
1

Benchmark

In order to compare different VCF filtering tools with respect to pro-
cessing times, we ran them on VCF files with different numbers of
samples. These were generated by annotating the GIAB VCF files1 1 https://www.nist.gov/programs-

projects/genome-bottle(restricted to chromosome 1) of the samples HG001, HG002, HG003
and HG004 with both SnpEff and VEP, and creating VCF files with
all possible multi-sample combinations of 1, 2, 3 or 4 samples. These
were then filtered with tools that adhere to the specifications of
VCF in version 4.3 and BCF in version 2.22, the versions htslib and 2 https://samtools.github.io/hts-

specs/VCFv4.3.pdfbcftools use at the time of writing. This decision rules out VcfFil-
terJdk since htsjdk only supports earlier versions of the BCF spec-
ification and VcfFilterJdk produces incorrect VCF v4.2 files3, that 3 In contradiction to the VCF spec-

ification for v4.1 or newer, the
FORMAT/PS field is defined as a string
instead of a ”non-negative 32-bit
Integer” and may contain the string
PATMAT.

cannot be parsed by standard tools such as bcftools, making them
incompatible with the rest of the workflow.

We selected a range of different filter expressions, varying in field
accesses and general expression complexity, see Table S.1 for de-
tails. We then benchmarked each tool on the annotated files with 10

repeats. Results are shown in Fig. S.1.
To make sure the same records were kept, we computed md5sums

on the filtered and sorted VCF files while restricting fields to CHROM,
POS, REF, ALT and QUAL. This restriction is necessary because:

• bcftools with +split-vep will add INFO fields for every field
parsed from the ANN annotation by default

• SnpSift keeps all annotations if at least one of them matches
(vembrane can mirror this behaviour with --keep-unmatched)

• slivar adds impactful, genic and highest_impact_order INFO
fields

To reproduce the results, the snakemake workflow used for bench-
marking is available at

github.com/vembrane/vembrane-benchmark (10.5281/zenodo.
6979842).

The benchmark (as shown in Fig. S.1) was run on a machine with
an Intel(R) Xeon(R) Gold 6152 Processor (88 cores) with 768GiB
RAM and 160TB of harddisk space managed in LVM groups. At any
given time, a maximum of 4 jobs were run in parallel to limit I/O
load.

https://www.nist.gov/programs-projects/genome-bottle
https://www.nist.gov/programs-projects/genome-bottle
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://github.com/vembrane/vembrane-benchmark/tree/v1.1.0
https://doi.org/10.5281/zenodo.6979842
https://doi.org/10.5281/zenodo.6979842

2

scenario name tool expression

filter_all vembrane False

SnpSift false

slivar --info 'false'

filter_vep 0

bio-vcf false

bcftools -e ""

filter_none vembrane True

SnpSift true

slivar --info 'true'

filter_vep not 0

bio-vcf true

bcftools -i ""

at_least_2_platforms vembrane INFO["platforms"] >= 2

SnpSift platforms >= 2

slivar --info 'INFO.platforms >= 2'

filter_vep platforms >= 2

bio-vcf rec.info.platforms >= 2

bcftools -i "INFO/platforms >= 2"

format_dp vembrane any(FORMAT["DP"][s] > 1250 for s in SAMPLES)

SnpSift GEN[*].DP > 1250

slivar --alias resources/empty_alias.txt --pass-only --sample-expr ':sample.DP

> 1250'

filter_vep cannot access FORMAT

bio-vcf --sfilter defaults to conjunctions (”all”), not disjunctions (”any”)
bcftools -i "FORMAT/DP > 1250"

impact_high vembrane ANN["Annotation_Impact"] == "HIGH"

SnpSift ANN[*].IMPACT has 'HIGH'

slivar SLIVAR_IMPACTFUL_ORDER=slivar-impactfulness-order.txt slivar expr

--info "INFO.impactful"

filter_vep ignores SnpEff (or any non-VEP) annotation without raising an error
bio-vcf No built-in support for annotations
bcftools No built-in support for SnpEff annotations

uncertain vembrane "uncertain_significance" in ANN["CLIN_SIG"] or not (ID and

ID.startswith("rs"))

SnpSift cannot access VEP annotations
slivar No built-in support for annotations apart from ”Consequence”
filter_vep CLIN_SIG is uncertain_significance or not (ID and ID matches "^rs")

bio-vcf No built-in support for annotations
bcftools +split-vep --annotation "ANN" -c CLIN_SIG -i "INFO/CLIN_SIG[*] ==

'uncertain_significance' | (ID \!~ '^rs')"

Table S.1: Expressions used for benchmarking. impact_high makes use of SnpEff annotations,
uncertain makes use of VEP annotations, all other expressions only use default VCF fields and/or INFO
and FORMAT fields defined in the header. For some tools it is necessary to specify the commandline options
as well, e. g. for bcftools the interpretation of the expression changes: -i includes, -e excludes variants
matching the expression.

3

2

3

4
5
6
7
8
9

10k

2

3

4
5
6
7
8
9

100k

2

3

4
5
6
7

bcftools (bcf)
bcftools
vembrane (bcf)
vembrane
SnpSift
bio-vcf
slivar (bcf)
slivar
filter_vep

re
co

rd
s

pe
r

se
co

nd
filter_all filter_none at_least_2_platforms format_dp uncertain impact_high

Figure S.1: A benchmark
comparing vembrane, bcftools,
SnpSift, filter_vep, bio-vcf and
slivar. The y-axis is in records
per seconds, i. e. higher is bet-
ter. Runs with BCF input are
listed separately for tools that
support this. Each column
corresponds to a different filter
expression as described in Ta-
ble S.1. Note the logarithmic
scale on the y-axis.

Pitfalls

Different VCF filtering tools have different use-cases and focuses and
provide different levels of convenience abstractions and conventions.
This becomes especially apparent in the following categories, each
illustrated with examples:

Multi-allelic records

The VCF file format allows multiple alternate alleles per record (i. e.
per line in the textual representation). Because working with mul-
tiple alternate alleles quickly gets verbose, tools often use implicit
conjunctions or disjunctions.

Consider the following (incomplete) example VCF file with two
alternate alleles and read depth information in the info field DP:

##INFO=<ID=DP,NUMBER=A,Type=Integer,Description="Depth">
#CHROM POS REF ALT INFO
ctg1 42 A C,G DP=0,50

Now, with the bcftools expression INFO/DP > 0 the record is kept,
because INFO/DP > 0 is defined implicitly as INFO/DP[*] > 0 . The
square brackets denote array subscript and the asterisk denotes
”any element”. This translates to ”at least one alternate allele in the
record must have read depth greater than zero”.
However, with the SnpSift expression DP > 0 the record is dis-
carded, because unlike bcftools, SnpSift implicitly assumes DP[?] >

0 . Here, the question mark implies ”all elements” must match the
(respective part of the) expression. This translates to ”all alternate
alleles in the record must have read depth greater than zero”.

We argue that multi-allelic records should be split into multiple
records with only one alternate allele each, and annotation of such
records should only happen after splitting, since annotations may be
completely unrelated between different alternate alleles. This also

4

eliminates one source of differences between implicit behaviour of
VCF filtering tools.

Multiple annotations for a single variant

Annotation tools such as VEP may (depending on settings) have
multiple annotations for each transcript a variant affects. Because
the effects of a variant on different transcripts may vary wildly,
vembrane does not keep all annotations for a single variant, but only
those that pass the given filter expression (Fig. S.2). For the decision
whether to keep the respective variant record, this amounts to an
implicit any of the given expression over all of its ANN fields. For
further clarification, we provide the general mechanism as pseudo-
code in Fig. S.2.

i, o, expression = args.input, args.output, args.expression
with VcfFile(i, "r") as vcf_in, VcfFile(o, "w") as vcf_out:

set up environment to evaluate `expression` in
env = Environment(expression)
for record in vcf_in:

update environment with data from `record`
env.update(record)

if env.expression_uses_annotations():
usually one annotation per affected transcript
annotations = record.annotations
kept = [a for a in annotations if env.evaluate(a)]
if len(annotations) != len(kept):

record.annotations = kept
implicit `any`:
only keep `record` if at least one annotation
satisfies the `expression`
if len(kept) > 0:

vcf_out.write(record)
else:

if env.evaluate():
vcf_out.write(record)

Figure S.2: Pseudo-code for
vembrane’s main loop, demon-
strating the handling of mul-
tiple annotations for a single
variant record.

Conventions

Usually certain syntactical elements imply conventional semantics.
For example, = and == are often either used as variable assign-
ment and comparison operator respectively or both interpreted as
comparison operators. Similarly, logical operators such as & or
&& (and, conjunction) or | and || (or, disjunction) can often
be used interchangeably4 without changing semantics. 4 In many languages, singular & and

| denote bitwise and and or, while
double && and || denote logical and
and or.

In bcftools syntax, both & and && are logic operators denoting
a conjunction: both FMT/DP > 0 & FMT/GQ > 10 and FMT/DP >
0 && FMT/GQ > 10 are valid expressions. The former translates to
”read depth > 0 and genotype quality > 10 must be fulfilled
for the same sample”. The latter, however, translates to ”read depth

5

> 0 in any sample and genotype quality > 10 in any sample”.
When written as vembrane expressions, the difference between the
two can be seen easily:
&: any((FORMAT["DP"][s] > 0 and FORMAT["GQ"][s] > 10) for s in SAMPLES)

&&: any(FORMAT["DP"][s] > 0 for s in SAMPLES) and any(FORMAT["GQ"][s] >

10 for s in SAMPLES)

Therefore, & and && cannot be used interchangeably in bcftools
because they have different semantics.

On a related note, using & or && in filter_vep expressions
does not error (and simply yields every record, unfiltered), even
though the only valid conjunction is expressed using and .

Portability

In contrast to bcftools, vembrane does not automatically collapse/ele-
vate INFO vs. FORMAT fields if they are unambiguous: For example, in
bcftools the expression platforms > 3 is valid as long as there is
only one field named platforms; as soon as there is ambiguity, the
full path has to be specified, so either INFO/platforms > 3 or
FORMAT/platforms > 3 . This is a portability issue, as the same
expression used in a different context may error or silently behave
differently than intended. Here, and in general, vembrane is stricter
than other tools (and has fewer special cases). As a consequence, the
expressions are more portable and their interpretation less ambigu-
ous.

Expressions

Syntax

A formal introduction and description of python’s syntax can be
found at https://docs.python.org/3/reference/expressions.
html.

In Table S.2 we present a showcase of various vembrane/VCF
specific example expressions and their interpretations.

Semantic equivalency

Since vembrane relies on python for evaluation, it is possible to ex-
press the same filter as semantically equivalent but syntactically
different expressions, for example:

any(entry in ANN["CLIN_SIG"] for entry in ("pathogenic",
"likely_pathogenic", "drug_response"))↪→

or equivalently

not {"pathogenic", "likely_pathogenic",
"drug_response"}.isdisjoint(ANN["CLIN_SIG"])↪→

or

"pathogenic" in ANN["CLIN_SIG"] \ ⌋

or "likely_pathogenic" in ANN["CLIN_SIG"] \ ⌋

or "drug_response" in ANN["CLIN_SIG"]
↪→

↪→

https://docs.python.org/3/reference/expressions.html
https://docs.python.org/3/reference/expressions.html

6

expression interpretation

CHROM == "chr2" select variants on chromosome 2

QUAL >= 30 or ID in AUX["known_ids"]
require either quality at least 30 or ID con-
tained in auxiliary set

any(e in ANN["CLIN_SIG"]

for e in ("pathogenic", "drug_response"))

at least ”pathogenic” or ”drug_response” in
the list of clinical significances

re.search(r"(up|down)stream", ANN["Consequence"])
consequence should contain either ”upstream”
or ”downstream”

all(FORMAT["AF"][s] >= 0.5 for s in SAMPLES) allele frequency at least 0.5 for all samples

all(v >= 0.5 for v in FORMAT["AF"]) same as above

sum(without_na(FORMAT["DP"][s] for s in SAMPLES)) > 10
sum of read depth across samples with read
depth information at least 10

sum(without_na(FORMAT["DP"][s]

for s in SAMPLES if is_hom(s))) > 10

same as above but additionally restricts to
samples that report a homozygous genotype

Table S.2: Some example vem-
brane expressions with their
corresponding interpretations.

While these expressions are semantically equivalent, the python
interpreter will not always perform the same operations; this may re-
sult in differences in performance. We recommend using expressions
that are easy to understand by humans while still remaining concise.

Data availability statement

The URLs to the VCF files used for benchmarking are listed in
Table S.3.

Sample URL
HG001 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/HG001_GRCh38_GIAB_

highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz
HG002 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh38/

HG002_GRCh38_1_22_v4.1_draft_benchmark.vcf.gz
HG003 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/latest/

GRCh38/HG003_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_
highconf.vcf.gz

HG004 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/latest/
GRCh38/HG004_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_
highconf.vcf.gz

Table S.3: FTP URLs of VCF
files for GIAB samples HG001,
HG002, HG003 and HG004

The benchmark workflow is available at github.com/vembrane/
vembrane-benchmark (10.5281/zenodo.6979842).

References

Till Hartmann and David Lähnemann. vembrane/vembrane-
benchmark: v1.1.0, Jul 2022.

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/latest/GRCh38/HG001_GRCh38_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh38/HG002_GRCh38_1_22_v4.1_draft_benchmark.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh38/HG002_GRCh38_1_22_v4.1_draft_benchmark.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/latest/GRCh38/HG003_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/latest/GRCh38/HG003_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/latest/GRCh38/HG003_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/latest/GRCh38/HG004_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/latest/GRCh38/HG004_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_highconf.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/latest/GRCh38/HG004_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-10XsentieonHC_CHROM1-22_v.3.3.2_highconf.vcf.gz
https://github.com/vembrane/vembrane-benchmark/tree/v1.1.0
https://github.com/vembrane/vembrane-benchmark/tree/v1.1.0
https://doi.org/10.5281/zenodo.6979842

	Benchmark
	Pitfalls
	Multi-allelic records
	Multiple annotations for a single variant
	Conventions
	Portability

	Expressions
	Syntax
	Semantic equivalency

	Data availability statement

