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Text S1 Principles and characteristics of ST deconvolution methods 

The existing computational methods can be categorized into four categories: enrichment-based methods, regression model-

based deconvolution methods, probabilistic model-based deconvolution methods, and deep learning model-based methods. 

The first category of methods aims to identify cell types contained in each spot by calculating enrichment scores 

representing the degree of match between gene signatures of those cell types and the expression pattern of the spot, while 

the latter three seek to infer the proportions of cell types for a given spot by using regression models, probabilistic models, 

or deep learning models, respectively. Below we overview the principles and characteristics of these methods. 

Enrichment-based methods 

 Seurat. It embeds the ST data and scRNA-seq reference data into a shared low-dimensional space and identifies the 

pairwise correspondences between cells and spots (Stuart, et al., 2019). It computes the enrichment scores, representing 

the probability of the presence of each cell type in the spot, via the ‘FindTransferAnchors’ and ‘LableTransfer’ 

functions.  

 Giotto. The Giotto package (Dries, et al., 2021) includes three independent methods for calculating enrichment scores: 

1) PAGE (Kim and Volsky, 2005) scores the fold change of cell-type-specific genes for each spot relative to other 

spots; 2) rank calculates enrichment scores based on the ranking of cell-type-specific genes from scRNA-seq data and 

the ranking of location-specific genes from ST data; 3) Hypergeometric test method evaluates the degree of enrichment 

of cell types at each spot by calculating a p-value. 

 MIA. Multimodal Intersection Analysis (MIA) (Moncada, et al., 2020) estimates an enrichment score of each cell type 

in a given spatial location by measuring the extent of overlap between cell-type-specific marker genes from scRNA-

seq and spot-position-specific genes from ST data. 

Regression model-based deconvolution methods 

 SPOTlight. It uses seed non-negative matrix factorization (sNMF) to obtain gene distributions from scRNA-seq data 

and subsequently adopts non-negative least squares (NNLS) to deconvolute spatial data (Elosua-Bayes, et al., 2021). 

 spatialDWLS. It extends the dampened weighted least squares (DWLS) approach (Tsoucas, et al., 2019) to 

deconvolute ST data, which identifies cell types of each spot by using enrichment analysis and then employs DWLS 

to infer cell type proportions (Garcia-Alonso, et al., 2021). 

 spatialDecon. It uses log-normal regression, instead of the classic core least-squares regression, to deconvolve ST data, 

which could largely correct the skewness and inconsistent variance of spatial gene expression data (Danaher, et al., 

2022). 

Probabilistic model-based deconvolution methods 

 RCTD. It estimates cell type compositions for each spot by fitting a statistical model, assuming that gene counts follow 

a Poisson distribution while correcting for differences between ST and scRNA-seq techniques (Cable, et al., 2022). 



 cell2location. It estimates the cell type signature from scRNA-seq data using a model based on negative binomial 

regression and then uses this reference signature to estimate the abundance of each cell type in each spot 

(Kleshchevnikov, et al., 2020). 

 stereoscope. It utilizes a probabilistic model to decompose cell type mixtures in spatial data, assuming that both spatial 

and scRNA-seq data follow a negative binomial distribution (Andersson, et al., 2020).  

 STRIDE. This method leverages latent Dirichlet allocation (LDA), a generative probabilistic model, trained from 

scRNA-seq data to decompose spot expression into individual cell types (Sun, et al., 2022).  

 DestVI. It uses a probabilistic method constructed by variational inference and latent variable models to obtain the cell 

type decomposition at each spot (Lopez, et al., 2021).  

 STdeconvolve. This method is built on an LDA model to infer the proportional representation of cell types in each 

multi-cellular spot, without relying on external single-cell reference (Miller, et al., 2022). So, it is a reference-free 

deconvolution method for ST deconvolution, taking into account of limited availability of suitable single-cell data as 

a reference due to technical and other reasons. 

Deep learning-based deconvolution methods 

 DSTG. It deconvolutes ST data by leveraging graph convolutional networks trained from pseudo-ST data, where 

pseudo-ST data is generated by randomly combining expression data of scRNA-seq cells (Song and Su, 2021).  

 Tangram. It learns a spatial alignment for scRNA-seq data by using a deep learning framework and non-convex 

optimization, which allows decomposing ST data by assigning cells from scRNA data to spatial locations (Biancalani, 

et al., 2021). 

  



Text S2 Generation of datasets with different sequencing depths 

To test the robustness of different deconvolution methods concerning sequencing depth on three synthetic ST datasets, we 

adopted the ‘downsampleMatrix’ function in the DropletUtils package 

(https://www.bioconductor.org/packages/release/bioc/html/DropletUtils.html) to down-sample the spatial expression 

matrix to generate datasets with different sequencing depths. Specifically, the relatively lower number of genes captured 

by MERFISH and the lower counts per gene sequenced by sci-Space resulted in low resolution of the gene expression in 

these two synthetic ST datasets. Therefore, we down-sampled these datasets by setting the down-sampling rate = 1, 0.8, 

0.6, 0.2, where the down-sampling rate = 1 implies the raw counts. For the mouse brain (mapped sc-ST) dataset, the total 

counts per spot consisted of the counts of multiple scRNA-seq cells, we then set the down-sampling rate = 1, 0.5, 0.2, 0.05, 

0.01. Notably, the sequencing depth of the simulated dataset generated by the down-sampling rate = 0.01 was comparable 

to that of the real ST data. Therefore, subsequent experiments on the mouse brain (mapped sc-ST) dataset were performed 

based on simulated data with the down-sampling rate = 0.01. Table S1 lists details of the counts corresponding to different 

down-sampling rates on the three simulated datasets. 

 
  



Text S3 Generation of datasets with different spot sizes 

To investigate the impact of different spot sizes on the performance of different deconvolution methods, we defined squares 

with different areas to adjust the spot size, i.e., the number of cells contained in a spot. Since the square size of the embryo 

(sci-Space) dataset was defined during sequencing and was not adjustable during the simulation process, we did not test 

the impact of different spot sizes on this dataset. For MPOA (MERFISH) and mouse brain (mapped sc-ST) datasets, we 

generated simulated datasets with three different spot sizes, 25 μm, 55 μm, and 150 μm in diameter, respectively. 

Specifically, the simulated spot with a diameter 25 μm mimics the DBiT-seq technology (Liu, et al., 2020) and the spot 

with a diameter 55 μm mimics the Spatial Transcriptomics technology. For the MPOA (MERFISH) dataset, the spot sizes 

with diameters 25 μm, 55 μm, and 150 μm correspond to the square sizes with 25 × 25, 55 × 55, and 150 × 150, 

respectively. For the mouse brain (mapped sc-ST) dataset, the spot sizes with diameter 25 μm, 55 μm, and 150 μm 

correspond to the square sizes with 75 × 75, 105 × 105, and 200 × 200, respectively. 

  



Text S4 Data normalization choices 

To evaluate the impact of different normalization methods on the performance of deconvolution methods, we processed 

ST data using four normalization methods: transcripts per million (TPM), normalizeGiotto (Dries, et al., 2021), 

SCTransform (Stuart, et al., 2019), and unit variance. We collected the normalization methods used in the current ST 

deconvolution methods. Since some methods require the input to be the original count matrix, we only performed the 

normalization benchmark on those without restrictions on the input format of ST data. Meanwhile, the normalization of the 

reference scRNA-seq data was kept consistent with the original requirements of the ST deconvolution methods. 

  



Text S5  Implementation of deconvolution methods  

cell2location. We followed the guidelines provided on the cell2location website: 

https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html. We trained the single-cell model on the 

reference data with parameters max_epochs = 250 and lr = 0.002. The cell2location model was obtained on the ST data 

with parameters max_epochs = 30000. 

DestVI. We followed the guidelines provided on the DestVI website: https://docs.scvi-

tools.org/en/stable/tutorials/notebooks/DestVI_tutorial.html. For the reference data, the top 2000 high variable genes were 

selected. The single-cell model was trained on the reference data with parameters max_epochs = 250 and lr = 0.001. The 

deconvolution of ST data was implemented with parameters max_epochs = 2000. 

Giotto-PAGE/rank/Hypergeometric. We followed the instructions provided on the Giotto website: 

https://rubd.github.io/Giotto_site/reference/runSpatialEnrich.html. The predicted results were obtained using the function 

‘runSpatialEnrich’ with parameters enrich_mode = c(“PAGE, “rank”, “hypergeometric”), min_overlap_genes = 2, and 

top_percentage = 5. 

RCTD. We followed the commands in the RCTD GitHub repository: https://github.com/dmcable/spacexr. We ran RCTD 

using the ‘runRCTD’ function in ‘full mode’. 

Seurat. We followed the guidelines described on the Seurat 3.2 website: 

https://satijalab.org/seurat/archive/v3.2/integration.html. We set normalize.method = ‘SCT’ in the ‘FindTransferAnchors’ 

function, and set dim = 1:30 in the ‘TransferData’ function. 

spatialDecon. We followed the guidelines provided on the spatialDecon website: https://github.com/Nanostring-

Biostats/SpatialDecon. We first created a profile matrix with reference data using the ‘creat_proflie_matrix’ function with 

the parameter minGenes = 0. The deconvolution of ST data was employed by using the ‘runspatialdecon’ function while 

setting parameter bg as 0.01. 

spatialDWLS. We followed the guidelines provided on the spatialDWLS website: 

https://rubd.github.io/Giotto_site/articles/tut7_giotto_enrichment.html. We first clustered the spots by using the following 

commends createNearestNetwork (dimensions_to_use = 1:10, k = 4) and doLeidenCluster (resolution = 0.4, n_iterations = 

1000). We then used the ‘runDWLSDeconv’ function to perform deconvolution on ST data. 

SPOTlight. We followed the instructions described on the SPOTlight GitHub repository: 

https://marcelosua.github.io/SPOTlight/. We deconvoluted ST data using the ‘spotlight_deconvolution’ function with the 

parameters cl_n = 100, transfer = ‘uv’, and method = ‘nsNMF’. 

STdeconvolve. We followed the commands described on the STdeconvolve website: https://github.com/JEFworks-

Lab/STdeconvolve. The ‘restrictCorpus’ function was used for selecting genes with parameters removeAbove =1.0, 

removeBelow = 0.05. The STdeconvolve model was fitted by the ‘fitLDA’ function and then the ‘optimalLDA’ function 

was used to select the optimal topic with the parameter opt = number of cell types. 



stereoscope. We followed the instructions on the stereoscope GitHub repository: https://github.com/almaan/stereoscope. 

We first subsampled the reference data by setting the lower and upper bounds of 25 and 250 cells for each cell type, 

respectively. The reference model and spatial model were trained with the same parameter max_epoch = 75000. 

STRIDE. We followed the commands on the STRIDE GitHub repository: 

https://stridespatial.readthedocs.io/en/latest/tutorials.html. The deconvolution was performed by setting the parameter ‘-

normalize’. 

Tangram. We followed the instructions described on the Tangram website: https://github.com/broadinstitute/Tangram. We 

set the parameters as mode = ‘clusters’ and density = ‘rna_count_based’. 

  



Text S6 Evaluation metrics 

We calculated the following metrics to evaluate the performance of different deconvolution methods by using the known 

cell type proportions in the simulated datasets as the ground truth.  

Assume matrices ���×�  and ��×�  represent the predicted cell type proportions and the known cell type proportions, 

respectively, where � represents the number of spots and � represents the number of cell types. Accordingly, the vectors 

����×� and ���×� represent the predicted cell type proportions and the known cell type proportions. Note that ����×� =

�����, ����,⋯ , �����
�
 and ���×� = [���, ���,⋯ , ���]�. 

(1) RMSE. The RMSE value between the predicted cell type proportion and the known cell type proportions was 

calculated as follows: 
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where ��� and �� are the �–th element of the predicted cell type proportion vector ����×� and the known cell type 

proportions vector ���×�, respectively. Lower RMSE value corresponds to better performance of the deconvolution 

method. 

(2) PCC. The PCC value was calculated as follows: 
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where ��� and �� represent the �–th element of the predicted and known cell type proportion vectors, respectively; ��  

and � are the mean proportions of the predicted and known cell type proportion vectors, respectively; �� and � are the 

standard deviations of the predicted and known cell type proportion vectors, respectively. Higher PCC value 

corresponds to more accurate deconvolution.  

(3) JSD. The JSD metric measures the similarity between two probability distributions. We calculated the JSD value of 

each spot as follows:  
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where �� and �� represent the cell type proportions of spot � in the predicted result and the ground truth, respectively. 

Eq. (S4) calculates the Kullback-Leibler divergence between the two probability distributions �� and ��, where the 

predicted probability and expected probability of cell type � in spot � are represented by ��� and ���, respectively. 

The lower JSD value indicates that the precited cell type proportions are more similar to the ground truth cell type 

proportions. 



(4) Running time and memory. For the deconvolution methods using R language, we used the ‘memory_used’ function 

from the pryr package to evaluate the memory changes and used the ‘proc.time’ function to measure the running time. 

For the deconvolution methods using Python language, memory changes were calculated using the 

‘memory_full_info’ function from the psutil package and the running time was assessed with the ‘time’ function 

from the time package. 

(5) Score aggregation. To rank different methods, we aggregated different scores at two levels: across different datasets 

and different metrics. The aggregation procedure is explained in detail as follows: 

For each dataset, we first normalized the values of RMSE, PCC, and JSD (50% median) by using Eq. (S5-S7), 

respectively.  
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where � = 1, 2, 3 represents the �-th synthetic dataset, ������ , ����� , and �����  represent the RMSE values, PCC values, 

and JSD (50% median) values of 14 methods on the �-th dataset, respectively. Lower RMSE and JSD correspond to 

higher values of ����������  and ��������� , and higher PCC correspond to higher values of ��������� . 

After normalization, the values of each of the above scores were aggregated across different datasets by calculating 

their arithmetic mean, as shown in Eq. (S8-S10). The aggregated scores of different metrics were then averaged for 

each method by using Eq. (S11), which was used as the ultimate overall score for ranking.  
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To assess the impact of variation in sequencing depths on the deconvolution accuracy of each method, we calculated 

the variance of the values of the above-defined ������������  under different sequencing depths. Finally, we 

normalized the variance of each method by using Eq. (S12) for comparison across different methods. Lower variance 



corresponds to higher ������������� indicating that high robustness of the deconvolution method to the sequencing 

depth.  
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In addition, the usability of each method was scored using Eq. (S13),  

1= ( )
2usability time memoryscore score score . (S13) 

where ��������� and ����������� for scoring time and memory are detailed in Table S1. 

  



Figure S1 

 

Fig. S1. Benchmarking the performance of the 14 deconvolution methods using synthetic datasets based on RMSE, PCC 
and JSD. RMSE (a), PCC (b), and JSD (c) between the ground truth proportions and the predicted proportions from 
different deconvolution methods were calculated. Median, lower and upper quartiles represent 50%, 25%, and 75% of JSD 
values, respectively.  



Figure S2 

 

Fig. S2. Benchmarking the performance of the 14 deconvolution methods using synthetic datasets based on RMSE and 
PCC per cell type per cell type. RMSE per cell type (a), and PCC per cell type (b) between the ground truth proportions 
and the predicted proportions from different deconvolution methods were calculated. 

  



Figure S3 

 

Fig. S3. Comparing the performance of ST deconvolution methods in predicting the spatial distribution of cell types on the 
embryo (sci-Space) dataset. (a) The spatial distribution of cell type proportions in the embryo (sci-Space) dataset, including 
the predicted results from 14 deconvolution methods. Each pie represents the simulated spot, and colors represent different 
cell types. (b) The ground truth of the cell type proportions. Since single-cell resolution embryo (sci-Space) data contains 
multiple cells at a capture point, each pie represents the cell type proportions at one location. 

  



Figure S4 

 

Fig. S4. Comparing the performance of ST deconvolution methods in predicting the spatial distribution of cell types on the 
MPOA (MERFISH) dataset. (a) The spatial distribution of cell type proportions from the predictions of 14 deconvolution 
methods and the synthetic result were represented as a spatial scatter pie chart for each simulated spot in the synthetic 
MPOA (MERFISH) dataset. Each pie represents the simulated spot, and colors represent different cell types. (b) The ground 
truth of cell type label at single cell-resolution for the MPOA (MERFISH) dataset.   

  



Figure S5 

 

Fig. S5. Comparing the performance of ST deconvolution methods in predicting the spatial distribution of L2/3 cell type 
on the mouse brain (mapped sc-ST) dataset. (a) Proportions of the specific cortical cell type (L2/3) predicted by 14 
deconvolution methods from the mouse brain (mapped sc-ST) dataset and the corresponding synthetic result. The 
proportion is represented by a colored dot. The redder the color, the larger the proportion. (b) Marker gene expression 
pattern in the ISH data from the Allen Brain Atlas. Rasgrf2 is a marker gene of the L2/3 cell type. 

  



Figure S6 

 

Fig. S6. Comparing the performance of ST deconvolution methods in predicting the spatial distribution of L4 cell type on 
the mouse brain (mapped sc-ST) dataset. (a) Proportions of the specific cortical cell type (L4) predicted by 14 
deconvolution methods from the mouse brain (mapped sc-ST) dataset and the corresponding synthetic result. The 
proportion is represented by a colored dot. The redder the color, the larger the proportion. (b) Marker gene expression 
pattern in the ISH data from the Allen Brain Atlas. Plcxd2 is a marker gene of the L4 cell type. 

  



Figure S7 

 

Fig. S7. Comparing the performance of ST deconvolution methods in predicting the spatial distribution of L6b cell type on 
the mouse brain (mapped sc-ST) dataset. (a) Proportions of the specific cortical cell type (L6b) predicted by 14 
deconvolution methods from the mouse brain (mapped sc-ST) dataset and the corresponding synthetic result. The 
proportion is represented by a colored dot. The redder the color, the larger the proportion. (b) Marker gene expression 
pattern in the ISH data from the Allen Brain Atlas. Cplx3 is a marker gene of the L6b cell type. 

  



Figure S8 

 

Fig. S8. Comparing the robustness of different deconvolution methods to variation of down-sampling rate. RMSE values 
between the expected proportion and the output proportions from different deconvolution methods were calculated for 
comparison. Table S2 lists details of down-sampling rates. Regarding embryo (sci-Space) and MPOA (MERFISH) datasets, 
cell2location, RCTD, and spatialDWLS consistently outperformed other deconvolution methods at different down-
sampling rates, and most of the deconvolution methods were robust to the variation of down-sampling rates. Meanwhile, 
Giotto/Hypergeometric, Giotto/rank, Giotto/PAGE, and spatialDWLS could not work on the simulated dataset with the 
down-sampling rate = 0.2, due to the high dropout ratio of this ST dataset. For the mouse brain (mapped sc-ST) dataset, 
cell2location, RCTD, and spatialDWLS performed best with the down-sampling rate = 0.01, where the sequencing depth 
was close to that of real ST data. However, the RMSE value of RCTD gradually became larger as the down-sampling rate 
increased. In addition, stereoscope became gradually worse when the down-sampling rate increased, while spatialDecon 
became gradually worse when the down-sampling rate decreased.  

  



Figure S9 

 

Fig. S9. Comparing the sensitivity of different deconvolution methods to different spot sizes. The bar plot represents the 
RMSE between the expected proportion and the output proportions from the different deconvolution methods. Different 
colors represent different spot sizes. Since the spots’ coordinates in the embryo (sci-Space) dataset were not continuous 
and thus could not be used to generate synthetic datasets with different spot sizes, we adopted the MPOA (MERFISH) and 
mouse brain (mapped sc-ST) datasets for evaluation (see Methods). The spot with larger size contains more cells. Notably, 
the RMSE values of the deconvolution methods tended to become larger as the spot size decreased from 150 μm to 25 μm 
(Fig. 4). This may be due to that smaller size of spot contains less cells so that the sample size for inferring cell type 
proportions becomes even small, leading to increased bias for deconvolution. 

  



Figure S10 

 

Fig. S10. Comparing the impact of different choices of ST data normalization on different deconvolution methods. RMSE 
values between the expected proportion and the output proportions from different deconvolution methods were calculated. 
Different colors represent different ST normalization methods. Because some deconvolution methods (e.g., cell2location, 
RCTD, spatialDecon, stereoscope, and STdeconvolve) explicitly require raw gene expression matrix as input and do not 
support normalization processing, we did not include these methods for investigation. 

  



Figure S11 

 

Fig. S11. Comparing the performance of the EnDecon method in predicting the spatial distribution of cell types. (a) The 
predicted proportions of EnDecon on the embryo (sci-Space) dataset compared with the gold standard from single-cell 
resolution embryo (sci-Space) data. Each pie represents a simulated spot colored by different cell types. The colors of cell 
types were consistent with Fig. S3. (b) The predicted proportions of EnDecon on the MPOA (MERFISH) dataset compared 
with the gold standard, where the gold standard was the cell type map at single-cell resolution MERFISH data. Each pie 
represents a simulated spot colored by different cell types. The colors of cell types were consistent with Fig. S4. (c) The 
top row shows the proportions of three cell types (i.e., L2/3, L4, L6b) estimated by EnDecon on the mouse brain (mapped 
sc-ST) dataset. The bottom row shows the expression patterns of the respective marker genes (i.e., Rasgrf2, Plcxd2, Cplx3) 
in the ISH data from the Allen Brain Atlas.  

  



Figure S12 

 

Fig. S12. Computer resources consumed by different deconvolution methods. Time requirements (min) (a) and Memory 
requirements (GB) (b) for different deconvolution methods across the three simulated datasets and one real ST dataset. 

  



Table S1. Details of the criteria for calculating usability score. 

Criteria for calculating usability score 

time ≤10 min 10~30 min 30~60 min 60~120 min ≥120 min 

��������� 1 0.8 0.6 0.4 0.2 

memory ≤1 GB 1~5 GB 5~10 GB 10~15 GB ≥15 GB 

����������� 1 0.8 0.6 0.4 0.2 

 

Table S2. Statistics of the counts of transcripts corresponding to different down-sampling rates in the three synthetic 
datasets. 

Dataset Down-sampling rate Min count Max count Mean count 

embryo (sci-Space) 1 415 3.27e+05 4.43e+04 
 0.8 332 2.62e+05 3.55e+04 
 0.6 249 1.96e+05 2.66e+04 
 0.4 166 1.31e+05 1.77e+04 
 0.2 83 6.55e+04 8.86e+03 
MPOA (MERFISH) 1 21 1.11e+04 3.94e+03 
 0.8 4 8.82e+03 3.10e+03 
 0.6 3 6.62e+03 2.33e+03 
 0.4 1 4.42e+03 1.55e+03 
 0.2 0 2.20e+03 775 
mouse brain (mapped sc-ST) 1 1.00e+05 4.06e+07 1.28e+07 
 0.5 5.01e+04 2.03e+07 6.38e+06 
 0.2 2.00e+04 8.12e+06 2.55e+06 
 0.05 5.01e+03 2.03e+06 6.38e+05 
 0.01 1.00e+03 4.06e+05 1.28e+05 

 

 

 


