Supplemental Material for "Group sequential methods for interim monitoring of randomized clinical trials with time-lagged outcome"

Anastasios A. Tsiatis | Marie Davidian*

¹Department of Statistics, North Carolina State University, North Carolina, USA

A | DEMONSTRATION OF INDEPENDENT INCREMENTS PROPERTY

For definiteness, we consider AIPWCC estimators $\hat{\beta}(t)$ with influence function (13) with $f^{opt}(X)$ and $h^{opt}\{u, X, A, \bar{L}(u)\}$ in (19) substituted for f(X) and $h\{u, X, A, \bar{L}(u)\}$, i.e., the efficient influence function; results for the IPWCC estimator follow from the argument.

We wish to describe the joint distribution of such estimators at interim analysis times $t_1 < \cdots < t_K$ (calendar time). It suffices to consider the bivariate distribution of $\{\hat{\beta}(s), \hat{\beta}(t)\}$, s < t. The large-sample properties of $\{\hat{\beta}(s), \hat{\beta}(t)\}$ are determined by the covariance matrix of the corresponding influence functions for $\hat{\beta}(s)$ and $\hat{\beta}(t)$.

Using

$$\frac{I(E \le t)}{\operatorname{pr}(E \le t)} \frac{\Delta(t)m(Y, A, X; \alpha_{0}, \beta_{0})}{\mathcal{K}_{t}\{U(t)\}} = \frac{I(E \le t)}{\operatorname{pr}(E \le t)} \left[m(Y, A, X; \alpha_{0}, \beta_{0}) - \int_{0}^{t} \frac{dM_{c}^{(t)}(u)}{\mathcal{K}_{t}(u)} \{m(Y, A, X; \alpha_{0}, \beta_{0}) - \mu(m, u; \alpha_{0}, \beta_{0})\} \right],$$

$$\mu(h^{opt}, u) = E\left[h^{opt}\{u, X, A, \bar{L}(u)\}|T \ge u\right] = \frac{E\left[E\{m(Y, A, X; \alpha_{0}, \beta_{0})|T \ge u, X, A, \bar{L}(u)\}|T \ge u\right]}{\mathcal{K}_{t}(u)} \\
= \frac{E\{m(Y, A, X; \alpha_{0}, \beta_{0})|T \ge u\}}{\mathcal{K}_{t}(u)} = \frac{\mu(m, u; \alpha_{0}, \beta_{0})}{\mathcal{K}_{t}(u)},$$

and denoting the available data at interim analysis times s and t by $\mathcal{O}^{(s)}$ and $\mathcal{O}^{(t)}$ as in (11), the efficient influence function for $\hat{\beta}(t)$ is given by

$$m_t(\mathcal{O}^{(t)}; \alpha_0, \beta_0) = \frac{I(E \le t)}{\operatorname{pr}(E \le t)} \left\{ m(Y, A, X; \alpha_0, \beta_0) - (A - \pi) f^{opt}(X) \right\}$$
(A2)

$$-\int_{0}^{t} \frac{dM_{c}^{(t)}(u)}{\mathcal{K}_{t}(u)} \Big[m(Y, A, X; \alpha_{0}, \beta_{0}) - E\{m(Y, A, X; \alpha_{0}, \beta_{0}) | T \ge u, X, A, \bar{L}(u)\} \Big] \Bigg).$$
(A3)

Similarly, denote the efficient influence function for $\hat{\beta}(s)$ as $m_s(\mathcal{O}^{(s)}; \alpha_0, \beta_0)$. For brevity, we suppress dependence of these influence functions on α_0, β_0 henceforth.

To demonstrate the independent increments property, it suffices to show that

$$E\{m_s(\mathcal{O}^{(s)})m_t(\mathcal{O}^{(t)})\} = \operatorname{var}\{m_t(\mathcal{O}^{(t)})\} = E\{m_t(\mathcal{O}^{(t)})^2\}.$$
(A4)

To this end, recalling that C(t) = t - E, it is convenient to define

$$\widehat{\mathcal{Y}}_{c}^{(t)}(u) = I\{C(t) \le u\} = I(E \ge t - u), \quad \widehat{\mathcal{Y}}^{(t)}(u) = I\{C(t) \ge u\} = I(E \le t - u),$$

and note that $\mathcal{K}_t(u) = \operatorname{pr}\{C(t) \ge u | E \le t\} = \operatorname{pr}(E \le t - u | E \le t)$. Denoting the distribution of *E* by $Q(u) = \operatorname{pr}(E \le u)$, with density q(u), and recalling that $\Lambda_c^{(t)}(u) = -\log\{\mathcal{K}_t(u)\}$, it follows that

$$\mathcal{K}_t(u) = Q(t-u)/Q(t), \quad d\Lambda_c^{(t)}(u) = \{q(t-u)/Q(t-u)\} du.$$

Thus, if we write

$$d\widetilde{M}(t-u) = d\widetilde{N}_{c}^{(t)}(u) - d\Lambda_{c}^{(t)}(u)\widetilde{\mathcal{Y}}^{(t)}(u) = -dI(E \ge t-u) - \frac{q(t-u)}{Q(t-u)}I(E \le t-u)\,du,\tag{A5}$$

then using $N_c^{(t)}(u) = I\{C(t) \le u, T \ge u\}$ and $\mathcal{Y}^{(t)}(u) = I\{C(t) \ge u, T \ge u\}$, the martingale integral (A3) can be written as

$$-\int_{0}^{t} \frac{d\widetilde{M}(t-u)I(T \ge u)}{Q(t-u)/Q(t)} \Big[m(Y, A, X) - E\{m(Y, A, X)|T \ge u, X, A, \bar{L}(u)\} \Big]$$

=
$$-\int_{0}^{t} \frac{d\widetilde{M}(x)I(T \ge t-x)}{Q(x)/Q(t)} \Big[m(Y, A, X) - E\{m(Y, A, X)|T \ge t-x, X, A, \bar{L}(t-x)\} \Big]$$
(A6)

with change of variable x = t - u. If we define the filtration $\mathcal{F}(x)$ to be the sigma algebra generated by $\{I(E \ge x), EI(E \ge x), Y, A, X, \overline{L}(T)\}$, then the integral (A6) is the realization of a $\mathcal{F}(x)$ -measurable martingale process. Note that the filtration $\mathcal{F}(x)$ defines information about *E* to the right (after) *x* rather than as for the usual filtration that defines information to the left (before) *x*. Thus, (A3) can be written as

$$-\frac{I(E \le t)}{Q(t)} \int_{0}^{t} \frac{d\widetilde{M}(x)I(T \ge t - x)}{Q(x)/Q(t)} \Big[m(Y, A, X) - E\{m(Y, A, X) | T \ge t - x, X, A, \bar{L}(t - x)\} \Big]$$

$$= -\int_{0}^{t} \frac{d\widetilde{M}(x)I(T \ge t - x)}{Q(x)} \Big[\{m(Y, A, X) - E\{m(Y, A, X) | T \ge t - x, X, A, \bar{L}(t - x)\} \Big],$$

and the variance of (A3) is

$$E\left(\int_{0}^{t} \frac{q(x) dx/Q(x)}{Q^{2}(x)} I(E \le x) I(T \ge t - x) \left[m(Y, A, X) - E\{m(Y, A, X) | T \ge t - x, X, A, \bar{L}(t - x)\}\right]^{2}\right)$$
$$= \int_{0}^{t} \frac{q(x) dx}{Q^{2}(x)} E\left(\left[m(Y, A, X) - E\{m(Y, A, X) | T \ge t - x, X, A, \bar{L}(t - x)\}\right]^{2} I(T \ge t - x)\right).$$

Consequently,

$$\operatorname{var}\{m_{t}(\mathcal{O}^{(t)})\} = \frac{\operatorname{var}\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}}{Q(t)} + \int_{0}^{t} \frac{q(x)\,dx}{Q^{2}(x)} E\left(\left[m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\right]^{2} I(T \ge t - x)\right),$$
(A7)

and similarly for var{ $m_s(\mathcal{O}^{(s)})$ }.

From (A4), we thus wish to show that $E\{m_s(\mathcal{O}^{(s)})m_t(\mathcal{O}^{(t)})\}$ is equal to $var\{m_t(\mathcal{O}^{(t)})\}$ in (A7). Using the preceding developments, we can write

$$m_{t}(\mathcal{O}^{(t)}) = \frac{I(E \le t)}{Q(t)} \{m(Y, A, X) - (A - \pi)f^{opt}(X)\}$$

$$- \int_{0}^{t} \frac{d\widetilde{M}(x)}{Q(x)} [\{m(Y, A, X) - E\{m(Y, A, X) | T \ge t - x, X, A, \bar{L}(t - x)\}] I(T \ge t - x)$$
(A9)

$$m_{s}(\mathcal{O}^{(s)}) = \frac{I(E \le s)}{Q(s)} \{ m(Y, A, X) - (A - \pi) f^{opt}(X) \}$$
(A10)

$$-\int_{0}^{\infty} \frac{d\widetilde{M}(x)}{Q(x)} \Big[\{m(Y, A, X) - E\{m(Y, A, X) | T \ge s - x, X, A, \bar{L}(s - x)\} \Big] I(T \ge s - x);$$
(A11)

accordingly,

$$E\{m_s(\mathcal{O}^{(s)})m_t(\mathcal{O}^{(t)})\} = (A8) \times (A10) + (A8) \times (A11) + (A9) \times (A10) + (A9) \times (A11).$$

We consider each of these terms in turn.

Using $s \le t$, it is straightforward that

$$E\{(A8) \times (A10)\} = E\left[\frac{I(E \le s)}{Q(s)Q(t)} \{m(Y, A, X) - (A - \pi)f^{opt}(X)\}^2\right]$$

= $\frac{\operatorname{var}\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}}{Q(t)}.$ (A12)

Similarly,

$$E\{(A8) \times (A11)\} = E\left(-\frac{I(E \le s)}{Q(t)}\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}\right)$$

$$\times \int_{0}^{s} \frac{d\widetilde{M}(x)}{Q(x)}[m(Y, A, X) - E\{m(Y, A, X)|T \ge s - x, X, A, \overline{L}(s - x)\}]I(T \ge s - x)\right)$$

$$= E\left(\frac{\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}}{Q(t)}\right)$$

$$\times \int_{0}^{s} \frac{d\widetilde{M}(x)}{Q(x)}[m(Y, A, X) - E\{m(Y, A, X)|T \ge s - x, X, A, \overline{L}(s - x)\}]I(T \ge s - x)\right)$$

$$= 0$$
(A13)

because $\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}$ is $\mathcal{F}(s)$ -predictable, so that the expectation is zero by the martingale property of stochastic integrals.

By the martingale property,

$$E\{(A9) \times (A11)\} = \int_{0}^{s} \frac{q(x)dx}{Q^{2}(x)} E\Big(\Big[m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\Big]$$

$$\times \Big[m(Y, A, X) - E\{m(Y, A, X)|T \ge s - x, X, A, \bar{L}(s - x)\}\Big]I(T \ge t - x)\Big).$$
(A14)

The expectation in the integral in (A14) can be written as

$$E\left(\left[m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\right]^2 I(T \ge t - x)\right) - E\left(\left[E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\} - E\{m(Y, A, X)|T \ge s - x, X, A, \bar{L}(s - x)\}\right] \times \left[m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\right] I(T \ge t - x)\right).$$
(A15)

The difference of conditional expectations in brackets in (A15) is some function $g\{X, A, \overline{L}(t-x)\}$, in which case the last two lines of (A15) can be written as

$$\begin{split} &E\Big(g\{X,A,\bar{L}(t-x)\}\Big[m(Y,A,X)-E\{m(Y,A,X)|T\geq t-x,X,A,\bar{L}(t-x)\}\Big]I(T\geq t-x)\Big)\\ &=E\left\{E\left(g\{X,A,\bar{L}(t-x)\}\Big[m(Y,A,X)-E\{m(Y,A,X)|T\geq t-x,X,A,\bar{L}(t-x)\}\Big]I(T\geq t-x)\right)\mid T\geq t-x,X,A,\bar{L}(t-x)\Big\}\\ &=E\left(g\{X,A,\bar{L}(t-x)\}\Big[E\{m(Y,A,X)|T\geq t-x,X,A,\bar{L}(t-x)\}-E\{m(Y,A,X)|T\geq t-x,X,A,\bar{L}(t-x)\}\Big]I(T\geq t-x)\Big)\\ &=0. \end{split}$$

3

It follows that

$$E\{(A9) \times (A11)\} = \int_{0}^{s} \frac{q(x)dx}{Q^{2}(x)} E\left(\left[m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\right]^{2} I(T \ge t - x)\right).$$
(A16)

Finally, consider

$$E\{(A9) \times (A10)\} = -E\left(\frac{I(E \le s)}{Q(s)}\{m(Y, A, X) - (A - \pi)f^{opt}(X)\} \times \int_{0}^{t} \frac{d\widetilde{M}(x)}{Q(x)} [\{m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}]I(T \ge t - x)\right).$$
(A17)

We can write (A17) as

$$-E\left(\frac{I(E \le s)}{Q(s)}\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}\right)$$

$$\times \int_{0}^{s} \frac{d\widetilde{M}(x)}{Q(x)} [\{m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}]I(T \ge t - x)\right)$$
(A18)
$$-E\left(\frac{I(E \le s)}{Q(s)}\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}\right)$$

$$\times \int_{s}^{t} \frac{d\widetilde{M}(x)}{Q(x)} [\{m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}]I(T \ge t - x)\right).$$
(A19)

Because $\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}$ is $\mathcal{F}(s)$ -predictable, (A18) is equal to zero. Thus, consider (A19). Recalling from (A5) that

$$d\widetilde{M}(x) = -dI(E \ge x) - \frac{q(x)}{Q(x)}I(E \le x)dx$$

and noting that for $x \ge s$

 $I(E \leq s)\{-dI(E \geq x)\} = 0, \quad I(E \leq s)I(E \leq x) = I(E \leq s),$

it follows that (A19) can be written as

$$E\left(\int_{s}^{t} \frac{\{m(Y,A,X) - (A-\pi)f^{opt}(X)\}}{Q(s)} \frac{q(x)dx}{Q^{2}(x)} I(E \le s) \left[\{m(Y,A,X) - E\{m(Y,A,X)|T \ge t-x,X,A,\bar{L}(t-x)\}\right] I(T \ge t-x)\right]$$

$$= \int_{s}^{t} \frac{q(x)dx}{Q^{2}(x)} E\left(\{m(Y,A,X) - (A-\pi)f^{opt}(X)\} \left[\{m(Y,A,X) - E\{m(Y,A,X)|T \ge t-x,X,A,\bar{L}(t-x)\}\right] I(T \ge t-x)\right).$$
(A20)

Write the expectation in the integrand of (A20) as

$$E\left(\left[\{m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\right]^{2} I(T \ge t - x)\right) + E\left(\left[E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\} - (A - \pi)f^{opt}(X)\right] \times \left[\{m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\right] I(T \ge t - x)\right).$$
(A21)

Because the term in brackets in (A21) is some function $g^{*}\{X, A, \overline{L}(t-x)\}$, say, it follows by an argument similar to that above that the last two lines are equal to zero, and thus (A17) is equal to

$$E\{(A9) \times (A10)\} = \int_{s}^{t} \frac{q(x)dx}{Q^{2}(x)} E\left(\left[\{m(Y, A, X) - E\{m(Y, A, X) | T \ge t - x, X, A, \bar{L}(t - x)\}\right]^{2} I(T \ge t - x)\right).$$
(A22)

Combining the results in (A12), (A13), (A16), and (A22) demonstrates the desired result that

$$E\{m_{s}(\mathcal{O}^{(s)})m_{t}(\mathcal{O}^{(t)})\} = \frac{\operatorname{var}\{m(Y, A, X) - (A - \pi)f^{opt}(X)\}}{Q(t)} + \int_{0}^{t} \frac{q(x)dx}{Q^{2}(x)} E\left(\left[m(Y, A, X) - E\{m(Y, A, X)|T \ge t - x, X, A, \bar{L}(t - x)\}\right]^{2} I(T \ge t - x)\right),$$

which is (A7).

Note that the influence function for the IPWCC estimator solving (15) is given by (13) with $f(X) = h\{u, X, A, \overline{L}(u)\} \equiv 0$. Using the equality (A1) and the definition of $\widetilde{M}(x)$, the influence function for the IPWCC estimator can be written as

$$m_t^{IPW}(\mathcal{O}^{(t)}) = \frac{I(E \le t)}{Q(t)} m(Y, A, X) - \int_0^t \frac{d\widetilde{M}(x)}{Q(x)} \left[m(Y, A, X) - E\{m(Y, A, X) | T \ge t - x\} \right] I(T \ge t - x).$$

That $E\{m_s^{IPW}(\mathcal{O}^{(s)})m_t^{IPW}(\mathcal{O}^{(s)})\} = \operatorname{var}\{m_t^{IPW}(\mathcal{O}^{(t)})\}$ follows by an argument analogous to that above, demonstrating that the IPWCC estimator also has the independent increments property.

In the practical implementation discussed in Section 4, the optimal choices $f^{opt}(X)$ and $h^{opt}\{u, X, A, \overline{L}(u)\}$ are approximated using linear combinations of basis functions. Accordingly, the resulting AIPWCC estimators obtained via the two-step algorithm may not be fully efficient and thus are not guaranteed to have the independent increments property. However, as demonstrated in our simulation studies, because the approximations to $f^{opt}(X)$ and $h^{opt}\{u, X, A, \overline{L}(u)\}$ are often quite good, the estimators themselves are good approximations to the efficient estimator and thus exhibit behavior very close to that of independent increments, so that the operating characteristics of the trial are preserved. 6

B | ADDITIONAL SIMULATION RESULTS

Simulation Scenario 1: Ordinal Categorical Outcome: Under the null hypothesis, based on 10000 Monte Carlo data sets, the Monte Carlo sample covariance matrices of $\{\hat{\beta}(t_1), \dots, \hat{\beta}(t_4), \hat{\beta}(t_{end})\}$, where $\hat{\beta}(t)$ is each of $\hat{\beta}_{\mathcal{T}_F}(t), \hat{\beta}_{IPW}(t), \hat{\beta}_{AIPW1}(t)$, and $\hat{\beta}_{AIPW2}(t)$, are given by

betahat_Tf

[,1] [,2] [,3] [,4] [,5] [1,] 0.086 0.049 0.034 0.026 0.021 [2,] 0.049 0.049 0.034 0.026 0.021 [3,] 0.034 0.034 0.034 0.026 0.021 [4,] 0.026 0.026 0.026 0.026 0.021 [5,] 0.021 0.021 0.021 0.021

betahat_IPW

[1,] 0.054 0.036 0.027 0.023 0.022 [2,] 0.036 0.036 0.027 0.023 0.022 [3,] 0.027 0.027 0.028 0.023 0.022 [4,] 0.023 0.023 0.023 0.023 0.022 [5,] 0.022 0.022 0.022 0.022 0.022

betahat_AIPW1

[,1] [,2] [,3] [,4] [,5] [1,] 0.049 0.031 0.023 0.019 0.018 [2,] 0.031 0.032 0.023 0.019 0.018 [3,] 0.023 0.023 0.024 0.020 0.019 [4,] 0.019 0.019 0.020 0.020 0.018 [5,] 0.018 0.018 0.019 0.018 0.018

betahat_AIPW2

[,1] [,2] [,3] [,4] [,5] [1,] 0.041 0.027 0.022 0.019 0.019 [2,] 0.027 0.028 0.021 0.019 0.018 [3,] 0.022 0.021 0.022 0.019 0.019 [4,] 0.019 0.019 0.019 0.019 0.018 [5,] 0.019 0.018 0.019 0.018 0.018

Under the alternative $\beta_A = \log(1.5)$, the analogous Monte Carlo sample covariance matrices are

betahat_Tf

[,1] [,2] [,3] [,4] [,5] [1,] 0.087 0.048 0.034 0.026 0.021 [2,] 0.048 0.049 0.034 0.026 0.021 [3,] 0.034 0.034 0.034 0.027 0.022 [4,] 0.026 0.026 0.027 0.027 0.022 [5,] 0.021 0.021 0.022 0.022 0.022

betahat_IPW

[,1] [,2] [,3] [,4] [,5] [1,] 0.055 0.036 0.028 0.023 0.022 [2,] 0.036 0.036 0.028 0.023 0.022 [3,] 0.028 0.028 0.028 0.024 0.022 [4,] 0.023 0.023 0.024 0.024 0.022 [5,] 0.022 0.022 0.022 0.022

betahat_AIPW1

[,1] [,2] [,3] [,4] [,5] [1,] 0.050 0.032 0.024 0.020 0.019 [2,] 0.032 0.032 0.024 0.020 0.019 [3,] 0.024 0.024 0.025 0.020 0.019 [4,] 0.020 0.020 0.020 0.020 0.019 [5,] 0.019 0.019 0.019 0.019

betahat_AIPW2

[1,] 0.042 0.027 0.022 0.019 0.019 [2,] 0.027 0.029 0.022 0.019 0.019 [3,] 0.022 0.022 0.022 0.019 0.019 [4,] 0.019 0.019 0.019 0.019 0.019 [5,] 0.019 0.019 0.019 0.019 0.019

These results clearly demonstrate that the independent increments property holds approximately for all estimators.

Simulation Scenario 2: Binary Outcome: Under the null hypothesis, based on 10000 Monte Carlo data sets, the Monte Carlo sample covariance matrices of $\{\hat{\beta}(t_1), \dots, \hat{\beta}(t_4), \hat{\beta}(t_{end})\}$, where $\hat{\beta}(t)$ is each of $\hat{\beta}_{\mathcal{T}_F}(t), \hat{\beta}_{IPW}(t), \hat{\beta}_{AIPW1}(t)$, and $\hat{\beta}_{AIPW2}(t)$, are given by

betahat_Tf

[,1] [,2] [,3] [,4] [,5] [1,] 0.039 0.022 0.015 0.012 0.009 [2,] 0.022 0.021 0.015 0.011 0.009 [3,] 0.015 0.015 0.015 0.011 0.009 [4,] 0.012 0.011 0.011 0.011 0.009 [5,] 0.009 0.009 0.009 0.009 0.009

betahat_IPW

[,1] [,2] [,3] [,4] [,5] [1,] 0.018 0.013 0.011 0.009 0.009 [2,] 0.013 0.013 0.010 0.009 0.009 [3,] 0.011 0.010 0.010 0.009 0.009 [4,] 0.009 0.009 0.009 0.009 0.009 [5,] 0.009 0.009 0.009 0.009 0.009

betahat_AIPW1

[,1] [,2] [,3] [,4] [,5] [1,] 0.017 0.012 0.009 0.008 0.008 [2,] 0.012 0.012 0.009 0.008 0.008 [3,] 0.009 0.009 0.009 0.008 0.008 [4,] 0.008 0.008 0.008 0.008 0.008 [5,] 0.008 0.008 0.008 0.008 0.008 7

8

betahat_AIPW2

```
[,1] [,2] [,3] [,4] [,5]
[1,] 0.017 0.012 0.009 0.008 0.008
[2,] 0.012 0.012 0.009 0.008 0.008
[3,] 0.009 0.009 0.009 0.008 0.008
[4,] 0.008 0.008 0.008 0.008 0.008
[5,] 0.008 0.008 0.008 0.008 0.008
```

Under the alternative $\beta_A = \log(0.247/0.33) = -0.290$, the analogous Monte Carlo sample covariance matrices are

betahat_Tf

[,1] [,2] [,3] [,4] [,5] [1,] 0.049 0.027 0.019 0.015 0.012 [2,] 0.027 0.027 0.019 0.014 0.012 [3,] 0.019 0.019 0.019 0.014 0.011 [4,] 0.015 0.014 0.014 0.014 0.011 [5,] 0.012 0.012 0.011 0.011 0.011

betahat_IPW

[,1] [,2] [,3] [,4] [,5] [1,] 0.023 0.017 0.013 0.012 0.012 [2,] 0.017 0.017 0.013 0.012 0.011 [3,] 0.013 0.013 0.013 0.011 0.011 [4,] 0.012 0.012 0.011 0.011 0.011 [5,] 0.012 0.011 0.011 0.011

betahat_AIPW1

[,1] [,2] [,3] [,4] [,5] [1,] 0.022 0.015 0.012 0.010 0.010 [2,] 0.015 0.015 0.012 0.010 0.010 [3,] 0.012 0.012 0.012 0.010 0.010 [4,] 0.010 0.010 0.010 0.010 0.010 [5,] 0.010 0.010 0.010 0.010 0.010

betahat_AIPW2

[,1] [,2] [,3] [,4] [,5] [1,] 0.022 0.015 0.012 0.010 0.010 [2,] 0.015 0.015 0.012 0.010 0.010 [3,] 0.012 0.012 0.012 0.010 0.010 [4,] 0.010 0.010 0.010 0.010 0.010 [5,] 0.010 0.010 0.010 0.010 0.010

These results clearly demonstrate that the independent increments property holds approximately for all estimators. Table B1 presents performance of the estimators under the null and alternative hypotheses.

TABLE B1 For Scenario 2 with binary outcome, performance of estimators for β under (a) the null hypothesis $\beta = 0$ and (b) the alternative $\beta = \log(0.247/0.33) = -0.290$ at each interim analysis time $(t_1, \dots, t_4) = (150, 195, 240, 285)$ days and at the final analysis at $t_{end} = 330$ days MC Mean is the mean of 10000 Monte Carlo estimates; MC SD is the Monte Carlo standard deviation, Ave MC SE is the mean of Monte Carlo standard errors, and MSE ratio is the ratio of Monte Carlo mean square error for $\hat{\beta}_{T_F}(t)$ divided by that for the indicated estimator.

	MC Mean	MC SD	Ave MC SE	MSE ratio	MC Mean	MC SD	Ave MC SE	MSE ratio		
			$\hat{\beta}$ (t)	(a) Null H	ypothesis	pothesis $\hat{\theta}$ (t)				
		$\mathcal{PT}_{F}(t)$				$p_{IPW}(t)$				
t_1	0.003	0.197	0.193	1.000	0.000	0.136	0.134	2.097		
t_2	0.000	0.146	0.145	1.000	0.000	0.115	0.114	1.600		
<i>t</i> ₃	0.000	0.122	0.121	1.000	-0.001	0.102	0.101	1.433		
t_4	0.000	0.106	0.106	1.000	0.000	0096	0.095	1.237		
t _{end}	0.000	0.096	0.095	1.000	0.000	0.096	0.095	1.000		
	$\hat{eta}_{AIPW1}(t)$					$\widehat{eta}_{AIPW2}(t)$				
t_1	0.000	0.130	0.128	2.302	0.001	0.130	0.128	2.300		
t_2	0.000	0.110	0.109	1.761	0.000	0.110	0.109	1.759		
t_3	-0.001	0.097	0.097	1.587	-0.001	0.097	0.096	1.591		
t_4	0.000	0.090	0.090	1.389	0.000	0.090	0.090	1.389		
t_{end}	0.000	0.090	0.090	1.123	0.000	0.090	0.090	1.123		
				(b) Alternativ	e Hypothesis					
	$\widehat{eta}_{\mathcal{T}_F}(t)$									
t_1	-0.291	0.220	0.216	1.000	-0.292	0.153	0.151	2.072		
<i>t</i> ₂	-0.291	0.164	0.162	1.000	-0.291	0.130	0.129	1.591		
<i>t</i> ₃	-0.292	0.136	0.135	1.000	-0.291	0.115	0.114	1.412		
t_4	-0.291	0.119	0.118	1.000	-0.290	0.107	0.107	1.242		
t _{end}	-0.290	0.107	0.107	1.000	-0.290	0.107	0.107	1.000		
	$\widehat{eta}_{AIPW1}(t)$				$\widehat{oldsymbol{eta}}_{AIPW2}(t)$					
t_1	-0.291	0.147	0.146	2.246	-0.291	0.147	0.145	2.249		
t_2	-0.291	0.124	0.123	1.734	-0.291	0.124	0.123	1.736		
<i>t</i> ₃	-0.291	0.110	0.109	1.545	-0.291	0.109	0.109	1.548		
t_4	-0.290	0.102	0.102	1.377	-0.290	0.102	0.101	1.373		
t _{end}	-0.290	0.101	0.101	1.109	-0.290	0.101	0.101	1.109		

Simulation Scenario 3: Continuous Outcome: Under the null hypothesis, based on 10000 Monte Carlo data sets, the Monte Carlo sample covariance matrices of $\{\hat{\beta}(t_1), \dots, \hat{\beta}(t_4), \hat{\beta}(t_{end})\}$, where $\hat{\beta}(t)$ is each of $\hat{\beta}_{\mathcal{T}_F}(t), \hat{\beta}_{IPW}(t), \hat{\beta}_{AIPW1}(t)$, and $\hat{\beta}_{AIPW2}(t)$, are given by

betahat_Tf [,1] [,2] [,3] [,4] [,5] [1,] 11.67 7.84 5.85 4.65 3.85 [2,] 7.84 7.89 5.87 4.69 3.90 [3,] 5.85 5.87 5.83 4.65 3.87 [4,] 4.65 4.69 4.65 4.63 3.86 [5,] 3.85 3.90 3.87 3.86 3.88 betahat_IPW [,1] [,2] [,3] [,4] [,5] [1,] 11.67 7.84 5.85 4.65 3.85 [2,] 7.84 7.89 5.87 4.69 3.90 [3,] 5.85 5.87 5.83 4.65 3.87 [4,] 4.65 4.69 4.65 4.63 3.86 [5,] 3.85 3.90 3.87 3.86 3.88 betahat_AIPW1 [,1] [,2] [,3] [,4] [,5] [1,] 10.65 6.81 4.82 3.82 3.14 [2,] 6.81 7.08 5.04 3.86 3.19 [3,] 4.82 5.04 5.13 3.96 3.16 [4,] 3.82 3.86 3.96 3.94 3.16 [5,] 3.14 3.19 3.16 3.16 3.17 betahat_AIPW2 [,1] [,2] [,3] [,4] [,5] [1,] 7.92 5.47 4.27 3.50 3.17 [2,] 5.47 5.44 4.17 3.49 3.16 [3,] 4.27 4.17 4.15 3.48 3.16 [4,] 3.50 3.49 3.48 3.46 3.16 [5,] 3.17 3.16 3.16 3.16 3.17 Under the alternative $\beta_A = 6.24$, the analogous Monte Carlo sample covariance matrices are

betahat_Tf

[,1] [,2] [,3] [,4] [,5] [1,] 11.71 7.87 5.88 4.67 3.86 [2,] 7.87 7.92 5.90 4.71 3.91 [3,] 5.88 5.90 5.85 4.67 3.89 [4,] 4.67 4.71 4.67 4.65 3.88 [5,] 3.86 3.91 3.89 3.88 3.89 betahat_IPW [,1] [,2] [,3] [,4] [,5] [1,] 11.71 7.87 5.88 4.67 3.86 [2,] 7.87 7.92 5.90 4.71 3.91 [3,] 5.88 5.90 5.85 4.67 3.89 [4,] 4.67 4.71 4.67 4.65 3.88 [5,] 3.86 3.91 3.89 3.88 3.89 betahat_AIPW1 [,1] [,2] [,3] [,4] [,5] [1,] 10.69 6.84 4.84 3.83 3.15 [2,] 6.84 7.10 5.06 3.87 3.20 [3,] 4.84 5.06 5.15 3.97 3.18 [4,] 3.83 3.87 3.97 3.95 3.17 [5,] 3.15 3.20 3.18 3.17 3.18 betahat_AIPW2

betahat_AIPW2

[,1] [,2] [,3] [,4] [,5] [1,] 7.94 5.49 4.29 3.52 3.18 [2,] 5.49 5.46 4.18 3.51 3.17 [3,] 4.29 4.18 4.16 3.49 3.18 [4,] 3.52 3.51 3.49 3.47 3.18 [5,] 3.18 3.17 3.18 3.18 3.18

Table B2 presents performance of the estimators under the null and alternative hypotheses.

TABLE B2 For Scenario 3 with continuous outcome, performance of estimators for β under (a) the null hypothesis $\beta = 0$ and (b) the alternative $\beta = 6.24$ at each interim analysis time $(t_1, \dots, t_4) = (104, 130, 156, 182)$ days and at the final analysis at $t_{end} = 208$ days MC Mean is the mean of 10000 Monte Carlo estimates; MC SD is the Monte Carlo standard deviation, Ave MC SE is the mean of Monte Carlo standard errors, and MSE ratio is the ratio of Monte Carlo mean square error for $\hat{\beta}_{\mathcal{T}_F}(t)$ divided by that for the indicated estimator.

	MC Mean	MC SD	Ave MC SE	MSE ratio	MC Mean	MC SD	Ave MC SE	MSE ratio		
				(a) Null H	ypothesis					
		$\widehat{eta}_{\mathcal{T}_F}(t)$				$\widehat{eta}_{IPW}(t)$				
<i>t</i> ₁	0.012	3.416	3.415	1.000	0.012	3.416	3.380	1.000		
<i>t</i> ₂	0.010	2.809	2.781	1.000	0.010	2.809	2.763	1.000		
<i>t</i> ₃	-0.001	2.414	2.407	1.000	-0.001	2.414	2.395	1.000		
<i>t</i> ₄	-0.005	2.152	2.151	1.000	-0.005	2.152	2.142	1.000		
t _{end}	0.005	1.969	1.962	1.000	0.005	1.969	1.956	1.000		
		\widehat{eta}_A	$_{IPW1}(t)$		$\widehat{oldsymbol{eta}}_{AIPW2}(t)$					
t_1	0.007	3.264	3.222	1.095	-0.009	2.813	2.721	1.474		
t_2	-0.006	2.660	2.609	1.115	-0.003	2.332	2.284	1.452		
t_3	0.002	2.265	2.247	1.136	0.001	2.037	2.014	1.405		
<i>t</i> ₄	-0.001	1.985	1.975	1.176	-0.001	1.859	1.839	1.340		
t _{end}	0.008	1.780	1.772	1.225	0.008	1.780	1.772	1.225		
				(b) Alternativ	e Hypothesis					
	$\widehat{eta}_{\mathcal{T}_F}(t)$			$\widehat{eta}_{IPW}(t)$						
t_1	6.230	3.422	3.421	1.000	6.230	3.422	3.386	1.000		
<i>t</i> ₂	6.208	2.815	2.786	1.000	6.208	2.815	2.768	1.000		
<i>t</i> ₃	6.216	2.419	2.411	1.000	6.216	2.419	2.399	1.000		
<i>t</i> ₄	6.213	2.157	2.154	1.000	6.213	2.157	2.146	1.000		
t _{end}	6.223	1.973	1.966	1.000	6.223	1.973	1.959	1.000		
	$\widehat{eta}_{AIPW1}(t)$					$\widehat{eta}_{AIPW2}(t)$				
t_1	6.225	3.269	3.227	1.096	6.210	2.818	2.726	1.474		
<i>t</i> ₂	6.212	2.665	2.613	1.115	6.216	2.336	2.288	1.452		
<i>t</i> ₃	6.220	2.269	2.250	1.137	6.219	2.041	2.017	1.405		
t_4	6.217	1.989	1.979	1.176	6.217	1.863	1.842	1.341		
t _{end}	6.226	1.783	1.775	1.225	6.226	1.783	1.775	1.225		

C | SIMULATION UNDER ENROLLMENT DEPENDING ON *X*

We consider Scenario 1, with ordinal categorical outcome. Instead of taking the enrollment process to be uniform on the calendar time interval $[0, E_{max}]$, we generated entry time *E* according to a proportional hazards model to induce an association between *E* and *X*. Specifically, with all other variables generated as in Section 5 of the main paper, we generated *E* as

$$E = (1 - W^{\exp(\zeta X)}) E_{max},$$

where $W \sim U(0, 1)$ and $\zeta = -0.5$. Here, the baseline survival distribution for *E* is uniform on $[0, E_{max}]$. Taking $\zeta = -0.5$ with *X* as generated in Section 5 results in the means of *X* at E = 0 and E = 240 spanning the interquartile range of *X*.

Under the null hypothesis, based on 10000 Monte Carlo data sets, the Monte Carlo sample covariance matrices of $\{\hat{\beta}(t_1), \dots, \hat{\beta}(t_4), \hat{\beta}(t_{end})\}$, where $\hat{\beta}(t)$ is each of $\hat{\beta}_{T_F}(t), \hat{\beta}_{IPW}(t), \hat{\beta}_{AIPW1}(t)$, and $\hat{\beta}_{AIPW2}(t)$, are given by

betahat_Tf

[,1] [,2] [,3] [,4] [,5] [1,] 0.082 0.048 0.035 0.027 0.021 [2,] 0.048 0.048 0.035 0.028 0.021 [3,] 0.035 0.035 0.035 0.028 0.021 [4,] 0.027 0.028 0.028 0.028 0.021 [5,] 0.021 0.021 0.021 0.021

betahat_IPW

[,1] [,2] [,3] [,4] [,5] [1,] 0.054 0.037 0.029 0.024 0.022 [2,] 0.037 0.036 0.028 0.024 0.022 [3,] 0.029 0.028 0.028 0.024 0.022 [4,] 0.024 0.024 0.024 0.022 [5,] 0.022 0.022 0.022 0.022

betahat_AIPW1

[,1] [,2] [,3] [,4] [,5] [1,] 0.049 0.032 0.025 0.021 0.019 [2,] 0.032 0.032 0.025 0.020 0.019 [3,] 0.025 0.025 0.025 0.021 0.019 [4,] 0.021 0.020 0.021 0.020 0.018 [5,] 0.019 0.019 0.019 0.018 0.018

betahat_AIPW2

[,1] [,2] [,3] [,4] [,5] [1,] 0.042 0.029 0.024 0.020 0.019 [2,] 0.029 0.030 0.023 0.020 0.019 [3,] 0.024 0.023 0.024 0.020 0.019 [4,] 0.020 0.020 0.020 0.019 0.018 [5,] 0.019 0.019 0.019 0.018 0.018

Under the alternative $\beta_A = 0.405$, the analogous Monte Carlo sample covariance matrices are

betahat_Tf

[,1] [,2] [,3] [,4] [,5] [1,] 0.081 0.048 0.035 0.028 0.021 [2,] 0.048 0.048 0.035 0.028 0.022 [3,] 0.035 0.035 0.035 0.028 0.022 [4,] 0.028 0.028 0.028 0.028 0.022 [5,] 0.021 0.022 0.022 0.022 0.022

betahat_IPW

[,1] [,2] [,3] [,4] [,5] [1,] 0.054 0.037 0.029 0.025 0.023 [2,] 0.037 0.037 0.029 0.024 0.022 [3,] 0.029 0.029 0.029 0.024 0.022 [4,] 0.025 0.024 0.024 0.022 [5,] 0.023 0.022 0.022 0.022 0.022

betahat_AIPW1

[,1] [,2] [,3] [,4] [,5] [1,] 0.050 0.033 0.025 0.021 0.019 [2,] 0.033 0.033 0.025 0.021 0.019 [3,] 0.025 0.025 0.026 0.021 0.019 [4,] 0.021 0.021 0.021 0.021 0.019 [5,] 0.019 0.019 0.019 0.019

betahat_AIPW2

[,1] [,2] [,3] [,4] [,5] [1,] 0.042 0.029 0.024 0.020 0.020 [2,] 0.029 0.030 0.023 0.020 0.019 [3,] 0.024 0.023 0.024 0.020 0.019 [4,] 0.020 0.020 0.020 0.020 0.019 [5,] 0.020 0.019 0.019 0.019

The foregoing results suggest that the independent increments property continues to hold approximately.

Table C1 presents the estimation results and shows the estimators exhibit little bias under both the null and alternative hypotheses and relative precision similar to that observed in the previous simulations in Section 5 of the main paper where E was taken independent of X.

Table C2 shows that the Type I error is slightly attenuated and the expected sample size and and stopping time under the null and alternative hypotheses are similar to those reported in Section 5 with E independent of X.

In summary, at least in this scenario, the methods appear to be robust to violation of the independence assumption.

TABLE C1 For Scenario 1 with ordered categorical outcome with entry time depending on X; performance of estimators for β under (a) the null hypothesis $\beta = 0$ and (b) the alternative $\beta = \log(1.5) = 0.405$ at each interim analysis time $(t_1, \dots, t_4) = (150, 195, 240, 285)$ days and at the final analysis at $t_{end} = 330$ days MC Mean is the mean of 10000 Monte Carlo estimates; MC SD is the Monte Carlo standard deviation, Ave MC SE is the mean of Monte Carlo standard errors, and MSE ratio is the ratio of Monte Carlo mean square error for $\hat{\beta}_{T_{e}}(t)$ divided by that for the indicated estimator.

	MC Mean	MC SD	Ave MC SE	MSE ratio	MC Mean	MC SD	Ave MC SE	MSE ratio		
				(a) Null H	ypothesis					
		$\widehat{oldsymbol{eta}}_{\mathcal{T}_F}(t)$				$\widehat{eta}_{IPW}(t)$				
t_1	-0.004	0.286	0.285	1.000	-0.021	0.232	0.229	1.511		
t_2	-0.002	0.220	0.219	1.000	-0.024	0.190	0.190	1.311		
<i>t</i> ₃	-0.002	0.187	0.186	1.000	-0.031	0.168	0.167	1.191		
t_4	-0.000	0.167	0.165	1.000	-0.005	0.153	0.153	1.179		
t _{end}	-0.000	0.146	0.146	1.000	-0.000	0.147	0.146	0.991		
	$\widehat{eta}_{AIPW1}(t)$					$\hat{eta}_{AIPW2}(t)$				
t_1	-0.020	0.222	0.218	1.650	-0.018	0.206	0.199	1.920		
t_2	-0.024	0.180	0.180	1.465	-0.018	0.172	0.170	1.615		
t_3	-0.031	0.160	0.159	1.316	-0.024	0.154	0.153	1.440		
t_4	-0.005	0.143	0.143	1.355	-0.003	0.139	0.139	1.433		
t _{end}	-0.000	0.135	0.135	1.169	-0.000	0.135	0.135	1.169		
				(b) Alternativ	e Hypothesis					
	$\widehat{oldsymbol{eta}}_{\mathcal{T}_F}(t)$									
t_1	0.411	0.284	0.284	1.000	0.391	0.233	0.230	1.491		
<i>t</i> ₂	0.410	0.219	0.218	1.000	0.386	0.192	0.191	1.293		
<i>t</i> ₃	0.409	0.187	0.186	1.000	0.377	0.169	0.168	1.191		
t_4	0.410	0.167	0.16	1.000	0.399	0.155	0.154	1.170		
t _{end}	0.406	0.147	0.146	1.000	0.406	0.148	0.147	0.985		
	$\widehat{eta}_{AIPW1}(t)$					$\widehat{oldsymbol{eta}}_{AIPW2}(t)$				
t_1	0.391	0.223	0.219	1.628	0.402	0.205	0.199	1.929		
<i>t</i> ₂	0.386	0.1821	0.180	1.446	0.399	0.172	0.170	1.625		
<i>t</i> ₃	0.377	0.161	0.160	1.315	0.392	0.155	0.153	1.460		
t_4	0.399	0.144	0.144	1.343	0.408	0.141	0.139	1.418		
t_{end}	0.406	0.137	0.136	1.159	0.406	0.137	0.136	1.159		

TABLE C2 For Scenario 1 with ordered categorical outcome with entry time depending on X; interim analysis performance using each estimator with O'Brien-Fleming and Pocock stopping boundaries under (a) the null hypothesis $\beta = 0$ and (b) the alternative $\beta = \log(1.5) = 0.405$, with maximum sample size $n_{max} = 602$ and $t_{end} = 330$ days. P(reject) is the proportion of Monte Carlo data sets for which the null hypothesis was rejected; MC E(SS) is the Monte Carlo average of number of subjects enrolled at the time the stopping boundary was crossed (standard deviation); and MC E(Stop) is the Monte Carlo average stopping time (days) (standard deviation). The standard error for entries for P(reject) in (a) is ≈ 0.0016 .

	P(reject)	MC E(SS)	MC E(Stop)	P(reject)	MC E(SS)	MC E(Stop)	
			(a) Null H	ypothesis			
		O'Brien-Flemin	ng	Pocock			
$\widehat{\beta}_{\mathcal{T}_{F}}(t)$	0.024	601.9 (4.5)	329.3 (7.6)	0.024	599.1 (24.4)	327.1 (21.0)	
$\hat{\beta}_{IPW}(t)$	0.022	601.7 (6.6)	328.9 (9.7)	0.021	599.1 (25.1)	327.3 (20.8)	
$\hat{\beta}_{AIPW1}(t)$	0.024	601.6 (7.8)	328.8 (10.3)	0.021	599.0 (25.5)	327.2 (21.1)	
$\hat{\beta}_{AIPW2}(t)$	0.022	601.3 (11.4)	328.3 (13.0)	0.022	598.4 (27.8)	326.8 (22.9)	
			(b) Alternativ	ve Hypothesis			
		O'Brien-Flemin	ng	Pocock			
$\widehat{\beta}_{\mathcal{T}_{E}}(t)$	0.786	588.5 (40.6)	284.5 (47.0)	0.711	541.7 (90.4)	259.6 (70.5)	
$\hat{\beta}_{IPW}(t)$	0.765	564.3 (67.6)	264.7 (56.9)	0.683	518.0 (102.4)	245.8 (76.7)	
$\hat{\beta}_{AIPW1}(t)$	0.829	558.5 (71.0)	257.0 (55.9)	0.755	509.4 (103.5)	237.0 (75.1)	
$\hat{\beta}_{AIPW2}(t)$	0.826	529.9 (87.4)	237.3 (60.6)	0.763	485.2 (106.3)	220.6 (75.0)	