOWN abundant).

47

plotMutualFindings(enrichment, enrichmentCol = "Type",
levels_to_plot = c("Aerobic", "Anaerobic"), n_methods = 1)

Anaerobic

Aerobic

D
E

S
eq

2.
po

sc
ou

nt
s

D
E

S
eq

2.
po

sc
ou

nt
s.

w
ei

gh
te

d

lim
m

a.
T

M
M

.w
ei

gh
te

d

ed
ge

R
.T

M
M

.w
ei

gh
te

d

ed
ge

R
.T

M
M

M
A

S
T.

m
ed

ia
n

lim
m

a.
T

M
M

A
LD

E
x2

.a
ll.

w
ilc

ox
.p

ai
re

d

OTU_97.623|Butyrivibrio
OTU_97.8114|Mogibacterium

OTU_97.135|Eikenella
OTU_97.178|Propionibacterium
OTU_97.43147|Porphyromonas

OTU_97.519|Johnsonella
OTU_97.759|Scardovia
OTU_97.84|Leptotrichia

OTU_97.92|Peptostreptococcus
OTU_97.20|Granulicatella
OTU_97.42864|Veillonella

OTU_97.170|Tannerella
OTU_97.334|Oribacterium
OTU_97.98|Selenomonas
OTU_97.38219|Catonella

OTU_97.27684|Treponema
OTU_97.33295|Dialister

OTU_97.38234|Fusobacterium
OTU_97.41422|Actinomyces

OTU_97.63|Prevotella

OTU_97.45196|Actinobacillus
OTU_97.204|Kingella

OTU_97.181|Cardiobacterium
OTU_97.37954|Neisseria
OTU_97.40084|Lautropia

OTU_97.45016|Corynebacterium

method

fe
at

ur
e DA

DOWN Abundant

UP Abundant

By Type

Summary of DA features

Figure 20: Mutual Findings plot. Number of differentially abundant features mutually found by 1 or more
methods, colored by the differential abundance direction and separated by aerobic and anaerobic metabolism.

In this example (Figure 20), many Anaerobic genera and 6 Aerobic genera are found as DA by more than 1
method simultaneously. Among them, all methods find Prevotella, Treponema, Fusobacterium, and Dialister
genera DOWN Abundant in Supragingival Plaque, while the Actinomyces genus UP Abundant, even if it has
an aerobic metabolism. Similarly, all methods find Corynebacterium, Leutropia, and Neisseria aerobic genera
UP abundant in Supragingival Plaque.

6.6 True and False Positives
To evaluate the overall performances a statistic based on the difference between putative True Positives (TP)
and the putative False Positives (FP) is used. To build the matrix to plot, the createPositives() can be
used. In details, the correctness of the DA features is evaluated comparing the direction of the top ranked

48

features to the expected direction supplied by the user in the TP and FP lists. The procedure is performed
for several thresholds of top parameter in order to observe a trend, if present:
positives <- createPositives(

object = Plaque_16S_DA[-c(6,7)],
priorKnowledge = priorInfo,
enrichmentCol = "Type",
namesCol = "newNames",
slot = "pValMat",
colName = "rawP",
type = "pvalue",
direction = c(

"logFC", # edgeR
"log2FoldChange", # DEseq2
"logFC", # limma
"effect", # ALDEx2
"logFC", # MAST
"logFC", # edgeR with weights
"log2FoldChange", # DESeq2 with weights
"logFC"), # limma with weights

threshold_pvalue = 0.1,
threshold_logfc = 0,
top = seq.int(from = 0, to = 30, by = 3),
alternative = "greater",
verbose = FALSE,
TP = list(c("DOWN Abundant", "Anaerobic"), c("UP Abundant", "Aerobic")),
FP = list(c("DOWN Abundant", "Aerobic"), c("UP Abundant", "Anaerobic"))

)
head(positives)

top method TP FP
1 3 edgeR.TMM 3 0
2 3 DESeq2.poscounts 3 0
3 3 limma.TMM 3 0
4 3 ALDEx2.all.wilcox.paired 1 1
5 3 MAST.median 3 0
6 3 edgeR.TMM.weighted 3 0

The plotPositives() function can be used to summarize the methods’ performances (Figure 21). Higher
values usually represents better performances. In our example, all methods show similar values of the statistics
for the top 10 ranked features.
plotPositives(positives)

MAST.median and ALDEx2.all.wilcox.paired methods are very conservative and are located on the lower
part of the Figure 21. The highest performances are of limma.TMM.weighted and edgeR.TMM.weighted.
This means that their findings are in line with the a priori knowledge supplied by the user.

6.7 Enrichment without direction
When the user have a custom method where the direction of the differential abundance is not returned (e.g.,
NOISeq), or when the direction of DA is not of interest, the sole information about DA and not DA feature
can be used. The createEnrichment() function is used without the direction parameter for all methods:
enrichment_nodir <- createEnrichment(

object = Plaque_16S_DA,

49

0

5

10

15

10 20 30
top

T
P

 −
 F

P

method

edgeR.TMM

DESeq2.poscounts

limma.TMM

ALDEx2.all.wilcox.paired

MAST.median

edgeR.TMM.weighted

DESeq2.poscounts.weighted

limma.TMM.weighted

From 3 to 30 top features.

Putative TP − Putative FP

Figure 21: TP, FP differences plot. Differences between the number of True Positives and False Positives for
several thresholds of the top ranked raw p-values (the top 3 lowest p-values, the top 6, 9, . . . , 30) for each
method.

50

priorKnowledge = priorInfo,
enrichmentCol = "Type",
namesCol = "newNames",
slot = "pValMat",
colName = "adjP",
type = "pvalue",
threshold_pvalue = c(

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, # thresholds for methods
0.4, # ANCOM threshold on 1-W/(ntaxa-1) 0.4 = liberal
0.1, 0.1, 0.1), # thresholds for other methods

threshold_logfc = 0,
top = NULL,
alternative = "greater",
verbose = FALSE

)

To summarize enrichment analysis for all the methods simultaneously, the plotEnrichment() function is
used. All levels are plotted in Figure 22.
plotEnrichment(enrichment = enrichment_nodir, enrichmentCol = "Type")

*

.

0

5

10

15

20

D
E

S
eq

2.
po

sc
ou

nt
s

D
E

S
eq

2.
po

sc
ou

nt
s.

w
ei

gh
te

d

de
ar

se
q.

re
pe

at
ed

.a
sy

m
pt

ot
ic

lim
m

a.
T

M
M

.w
ei

gh
te

d

ed
ge

R
.T

M
M

.w
ei

gh
te

d

ed
ge

R
.T

M
M

lim
m

a.
T

M
M

M
A

S
T.

m
ed

ia
n

A
LD

E
x2

.a
ll.

w
ilc

ox
.p

ai
re

d

method

N
um

be
r

of
 D

A
 ta

xa

Type Aerobic Anaerobic F_Anaerobic Unknown

Fisher exact test pvalue: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Enrichment analysis

Figure 22: Enrichment plot. Number of differentially abundant features, colored by metabolism.

The highest amount of DA features belongs to the Anaerobic metabolism, followed by F_Anaerobic, and
Aerobic. The method that finds more DA features is DESeq2.poscounts, while ANCOM is the most conservative

51

(even if the threshold value based on 1 − W
ntaxa−1 is set at liberal value of 0.4.

As for enrichment analysis with DA direction, the plotMutualFindings() function can be used here too
(Figure 23). While levels_to_plot argument allows to choose which levels of the enrichment variable to plot,
n_methods argument allows to extract only features which are mutually found as DA by more than 1 method.
plotMutualFindings(enrichment_nodir, enrichmentCol = "Type",

levels_to_plot = c("Aerobic", "Anaerobic"), n_methods = 1)

Anaerobic

Aerobic

D
E

S
eq

2.
po

sc
ou

nt
s

D
E

S
eq

2.
po

sc
ou

nt
s.

w
ei

gh
te

d
lim

m
a.

T
M

M
.w

ei
gh

te
d

de
ar

se
q.

re
pe

at
ed

.a
sy

m
pt

ot
ic

ed
ge

R
.T

M
M

.w
ei

gh
te

d
ed

ge
R

.T
M

M
M

A
S

T.
m

ed
ia

n
lim

m
a.

T
M

M
A

LD
E

x2
.a

ll.
w

ilc
ox

.p
ai

re
d

OTU_97.1371|Slackia
OTU_97.405|Anaeroglobus

OTU_97.135|Eikenella
OTU_97.178|Propionibacterium

OTU_97.519|Johnsonella
OTU_97.623|Butyrivibrio

OTU_97.8114|Mogibacterium
OTU_97.84|Leptotrichia

OTU_97.20|Granulicatella
OTU_97.42864|Veillonella

OTU_97.43147|Porphyromonas
OTU_97.759|Scardovia

OTU_97.92|Peptostreptococcus
OTU_97.170|Tannerella

OTU_97.334|Oribacterium
OTU_97.98|Selenomonas
OTU_97.38219|Catonella

OTU_97.41422|Actinomyces
OTU_97.27684|Treponema

OTU_97.33295|Dialister
OTU_97.38234|Fusobacterium

OTU_97.63|Prevotella

OTU_97.45196|Actinobacillus
OTU_97.204|Kingella

OTU_97.181|Cardiobacterium
OTU_97.40084|Lautropia

OTU_97.45016|Corynebacterium
OTU_97.37954|Neisseria

method

fe
at

ur
e DA

DA

By Type

Summary of DA features

Figure 23: Mutual Findings plot. Number of differentially abundant features mutually found by 1 or more
methods, separated by aerobic and anaerobic metabolism.

In this example (Figure 23), only a Prevotella OTU is found as DA in Supragingival Plaque by all methods
(probably because ANCOM p-value threshold is not interpretable as the same threshold for the other methods).

6.8 Enrichment analysis for simulated data
To enlarge the scope of the enrichment analysis, simulations could be used, e.g. by using the user’s dataset as
a template to generate simulated data, in which to know the DA features and provide this information as

52

prior knowledge.

As an example, the SPsimSeq package is used (the tool to use is up to the user) to simulate only a single
dataset (n.sim = 1) from the ps_plaque_16S dataset where two body sub sites are available (without
considering the paired design). The data are simulated with the following properties - 100 features (n.genes
= 100) - 50 samples (tot.samples = 50) - the samples are equally divided into 2 groups each with 25 samples
(group.config = c(0.5, 0.5)) - all samples are from a single batch (batch.config = 1) - 20% DA features (pDE
= 0.2) - the DA features have a log-fold-change of at least 0.5.
data("ps_plaque_16S")
counts_and_metadata <- get_counts_metadata(ps_plaque_16S)
plaque_counts <- counts_and_metadata[["counts"]]
plaque_metadata <- counts_and_metadata[["metadata"]]

set.seed(123)

sim_list <- SPsimSeq(
n.sim = 1,
s.data = plaque_counts,
group = plaque_metadata[, "HMP_BODY_SUBSITE"],
n.genes = 100,
batch.config = 1,
group.config = c(0.5, 0.5),
tot.samples = 50,
pDE = 0.2,
lfc.thrld = 0.5,
model.zero.prob = FALSE,
result.format = "list")

Simulated data are organised into a TreeSummarizedExperiment object:
sim_obj <- TreeSummarizedExperiment::TreeSummarizedExperiment(

assays = list("counts" = sim_list[[1]][["counts"]]),
rowData = sim_list[[1]]["rowData"],
colData = sim_list[[1]]["colData"],

)
Group as factor
SummarizedExperiment::colData(sim_obj)[, "colData.Group"] <- as.factor(

SummarizedExperiment::colData(sim_obj)[, "colData.Group"])

The apriori informations are readily available from the sim_list[[1]]["rowData"]:
priorInfo <- sim_list[[1]][["rowData"]]
priorInfo$Reality <- ifelse(priorInfo[, "DE.ind"], "is DA", "is not DA")

Once again, normalization/scaling factors are added:
sim_obj <- runNormalizations(

normalization_list = my_normalizations,
object = sim_obj,
verbose = TRUE)

Rare taxa are filtered:
taxa_to_keep <- apply(assays(sim_obj)[["counts"]], 1,

function(x) sum(x > 0) >= 3)
sim_obj <- sim_obj[taxa_to_keep,]
priorInfo <- priorInfo[taxa_to_keep,]

53

Observational weights are computed:
sim_weights <- weights_ZINB(

object = sim_obj,
design = ~ 1,
zeroinflation = TRUE)

DA methods are set up. The paired design is not considered and all the methods are used. The contrast,
design, group, coef, and all the other parameters involved in the experimental design definition are changed:
my_basic <- set_basic(pseudo_count = FALSE,

contrast = c("colData.Group", "Supragingival Plaque",
"Subgingival Plaque"),

test = c("t", "wilcox"),
paired = FALSE,
expand = TRUE)

my_edgeR <- set_edgeR(
pseudo_count = FALSE,
group_name = "colData.Group",
design = ~ colData.Group,
robust = FALSE,
coef = 2,
norm = "TMM",
weights_logical = c(TRUE, FALSE),
expand = TRUE)

my_DESeq2 <- set_DESeq2(
pseudo_count = FALSE,
design = ~ colData.Group,
contrast = c("colData.Group", "Supragingival Plaque",

"Subgingival Plaque"),
norm = "poscounts",
weights_logical = c(TRUE, FALSE),
alpha = 0.05,
expand = TRUE)

my_limma <- set_limma(
pseudo_count = FALSE,
design = ~ colData.Group,
coef = 2,
norm = "TMM",
weights_logical = c(FALSE, TRUE),
expand = TRUE)

my_ALDEx2 <- set_ALDEx2(
pseudo_count = FALSE,
design = "colData.Group",
mc.samples = 128,
test = "wilcox",
paired.test = FALSE,
denom = c("all", "iqlr"),
contrast = c("colData.Group", "Supragingival Plaque",

"Subgingival Plaque"),
expand = TRUE)

54

my_metagenomeSeq <- set_metagenomeSeq(
pseudo_count = FALSE,
design = "~ colData.Group",
coef = "colData.GroupSupragingival Plaque",
norm = "CSS",
model = "fitFeatureModel",
expand = TRUE)

my_corncob <- set_corncob(
pseudo_count = FALSE,
formula = ~ colData.Group,
formula_null = ~ 1,
phi.formula = ~ colData.Group,
phi.formula_null = ~ colData.Group,
test = c("Wald", "LRT"),
boot = FALSE,
coefficient = "colData.GroupSupragingival Plaque")

my_MAST <- set_MAST(
pseudo_count = FALSE,
rescale = c("default", "median"),
design = "~ 1 + colData.Group",
coefficient = "colData.GroupSupragingival Plaque",
expand = TRUE)

my_Seurat <- set_Seurat(
pseudo_count = FALSE,
test = c("t", "wilcox"),
contrast = c("colData.Group", "Supragingival Plaque",

"Subgingival Plaque"),
norm = c("LogNormalize", "CLR"),
scale.factor = 10ˆ5,
expand = TRUE

)

my_ANCOM <- set_ANCOM(
pseudo_count = FALSE,
fix_formula = "colData.Group",
contrast = c("colData.Group", "Supragingival Plaque",

"Subgingival Plaque"),
BC = c(TRUE, FALSE),
expand = TRUE

)

my_dearseq <- set_dearseq(
pseudo_count = FALSE,
covariates = NULL,
variables2test = "colData.Group",
preprocessed = FALSE,
test = c("permutation", "asymptotic"),
expand = TRUE)

my_NOISeq <- set_NOISeq(

55

pseudo_count = FALSE,
contrast = c("colData.Group", "Supragingival Plaque",

"Subgingival Plaque"),
norm = c("rpkm", "tmm"),
expand = TRUE)

my_methods <- c(my_basic, my_edgeR, my_DESeq2, my_limma, my_metagenomeSeq,
my_corncob, my_ALDEx2, my_MAST, my_Seurat, my_ANCOM, my_dearseq, my_NOISeq)

DA methods are run using the runDA() function:
sim_DA <- runDA(

method_list = my_methods,
object = sim_obj,
weights = sim_weights,
verbose = FALSE)

The createEnrichment() without the direction parameter for all methods is used. A 0.1 threshold for the
adjusted p-values is chosen to define DA and non-DA taxa for all methods, a 0.4 threshold is used for ANCOM
instead:
enrichment_nodir <- createEnrichment(

object = sim_DA,
priorKnowledge = priorInfo,
enrichmentCol = "Reality",
namesCol = NULL,
slot = "pValMat",
colName = "adjP",
type = "pvalue",
threshold_pvalue = c(

rep(0.1,19), # adjP thresholds
0.4, # adjP threshold for ANCOM on 1-W/(ntaxa-1)
rep(0.1,5)), # adjP thresholds for other methods

threshold_logfc = 0,
top = NULL,
alternative = "greater",
verbose = FALSE

)

To summarize enrichment analysis for all the methods simultaneously, the plotEnrichment() function can
be used. Both the numbers of “is DA” and “is not DA” features are plotted in Figure 24. Their interpretation
is quite straightforward: is DA are the positives, while the is not DA the negatives. Positives reported in
Figure 24 are the True Positives, while negatives are the FPs.
plotEnrichment(enrichment = enrichment_nodir, enrichmentCol = "Reality")

From this example, only 9 out of 25 methods are able to find an enriched amount of truly DA
features without any false discovery: dearseq.counts.permutation.1000 in the first position. On
the contrary, basic.t.counts, DESeq2.counts.poscounts.weighted, limma.counts.TMM.weighted,
metagenomeSeq.counts.CSS.fitFeatureModel, ALDEx2.counts.iqlr.wilcox.unpaired, MAST.counts.default,
MAST.counts.median, ANCOM.counts, and NOISeq.counts.tmm methods do not find any DA feature. This
could be strongly related to the template taxa chosen to simulate the DA features.

To further assess methods’ power, the createPositives() function can be used specifying as TPs the
resulting DA features created as real DA features and as FPs the resulting DA features created as not DA
features (Figure 25).

56

*

**
*** ***

0

5

10

15

20

25

ed
ge

R
.c

ou
nt

s.
T

M
M

co
rn

co
b.

co
un

ts
.W

al
d

de
ar

se
q.

co
un

ts
.p

er
m

ut
at

io
n.

10
00

de
ar

se
q.

co
un

ts
.a

sy
m

pt
ot

ic

D
E

S
eq

2.
co

un
ts

.p
os

co
un

ts

ba
si

c.
w

ilc
ox

.c
ou

nt
s

ed
ge

R
.c

ou
nt

s.
T

M
M

.w
ei

gh
te

d

co
rn

co
b.

co
un

ts
.L

R
T

A
N

C
O

M
.c

ou
nt

s.
B

C

N
O

IS
eq

.c
ou

nt
s.

rp
km

lim
m

a.
co

un
ts

.T
M

M

S
eu

ra
t.c

ou
nt

s.
Lo

gN
or

m
al

iz
e.

S
F

1e
+

05
.t

S
eu

ra
t.c

ou
nt

s.
Lo

gN
or

m
al

iz
e.

S
F

1e
+

05
.w

ilc
ox

S
eu

ra
t.c

ou
nt

s.
C

LR
.S

F
1e

+
05

.w
ilc

ox

A
LD

E
x2

.c
ou

nt
s.

al
l.w

ilc
ox

.u
np

ai
re

d

S
eu

ra
t.c

ou
nt

s.
C

LR
.S

F
1e

+
05

.t

method

N
um

be
r

of
 D

A
 ta

xa

Reality is DA is not DA

Fisher exact test pvalue: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Enrichment analysis

Figure 24: Enrichment plot for simulated data. Number of differentially abundant features, colored by DA
reality.

57

We use a threshold_pvalue = 0.1 (0.4 for ANCOM) to call a feature DA based on its adjusted p-value. We
compute the difference between TPs and FPs for several top thresholds (from 5 to 30, by 5) in order to
observe a trend:
positives_nodir <- createPositives(

object = sim_DA,
priorKnowledge = priorInfo,
enrichmentCol = "Reality",
namesCol = NULL,
slot = "pValMat",
colName = "adjP",
type = "pvalue",
threshold_pvalue = c(

rep(0.1,19), # adjP thresholds
0.4, # adjP threshold for ANCOM on 1-W/(ntaxa-1)
rep(0.1,5)), # adjP thresholds for other methods

threshold_logfc = 0,
top = seq(5, 30, by = 5),
alternative = "greater",
verbose = FALSE,
TP = list(c("DA", "is DA")),
FP = list(c("DA", "is not DA"))

)

Since the number of simulated DA feature is 20, the maximum number of TPs is 20 and it is added as an
horizontal line to the figure.
plotPositives(positives = positives_nodir) +

facet_wrap(~ method) +
theme(legend.position = "none") +
geom_hline(aes(yintercept = 20), linetype = "dotted", color = "red") +
geom_hline(aes(yintercept = 0), color = "black") +
ylim(NA, 21)

From figure 25 it is clearly visible that dearseq.counts.permutation.1000 and dearseq.counts.asymptotic
reach the highest values of the difference, followed by corncob.counts.Wald and DESeq2.counts.poscounts.
As already mentioned the desired level of power which a methods should be able to reach is represented by
the red dotted line, i.e. the total number of DA simulated features (20 in our case). These methods, in this
specific example, have the highest power. Differently, methods characterized by flat lines have a fixed number
of features with an adjusted p-value lower than the threshold. If their lines are above the zero line, it means
that the number of True Positives is greater than the number of FPs. On the contrary, if their lines are below
the zero line, it means that the number of FPs is greater (e.g., edgeR.counts.TMM.weighted has negative
values, maybe due to poor weight estimates since all methods with observational weights perform poorly).

6.9 Discussion about Enrichment
The enrichment analysis toolbox provides many methods to study DA in a dataset.

Firstly, when some prior knowledge is available, it allows to evaluate methods’ power. Among the possible
uses, it is especially useful to investigate conservative methods: are they calling only the most obvious taxa
(also found by the other methods) or are they finding something new? The main drawback is that the
availability of the prior knowledge is limited, especially for new datasets. For this reason, enrichment analysis
could also be used in addition to simulation tools. Indeed, through parametric, semi-parametric, or non
parametric assumptions it is possible to obtain an emulation of the prior knowledge.

Secondly, thanks to methods like plotMutualFindings() and plotEnrichment(), which produce graphical
results like Figure 22 and Figure 23, it is also possible to use the enrichment analysis to study the distribution

58

ANCOM.counts.BC dearseq.counts.asymptotic dearseq.counts.permutation.1000 NOISeq.counts.rpkm NOISeq.counts.tmm

Seurat.counts.CLR.SF1e+05.t Seurat.counts.CLR.SF1e+05.wilcoxSeurat.counts.LogNormalize.SF1e+05.tSeurat.counts.LogNormalize.SF1e+05.wilcox ANCOM.counts

corncob.counts.Wald ALDEx2.counts.all.wilcox.unpairedALDEx2.counts.iqlr.wilcox.unpaired MAST.counts.default MAST.counts.median

DESeq2.counts.poscounts.weighted limma.counts.TMM limma.counts.TMM.weightedmetagenomeSeq.counts.CSS.fitFeatureModel corncob.counts.LRT

basic.t.counts basic.wilcox.counts edgeR.counts.TMM edgeR.counts.TMM.weighted DESeq2.counts.poscounts

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

top

T
P

 −
 F

P

From 5 to 30 top features.

Putative TP − Putative FP

Figure 25: TP, FP differences plot. Differences between the number of True Positives and False Positives for
several thresholds of the top ranked adjusted p-values lower than 0.1 (the top 5 lowest adjusted p-values, the
top 10, 15, . . . , 30) for each method in simulated data. Red dotted line represents the total number of DA
simulated features.

59

of the findings across class of taxa (e.g., by using as prior knowledge the phylum of the features, it would be
possible to study if a phylum is characterized by an increased number of DA compared to another phylum), or
more simply, drawing biological conclusions based only on taxa found as DA by the majority of the methods.

60

7 Session Info

sessionInfo()

R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
##
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
locale:
[1] it_IT.UTF-8/it_IT.UTF-8/it_IT.UTF-8/C/it_IT.UTF-8/it_IT.UTF-8
##
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
##
other attached packages:
[1] kableExtra_1.3.4 cowplot_1.1.1
[3] ggplot2_3.4.0 plyr_1.8.7
[5] SummarizedExperiment_1.28.0 Biobase_2.58.0
[7] GenomicRanges_1.50.1 GenomeInfoDb_1.34.2
[9] IRanges_2.32.0 S4Vectors_0.36.0
[11] BiocGenerics_0.44.0 MatrixGenerics_1.10.0
[13] matrixStats_0.62.0 phyloseq_1.42.0
[15] SPsimSeq_1.8.0 BiocParallel_1.32.1
[17] benchdamic_1.5.1
##
loaded via a namespace (and not attached):
[1] rsvd_1.0.5 svglite_2.1.0
[3] zinbwave_1.20.0 Hmisc_4.7-1
[5] ica_1.0-3 class_7.3-20
[7] glmnet_4.1-4 foreach_1.5.2
[9] lmtest_0.9-40 crayon_1.5.2
[11] rbibutils_2.2.9 MASS_7.3-58.1
[13] rhdf5filters_1.10.0 MAST_1.24.0
[15] nlme_3.1-160 backports_1.4.1
[17] ALDEx2_1.30.0 impute_1.72.0
[19] rlang_1.0.6 XVector_0.38.0
[21] ROCR_1.0-11 readxl_1.4.1
[23] irlba_2.3.5.1 nloptr_2.0.3
[25] limma_3.54.0 scater_1.26.0
[27] bit64_4.0.5 glue_1.6.2
[29] rngtools_1.5.2 sctransform_0.3.5
[31] parallel_4.2.1 vipor_0.4.5
[33] spatstat.sparse_3.0-0 AnnotationDbi_1.60.0
[35] VGAM_1.1-7 spatstat.geom_3.0-3
[37] tidyselect_1.2.0 SeuratObject_4.1.3
[39] NADA_1.6-1.1 fitdistrplus_1.1-8
[41] XML_3.99-0.12 tidyr_1.2.1
[43] zoo_1.8-11 xtable_1.8-4
[45] magrittr_2.0.3 evaluate_0.18

61

[47] Rdpack_2.4 scuttle_1.8.0
[49] cli_3.4.1 zlibbioc_1.44.0
[51] rstudioapi_0.14 doRNG_1.8.2
[53] miniUI_0.1.1.1 sp_1.5-1
[55] MultiAssayExperiment_1.24.0 metagenomeSeq_1.40.0
[57] rpart_4.1.19 zCompositions_1.4.0-1
[59] tidytext_0.3.4 treeio_1.22.0
[61] shiny_1.7.3 BiocSingular_1.14.0
[63] xfun_0.34 multtest_2.54.0
[65] cluster_2.1.4 caTools_1.18.2
[67] biomformat_1.26.0 KEGGREST_1.38.0
[69] tibble_3.1.8 expm_0.999-6
[71] ggrepel_0.9.2 ape_5.6-2
[73] listenv_0.8.0 Biostrings_2.66.0
[75] png_0.1-7 permute_0.9-7
[77] future_1.29.0 withr_2.5.0
[79] slam_0.1-50 bitops_1.0-7
[81] cellranger_1.1.0 RcppZiggurat_0.1.6
[83] e1071_1.7-12 survey_4.1-1
[85] pillar_1.8.1 gplots_3.1.3
[87] cachem_1.0.6 Rmpfr_0.8-9
[89] multcomp_1.4-20 DelayedMatrixStats_1.20.0
[91] vctrs_0.5.0 ellipsis_0.3.2
[93] generics_0.1.3 ROI.plugin.lpsolve_1.0-1
[95] tools_4.2.1 foreign_0.8-83
[97] NOISeq_2.42.0 beeswarm_0.4.0
[99] munsell_0.5.0 emmeans_1.8.2
[101] proxy_0.4-27 DelayedArray_0.24.0
[103] fastmap_1.1.0 compiler_4.2.1
[105] abind_1.4-5 httpuv_1.6.6
[107] DescTools_0.99.47 plotly_4.10.1
[109] decontam_1.18.0 GenomeInfoDbData_1.2.9
[111] gridExtra_2.3 edgeR_3.40.0
[113] lattice_0.20-45 deldir_1.0-6
[115] utf8_1.2.2 later_1.3.0
[117] dplyr_1.0.10 jsonlite_1.8.3
[119] tokenizers_0.2.3 scales_1.2.1
[121] gld_2.6.6 ScaledMatrix_1.6.0
[123] tidytree_0.4.1 pbapply_1.5-0
[125] sparseMatrixStats_1.10.0 estimability_1.4.1
[127] genefilter_1.80.0 lazyeval_0.2.2
[129] promises_1.2.0.1 doParallel_1.0.17
[131] latticeExtra_0.6-30 goftest_1.2-3
[133] spatstat.utils_3.0-1 reticulate_1.26
[135] checkmate_2.1.0 rmarkdown_2.18
[137] sandwich_3.0-2 webshot_0.5.4
[139] statmod_1.4.37 Rtsne_0.16
[141] softImpute_1.4-1 uwot_0.1.14
[143] igraph_1.3.5 survival_3.4-0
[145] numDeriv_2016.8-1.1 yaml_2.3.6
[147] systemfonts_1.0.4 ANCOMBC_2.0.1
[149] htmltools_0.5.3 memoise_2.0.1
[151] Seurat_4.2.1 locfit_1.5-9.6
[153] viridisLite_0.4.1 gmp_0.6-7

62

[155] digest_0.6.30 assertthat_0.2.1
[157] mime_0.12 registry_0.5-1
[159] RSQLite_2.2.18 Rfast_2.0.6
[161] yulab.utils_0.0.5 future.apply_1.10.0
[163] Exact_3.2 data.table_1.14.4
[165] blob_1.2.3 vegan_2.6-4
[167] preprocessCore_1.60.0 detectseparation_0.3
[169] lpSolveAPI_5.5.2.0-17.9 labeling_0.4.2
[171] splines_4.2.1 Formula_1.2-4
[173] DECIPHER_2.26.0 Rhdf5lib_1.20.0
[175] RCurl_1.98-1.9 hms_1.1.2
[177] rhdf5_2.42.0 colorspace_2.0-3
[179] base64enc_0.1-3 shape_1.4.6
[181] ggbeeswarm_0.6.0 nnet_7.3-18
[183] TreeSummarizedExperiment_2.6.0 mia_1.6.0
[185] Rcpp_1.0.9 RANN_2.6.1
[187] mvtnorm_1.1-3 fansi_1.0.3
[189] SnowballC_0.7.0 truncnorm_1.0-8
[191] parallelly_1.32.1 R6_2.5.1
[193] grid_4.2.1 ggridges_0.5.4
[195] lifecycle_1.0.3 rootSolve_1.8.2.3
[197] minqa_1.2.5 leiden_0.4.3
[199] dearseq_1.10.0 fastcluster_1.2.3
[201] Matrix_1.5-1 corncob_0.3.0
[203] RcppAnnoy_0.0.20 TH.data_1.1-1
[205] RColorBrewer_1.1-3 iterators_1.0.14
[207] spatstat.explore_3.0-3 stringr_1.4.1
[209] htmlwidgets_1.5.4 Wrench_1.16.0
[211] beachmat_2.14.0 polyclip_1.10-4
[213] purrr_0.3.5 ROI_1.0-0
[215] janeaustenr_1.0.0 rvest_1.0.3
[217] mgcv_1.8-41 CVXR_1.0-11
[219] globals_0.16.1 lmom_2.9
[221] htmlTable_2.4.1 patchwork_1.1.2
[223] spatstat.random_3.0-1 progressr_0.11.0
[225] codetools_0.2-18 GO.db_3.16.0
[227] prettyunits_1.1.1 gtools_3.9.3
[229] SingleCellExperiment_1.20.0 gtable_0.3.1
[231] DBI_1.1.3 dynamicTreeCut_1.63-1
[233] highr_0.9 tensor_1.5
[235] httr_1.4.4 KernSmooth_2.23-20
[237] progress_1.2.2 stringi_1.7.8
[239] farver_2.1.1 reshape2_1.4.4
[241] annotate_1.76.0 viridis_0.6.2
[243] xml2_1.3.3 ggdendro_0.1.23
[245] trust_0.1-8 boot_1.3-28
[247] WGCNA_1.71 BiocNeighbors_1.16.0
[249] lme4_1.1-31 interp_1.1-3
[251] ade4_1.7-20 geneplotter_1.76.0
[253] CompQuadForm_1.4.3 energy_1.7-10
[255] scattermore_0.8 DESeq2_1.38.0
[257] bit_4.0.4 jpeg_0.1-9
[259] spatstat.data_3.0-0 pkgconfig_2.0.3
[261] lmerTest_3.1-3 gsl_2.1-7.1

63

[263] DirichletMultinomial_1.40.0 MGLM_0.2.1
[265] mitools_2.4 knitr_1.40

64

References
Beghini,F. et al. (2019) Tobacco exposure associated with oral microbiota oxygen utilization in the New York

City Health and Nutrition Examination Study. Ann Epidemiol, 34, 18–25.e3.
Butler,A. et al. (2018) Integrating single-cell transcriptomic data across different conditions, technologies,

and species. Nat. Biotechnol., 36, 411–420.
Calgaro,M. et al. (2020) Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics

applied to microbiome data. Genome Biology, 21, 191.
Fernandes,A.D. et al. (2014) Unifying the analysis of high-throughput sequencing datasets: characterizing

RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis.
Microbiome, 2, 15.

Finak,G. et al. (2015) MAST: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol, 16, 278.

Gauthier,M. et al. (2020) dearseq: a variance component score test for RNA-seq differential analysis that
effectively controls the false discovery rate. NAR Genomics and Bioinformatics, 2, lqaa093.

Kaul,A. et al. (2017) Analysis of Microbiome Data in the Presence of Excess Zeros. Front. Microbiol., 8,
2114.

Law,C.W. et al. (2014) voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.
Genome Biol., 15, R29.

Lin,H. and Peddada,S.D. (2020) Analysis of compositions of microbiomes with bias correction. Nat Commun,
11, 3514.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol., 15, 550.

Martin,B.D. et al. (2020) Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann.
Appl. Stat., 14.

Paulson,J.N. et al. (2013) Differential abundance analysis for microbial marker-gene surveys. Nat. Methods,
10, 1200–1202.

Phipson,B. et al. (2016) Robust hyperparameter estimation protects against hypervariable genes and improves
power to detect differential expression. Ann. Appl. Stat., 10.

Risso,D. et al. (2018) A general and flexible method for signal extraction from single-cell RNA-seq data. Nat.
Commun., 9, 284.

Ritchie,M.E. et al. (2015) limma powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Research, 43, e47–e47.

Robinson,M.D. et al. (2010) edgeR: a Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics, 26, 139–140.

Schiffer,L. et al. (2019) HMP16SData: Efficient Access to the Human Microbiome Project Through Biocon-
ductor. Am. J. Epidemiol., 188, 1023–1026.

Tarazona,S. et al. (2015) Data quality aware analysis of differential expression in RNA-seq with NOISeq
R/Bioc package. Nucleic Acids Res, gkv711.

Thurnheer,T. et al. (2016) Microbial dynamics during conversion from supragingival to subgingival biofilms
in an in vitro model. Molecular Oral Microbiology, 31, 125–135.

Van den Berge,K. et al. (2018) Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell
applications. Genome Biol., 19, 24.

Zhang,Y. et al. (2017) Regression Models for Multivariate Count Data. Journal of Computational and
Graphical Statistics, 26, 1–13.

Zhang,Y. and Zhou,H. (2022) MGLM: Multivariate Response Generalized Linear Models.

65

https://doi.org/10.1016/j.annepidem.2019.03.005
https://doi.org/10.1016/j.annepidem.2019.03.005
https://doi.org/10.1186/s13059-020-02104-1
https://doi.org/10.1186/s13059-020-02104-1
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1093/nargab/lqaa093
https://doi.org/10.1093/nargab/lqaa093
https://doi.org/10.3389/fmicb.2017.02114
https://doi.org/10.1038/s41467-020-17041-7
https://doi.org/10.1214/19-AOAS1283
https://doi.org/10.1214/16-AOAS920
https://doi.org/10.1214/16-AOAS920
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv711
https://doi.org/10.1093/nar/gkv711
https://doi.org/10.1111/omi.12108
https://doi.org/10.1111/omi.12108
https://doi.org/10.1080/10618600.2016.1154063
https://CRAN.R-project.org/package=MGLM

	Introduction
	Installation
	Data loading

	Goodness of Fit
	GOF structure
	Parametric distributions
	Comparing estimated and observed values
	Visualization
	Discussion about GOF

	DA methods
	Add a custom DA method

	Type I Error Control
	TIEC structure
	Create mock comparisons
	Set up normalizations and DA methods
	Counting the False Positives
	Visualization
	Discussion about TIEC

	Concordance
	Concordance structure
	Split datasets
	Set up normalizations and DA methods
	Comparing the concordances
	Visualization
	Discussion about Concordance

	Enrichment analysis
	Enrichment structure
	A priori knowledge
	Set up normalizations and DA methods
	Testing the enrichment
	Visualization
	True and False Positives
	Enrichment without direction
	Enrichment analysis for simulated data
	Discussion about Enrichment

	Session Info
	References

