Calculation of endemicity indices

To estimate endemicity at the ecoregion level, we calculated five endemicity indices (E_1 - E_5). Weighted endemicity indices were calculated based on these five indices using z-transformation of residuals in regression analyses against sequencing and sampling depth.

Five endemicity indices

- E₁ Number of endemic species
- E₂ Proportion of endemic species
- E₃ Mean maximum range of species (average weighted endemism; Crisp et al. 2001)
- E₄ Jaccard index of similarity (Jaccard 1912)
- E₅ β_{SIM} index of similarity (multiple-site Simpson-based community similarity index, Baselga et al. 2010)

$$\mathsf{E}_{5} = \frac{\sum_{i < j} \min(\mathsf{b}_{ij}, \mathsf{b}_{ji})}{\sum_{i} (\mathsf{S}_{i} - \mathsf{S}_{T}) + \sum_{i < j} \min(\mathsf{b}_{ij}, \mathsf{b}_{ji})}$$

 $E_{3} = -\frac{\sum_{i}^{n} d_{i}}{S}$ $E_{4}(C_{1}, C_{2}) = \frac{C_{1} \cap C_{2}}{C_{1} \cup C_{2}}$

S, total species richness in ecoregion

 d_{ii} , range of species i

C, ecoregion communities

S, number of species in site i

 S_{τ} , total number of species

bij and *bji*, number of species exclusive to sites i and j, respectively

Accounting for sampling and sequencing depth for endemicity indices

E₁

 $E_2 = \frac{E_1}{S}$

	$E_{nR} = E_n - E_n;$
E _{nR} residuals of n	$\ddot{E}_{n} = \beta_{1} \operatorname{Log}(L_{1} + L_{2}) + \beta_{2} \operatorname{Log}(R_{1} + R_{2}) +$
endemicity index	$+\beta_3Log(L_1)+\beta_4Log(L_2)+\beta_5Log(R_1)+$
	$+\beta_6 Log(R_2) + \beta_7 (L_1 + L_2) + \beta_8 (R_1 + R_2) +$
	$+\beta_9L_1+\beta_{10}L_2+\beta_{11}R_1+\beta_{12}R_2+\epsilon$

 L_1 , number of soil sampling localities L_2 , number of UNITE localities R_1 , number of reads of soil samples R_2 , number of UNITE Sanger reads

Residuals are calculated based on the best-fitting model.

Standardizing residuals of endemicity indices

E_{nRz} Z-transformed E_{nR}

 $E_{nR_7} = \frac{E_{nR} - \mu}{\sigma}$

 μ , mean E_{nR} σ , standard deviation of E_{nR} .

Weighting standarded endemicity indices

E_{ave} weighted E_{nRz}

$$\mathsf{E}_{ave} = \frac{\mathsf{E}_{1Rz} + \mathsf{E}_{2Rz} + 2\mathsf{E}_{3Rz} + \mathsf{E}_{4Rz} + \mathsf{E}_{5Rz}}{6}$$

 $\rm E_{_3}$ receives double weight, because $\rm E_{_1}$ and $\rm E_{_2}$ as well as $\rm E_{_3}$ and $\rm E_{_4}$ are calculated on a similar basis.

Correlation matrix of endemicity indices

	Eave	E _{1Rz}	E_{2Rz}	E_{3Rz}	E_{4Rz}	E _{5Rz}
Eave	1.000	0.767	0.805	0.554	0.754	0.816
E_{1Rz}	0.767	1.000	0.806	0.188	0.452	0.540
E_{2Rz}	0.805	0.806	1.000	0.072	0.788	0.745
E_{3Rz}	0.554	0.188	0.072	1.000	0.169	0.270
E_{4Rz}	0.754	0.452	0.788	0.169	1.000	0.782
E_{5Rz}	0.816	0.540	0.745	0.270	0.782	1.000

	1	2	3	4	5	6	7	8	9
all fungi (1)	1.000	0.797	0.591	0.517	0.568	0.628	0.675	0.619	0.523
non-EcM Agaricomycetes (2)	0.797	1.000	0.790	0.398	0.461	0.470	0.460	0.595	0.532
AM fungi (3)	0.591	0.790	1.000	0.280	0.375	0.232	0.233	0.578	0.461
EcM fungi (4)	0.517	0.398	0.280	1.000	0.234	0.268	0.250	0.270	0.176
molds (5)	0.568	0.461	0.375	0.234	1.000	0.600	0.413	0.364	0.513
OHP (6)	0.628	0.470	0.232	0.268	0.600	1.000	0.809	0.159	0.354
pathogens (7)	0.675	0.460	0.233	0.250	0.413	0.809	1.000	0.264	0.331
unicellular fungi (8)	0.619	0 595	0.578	0 270	0.364	0 159	0 264	1 000	0 463

0.523 0.532 0.461 0.176 0.513 0.354 0.331 0.463 1.000

Correlation matrix of average endemicity of fungal groups

References

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. *Global Ecology and Biogeography, 19*, 134-143.

yeasts (9)

Jaccard, P. (1912). The distribution of the flora in the alpine zone. *New Phytologist, 11*, 37–50.

BOX S1. Calculation of endemicity indices and correlation among standardised indices for all fungi and among functional groups.