Rassf7a promotes spinal cord regeneration and controls spindle

orientation in neural progenitor cells

Panpan Zhu^{1,2,3#}, Pengfei Zheng^{1#}, Xinlong Kong⁴, Shuo Wang¹, Muqing Cao^{4 *} and Chengtian Zhao^{1,2,3 *}

¹Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China

²Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China

³Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China

⁴Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

These authors contributed equally.

* Corresponding author

Supplementary Materials

Table of Contents

Appendix Figure S1. Expression pattern of <i>rassf7a</i> and <i>rassf7b</i> 2
Appendix Figure S2. Generation of <i>rassf7a</i> and <i>rassf7b</i> mutants3
Appendix Figure S3. Spinal cords developed normally in <i>rassf7a</i> mutants5
Appendix Figure S4. Recovery defects of neural cells in <i>rassf7a</i> morphants after injury
Appendix Figure S5. Expression of <i>rassf7a</i> in the spinal cord at 24 hpf8
Appendix Figure S6. Rassf7a localizes to the centrosomes in zebrafish9
Appendix Figure S7. Transcriptome analysis of differentially expressed genes during spinal cord regeneration10
Appendix Table S111
Appendix Table S212

Appendix Figures

Appendix Figure S1. Expression pattern of *rassf7a* and *rassf7b*

(A-C) Whole mount *in situ* hybridization results showing expression of *rassf7a* at different stages as indicated. (B) Double staining results showing the colocalization of *rassf7a* (purple) and *krox20* (red) in rhombomeres 3 and 5 at a 14-somite stage (14 s) embryo. (D-F) Whole mount *in situ* hybridization results showing expression of *rassf7b* at different stages as indicated. Arrowheads in (B, C) represent rhombomeres 3 and 5. DFC, dorsal forerunner cells; KV, kupffer's vesicle; NC, notochord; OP, olfactory pit; OV, otic vesicle; PD, pronephric duct. Scale bars: 100 µm.

Appendix Figure S2. Generation of rassf7a and rassf7b mutants

(A) Diagram showing the protein domains, genomic structures and sequences of wildtype and corresponding rassf7b (top) and rassf7a (bottom) mutants. Red arrows indicate mutation sites. Dark boxes indicate open reading frames. Underlined sequences indicate TALEN binding sites (top, *rassf7b*) or Cas9 binding sites (bottom, *rassf7a*). RA, Ras association domain; CC, coiled-coil domain. (B) Sanger sequencing results confirming the deletion of target region in *rassf7a* and *rassf7b* mutant transcripts. (C) PCR analysis showing the amplification of mutant transcripts from 24 hpf wild-type and mutant larvae as indicated. (D) Whole mount in situ hybridization results showing the expression of *rassf7a* and *rassf7b* in wild-type and mutant larvae as indicated. (E) Confocal images showing cilia in different tissues of wild-type and mutant larvae as indicated. Cilia were visualized with anti-acetylated tubulin antibody. (F) Dot plots showing the number of cilia in Kupffer's vesicle in wild-type and mutant embryos as indicated. (G-I) Dot plots showing length of cilia in different tissues as indicated. (J) Bar graph showing the percentages of embryos with laterality defects characterized by abnormal lefty-2 expression in wild-type or rassf7a;rassf7b double mutants. P values for One-way ANOVA with Dunnett's test or Dunnett's T3 test (F-I) and Fisher's Exact test (J) are indicated. Data are shown as mean \pm S.E.M. For detailed statistics, see Supplementary Table 2 (Table S2). Each experiment was performed independently 4 times. Each data point represents an individual fish. Scale bars: 500 µm in (D),10 µm in (E).

Appendix Figure S3. Spinal cords developed normally in rassf7a mutants

(A) Representative images showing bright field and fluorescence signals of *rassf7a* mutants or siblings carrying Tg(*huc:GFP*) and Tg(*foxj1a:HA-tdTomato*) at 3 dpf. White brackets in fluorescence and bright field images indicate measurement regions of spinal cord and dorsal thickness respectively. (B, D) Dot plots showing the thickness of fluorescent regions as indicated in (A). (C, E) Dot graphs showing percentages of fluorescence thickness in *rassf7a* mutants or siblings as indicated. *P* values for unpaired Mann-Whitney test (B, D) and unpaired Student's t-test (C-E) are indicated. Data are shown as mean \pm S.E.M. Each data point represents an individual fish. Scale bars: 50 µm in (A).

Appendix Figure S4. Recovery defects of neural cells in *rassf7a* morphants after injury

(A) Diagram showing the construct used for detecting the efficiency of *rassf7a* morpholino, which binds to the same exon containing translational start site. (B) Images of 2-somite stage embryos injected with GFP reporter construct and control (cMO) or

rassf7a morpholino (7*a* MO) as indicated. (C) Bar graph showing the percentages of embryos with GFP fluorescent signals in different groups as indicated. (D) Representative images showing bright field and fluorescence images of control or *rassf7a* MO injected Tg(*huc:GFP*) transgenic larvae at different time points after SCI. The magnified views of the lesion sites were shown at the bottom. (E) Relative GFP expression level at the lesion sites in control or *rassf7a* morphants at different time points after injury. (F-G) Relative GFP expression level of the Tg(*huc:GFP*) transgene at the lesion sites of mutant (F) or wild-type larvae (G) overexpressed with *rassf7a* or *tdTomato* genes under heat shock promoters. *P* values for Two-way ANOVA with Bonferroni's multiple comparisons test (E-G) are indicated. Data are shown as mean \pm S.E.M. Each experiment was performed independently 3 times. Each data point represents an average of each group as indicated. Scale bars: 200 µm in (B), 500 µm in (D).

Appendix Figure S5. Expression of *rassf7a* in the spinal cord at 24 hpf (A-I') Double fluorescent *in situ* hybridization results showing the expression of *rassf7a* (red) and different neural markers (green) on the cross sections through the

spinal cord of 24 hpf wild-type (A-I) and mutant (A'-I') zebrafish larvae. Scale bars: 10 μm.

Appendix Figure S6. Rassf7a localizes to the centrosomes in zebrafish

Confocal images showing the colocalization analysis between Rassf7a and centrosomal markers. Zebrafish embryos were injected with either Centrin-GFP or GFP-Rassf7a constructs and stained with anti- γ -tubulin antibodies (red) to label the centrosomes at 24 hpf. Scale bar: 10 μ m.

Appendix Figure S7. Transcriptome analysis of differentially expressed genes during spinal cord regeneration

(A) Strategy used for total RNA isolation and transcriptome analysis. (B) Venn diagrams showing the number of DEGs in control and injured groups as indicated. (C) Heat map analysis of transcriptomic data from wild-type and *rassf7a* mutant embryos at 3 days after spina cord injury. (D) Expression heat map of genes involved in mitotic process in wild-type and *rassf7a* mutant embryos. (E) Expression heat map of genes involved in axon elongation in wild-type and *rassf7a* mutant embryos. (F) Expression heat map of genes involved in cell polarity in wild-type and *rassf7a* mutants.

Appendix Tables

Appendix Table S1

Primer sequences used for mutant detection					
Name	Forward sequence	Reverse sequence			
rassf7a	5'-CTGGTCGTTATGTTCTCATTC-3'	5'-GACTGTACACCTCCTCTTTAG- 3'			
rassf7b	5'-TCATGTAGAGAGACCCCTTACTG- 3'	5'-TGCCCTTGTTGTCGAAGAATC-3'			
Primers for <i>rassf7a</i> BP reaction					
Forward: GGGGACAAGTTTGTACAAAAAAGCAGGCTccaccATGAGAATCCAGACTTTATTA					
Reverse: GGGGACCACTTTGTACAAGAAAGCTGGGTaCCGCCAAGACGTTTCCCTGGA					
Primers for <i>rassf7a</i> MO efficacy verification					
rassf7a Exon 2:					
Forward: 5'-ATCGATTCGAATTCGCCACGAATCCAGACTTTATTATGTATTTCTGATCTG-3'					
Reverse	Reverse: 5'- GCCCTTGCTCACCATAATGGCTTGGGCAAGTGCAATGACA-3'				

pCS2:

Forward: 5'-CCATTATGGTGAGCAAGGGC-3'

Reverse: 5'-CGTGGCGAATTCGAATCG-3'

Primers for probe synthesis

Name	Forward sequence	Reverse sequence		
rassf7a	5'-GTAGTAGGCAAAACAAGAAG-3'	5'-TCAGATTCATTACCGCCAAG-3'		
rassf7b	5'-TCATGTAGAGAGACCCCTTACTG-3'	5'-GCTAATGAAATATATACGCAGG-3'		
huc	5'-GAAGACCTGCAAATCGAAGGAC-3'	5'-GAATGTACAGGGAGCTCAGTAG-3'		
sox2	5'-GGTGGGGTAGACTTTCAAGAA-3'	5'-CCAGCAGTGTAGTAAAAAGAG-3'		
msil	5'-CAAATGGAATCGGAAGGCAG-3'	5'-CTGTACCTGTCACTTGTTTC-3'		
Primers for RT-PCR and qRT-PCR				

Name	Forward sequence	Reverse sequence
rassf7a	5'- GAGAAGACTTTGGGGAGGGCTG- 3'	5'- GGAATTGTTTGGCAGTGGGACG-3'
rassf7b	5'- CGTTTGAAGAGGTGGATAAGGC-3'	5'- GACCTCTGGATGAAGACTGGAC-3'

Appendix Table S2

Detailed statistics

Figure	Sample size	Statistical test	Post-hoc Test	Comparison	P value
Fig 1I	wt: n=48, 7 <i>a</i> -/-: n=47	two-tailed unpaired Mann-Whitney test			P < 0.0001
Fig 1J	wt: n=48, 7 <i>a</i> -/-: n=47	two-tailed unpaired Mann-	Whitney test		<i>P</i> < 0.0001
Fig 1K	wt: n=48, 7 <i>a</i> -/-: n=47	Two-way ANVOA	Bonferroni's multiple	active: wt vs $7a^{-/-}$	<i>P</i> < 0.0001
			comparisons test	static: wt vs 7a [/]	<i>P</i> < 0.0001
Fig 2B	wt: n=32, 7 <i>a</i> -/-: n=38	Two-way ANOVA	Bonferroni's multiple	0 dpi wt vs $7a^{}$	<i>P</i> >0.9999
			comparisons test	1 dpi: wt vs 7 <i>a</i> -/-	<i>P</i> >0.9999
				3 dpi: wt vs 7 <i>a</i> -/-	<i>P</i> =0.1675
				5 dpi: wt vs 7 <i>a</i> -/-	<i>P</i> =0.0766
				7 dpi: wt vs 7 <i>a</i> -/-	<i>P</i> >0.9999
Fig 2C	wt: n=26, 7 <i>a</i> ^{-/-} : n=24	Two-way ANOVA	Bonferroni's multiple	0 dpi: wt vs $7a^{-/-}$	<i>P</i> =0.8965
			comparisons test	1 dpi: wt vs 7 <i>a</i> -/-	<i>P</i> =0.0115
				3 dpi: wt vs $7a^{-/-}$	<i>P</i> <0.0001
				5 dpi: wt vs 7 <i>a</i> -/-	<i>P</i> <0.0001
				7 dpi: wt vs $7a^{-/-}$	<i>P</i> <0.0001
Fig 3B	<i>huc</i> :GFP: wt: n=31, 7 <i>a</i> ^{-/-} : n=25	two-tailed unpaired Studen	two-tailed unpaired Student's t-test <i>huc</i> :GFP/wt vs <i>huc</i> :GFP/7a		<i>P</i> <0.0001
	<i>gfap</i> :GFP: wt: n=49, 7 <i>a</i> -/-: n=37	two-tailed unpaired Mann-	two-tailed unpaired Mann-Whitney test gfap:GFP/wt vs gfap:C		<i>P</i> =0.9326
Fig 3C	<i>huc</i> :GFP: wt: n=15, 7 <i>a</i> ^{-/-} : n=16	two-tailed unpaired Student's t-test <i>huc</i> :GFP/wt vs <i>huc</i> :GFP/		<i>huc</i> :GFP/wt vs <i>huc</i> :GFP/7 <i>a</i> ^{-/-}	<i>P</i> =0.0015
	<i>gfap</i> :GFP: wt: n=24, 7 <i>a</i> ^{-/-} : n=21	two-tailed unpaired Student's t-test gfap:		gfap:GFP/wt vs gfap:GFP/7a ^{-/-}	<i>P</i> =0.8505
Fig 3D	<i>huc</i> :GFP: wt: n=13, 7 <i>a</i> ^{-/-} : n=9	two-tailed unpaired Studen	t's t-test	<i>huc</i> :GFP/wt vs <i>huc</i> :GFP/7 <i>a</i> ^{-/-}	<i>P</i> =0.9993
	<i>gfap</i> :GFP: wt: n=32, 7 <i>a</i> ^{-/-} : n=36	two-tailed unpaired Mann-Whitney test gfap:GFP/wt vs gfap:GFP/7a ^{-/}		gfap:GFP/wt vs gfap:GFP/7a-/-	<i>P</i> =0.4144
Fig 3E	wt: n=13; 7 <i>a</i> ^{-/-} : n=9	Two-way ANOVA	Bonferroni's multiple	1dpi: wt vs 7 <i>a</i> -/-	P < 0.0001

			comparisons test	3dpi: wt vs 7 <i>a</i> -/-	P=0.0048
				5dpi: wt vs 7 <i>a</i> -/-	<i>P</i> >0.9999
Fig 3F	wt: n=24; 7 <i>a</i> -/-: n=21	Two-way ANOVA	Bonferroni's multiple	1dpi: wt vs 7 <i>a</i> -/-	<i>P</i> >0.9999
			comparisons test	3dpi: wt vs 7 <i>a</i> -/-	<i>P</i> >0.9999
				5dpi: wt vs 7 <i>a</i> -/-	<i>P</i> >0.9999
Fig 3H	wt: n=26; 7 <i>a</i> -/-: n=16	two-tailed unpaired Studer	nt's t-test		<i>P</i> =0.0005
Fig 3I	wt: n=27; 7 <i>a</i> -/-: n=13	two-tailed unpaired Studer	nt's t-test		P<0.0001
Fig 4P	Sox2 ⁺ : n=3 experiments	two-tailed unpaired Studer	nt's t-test with Welch's correct	on	P<0.0001
	Huc ⁺ : n=3 experiments				
Fig 4Q	ctr: n=3 experiments	two-tailed unpaired Studen	nt's t-test with Welch's correct	ion	<i>P</i> =0.8590
	injured: n=3 experiments				
Fig 4R	ctr: n=3 experiments	two-tailed unpaired Studer	nt's t-test with Welch's correct	ion	<i>P</i> =0.0028
	injured: n=3 experiments				
Fig 5C	wt: n=18 cells; $7a^{-/-}$: n=17 cells	two-tailed unpaired Studer	wo-tailed unpaired Student's t-test		
Fig 5F	wt: n=21 cells, N=14 fish	two-tailed unpaired Mann-Whitney test			<i>P</i> =0.0002
	$7a^{-/-}$: n=21 cells, N=23 fish				
Fig 6C	wt: n=38 cells, N=14 fish	two-sided Fisher's Exact to	est		<i>P</i> =0.0021
	$7a^{-/-}$: n=49 cells, N=23 fish				
Fig 6D	ctr MO: n=18 cells	two-sided Fisher's Exact to	est		<i>P</i> =0.006
	7a MO: n=30 cells				
Fig 7D	siControl: n=3 experiments	two-tailed unpaired Studen	nt's t-test		<i>P</i> =0.0034
	siRASSF7: n=3 experiments				
Fig 7G	siControl: n=4 experiments	two-tailed unpaired Studer	nt's t-test		<i>P</i> =0.0013
	siRASSF7: n=4 experiments				
Fig 7H	siControl: n=4 experiments,	two-tailed unpaired Studer	nt's t-test		<i>P</i> =0.0006
	siRASSF7: n=4 experiments				

Fig 7J	siControl: n=1737	two-tailed unpaired Mann-Whitney test			P < 0.0001
	siRASSF7: n=988				
Fig 7K	siControl: n=6 experiments	two-sided Fisher's Exac	t test		P < 0.0001
	siRASSF7: n=6 experiments				
Fig S2F	wt: n=13; 7b ^{-/-} : n=12 7a ^{-/-} ;7b ^{-/-} : n=10	One-way ANOVA	Dunnett's test	wt vs 7 <i>b</i> -/-	<i>P</i> =0.123
			Dunnett's test	wt vs 7 <i>a</i> -/-;7 <i>b</i> -/-	<i>P</i> =0.6184
Fig S2G	wt: n=13; $7b^{-/-}$: n=11; $7a^{-/-}$; $7b^{-/-}$: n=12	One-way ANOVA	Dunnett's test	wt vs 7 <i>b</i> -/-	<i>P</i> =0.9993
			Dunnett's test	wt vs $7a^{-/-}; 7b^{-/-}$	<i>P</i> =0.9061
Fig S2H	wt: n=41; 7b ^{-/-} : n=15; 7a ^{-/-} ;7b ^{-/-} : n=12	One-way ANOVA	Dunnett's test	wt vs 7 <i>b</i> -/-	<i>P</i> =0.6302
			Dunnett's test	wt vs $7a^{-/-};7b^{-/-}$	<i>P</i> =0.9976
Fig S2I	wt: n=20; 7b ^{-/-} : n=17; 7a ^{-/-} ;7b ^{-/-} : n=18	One-way ANOVA	Dunnett's T3 test	wt vs 7 <i>b</i> -/-	<i>P</i> =0.3174
			Dunnett's T3 test	wt vs 7 <i>a</i> -/-;7 <i>b</i> -/-	<i>P</i> =0.788
Fig S2J	wt: n=80; 7 <i>a</i> -/-;7 <i>b</i> -/-: n=75	two-sided Fisher's Exact test			<i>P</i> =0.1179
Fig S3B	sibling: n=28; 7 <i>a</i> -/-: n=26	two-tailed unpaired Mann-Whitney test			<i>P</i> =0.229
Fig S3C	sibling: n=28; 7 <i>a</i> -/-: n=26	two-tailed unpaired Student's t-test			<i>P</i> =0.7463
Fig S3D	sibling: n=33; 7 <i>a</i> -/-: n=27	two-tailed unpaired Mann-Whitney test			<i>P</i> =0.4228
Fig S3E	sibling: n=33; 7 <i>a</i> -/-: n=27	two-tailed unpaired Stud	two-tailed unpaired Student's t-test		
Fig S4E	ctr MO: n=52	Two-way ANOVA	Bonferroni's multiple	1 dpi: cMO vs 7 <i>a</i> MO	<i>P</i> =0.9585
	7 <i>a</i> MO: n=50		comparisons test	3 dpi: cMO vs 7 <i>a</i> MO	<i>P</i> =0.0037
				5 dpi: cMO vs 7 <i>a</i> MO	<i>P</i> =0.0012
				7 dpi: cMO vs 7a MO	<i>P</i> =0.0003
Fig S4F	<i>hsp-7a</i> : n=45	Two-way ANOVA	Bonferroni's multiple	1 dpi: hsp-7a vs hsp-tdTomato	<i>P</i> >0.9999
	<i>hsp-tdTomato</i> : n=25		comparisons test	3 dpi: hsp-7a vs hsp-tdTomato	<i>P</i> =0.0323
				5 dpi: hsp-7a vs hsp-tdTomato	P=0.0021
Fig S4G	<i>hsp-7a</i> : n=35	Two-way ANOVA	Bonferroni's multiple	0 dpi: hsp-7a vs hsp-tdTomato	P>0.9999

	<i>hsp-tdTomato</i> : n=35		comparisons test	1 dpi: hsp-7a vs hsp-tdTomato	<i>P</i> =0.0031
				3 dpi: hsp-7a vs hsp-tdTomato	<i>P</i> =0.0062
				5 dpi: hsp-7a vs hsp-tdTomato	<i>P</i> =0.0029
				7 dpi: hsp-7a vs hsp-tdTomato	<i>P</i> =0.2866
Fig EV1E	straight: wt: n=23, 7 <i>a</i> -/-: n=21	two-tailed unpaired Studen	it's t-test	straight: wt vs $7a^{-/-}$	<i>P</i> =0.0006
	curved: wt: n=23, 7 <i>a</i> -/-: n=23	two-tailed unpaired Studen	it's t-test	curved: wt vs $7a^{-/-}$	<i>P</i> =0.0487
Fig EV1F	straight: wt: n=23, 7 <i>a</i> -/-: n=21	two-tailed unpaired Studen	it's t-test	straight: wt vs $7a^{-/-}$	<i>P</i> =0.0005
	curved: wt: n=23, 7 <i>a</i> ^{-/-} : n=23	two-tailed unpaired Studen	it's t-test	curved: wt vs $7a^{-/-}$	<i>P</i> =0.0487
Fig EV1G	straight	Two-way ANVOA	Bonferroni's multiple	active:	<i>P</i> =0.0029
	wt: n=23, 7 <i>a</i> -/-: n=21		comparisons test	wt vs 7 <i>a</i> -/-	
			Bonferroni's multiple	static	<i>P</i> =0.0029
			comparisons test	wt vs 7 <i>a</i> -/-	
	curved	Two-way ANVOA	Bonferroni's multiple	active	<i>P</i> =0.0222
	wt: n=23, 7 <i>a</i> -/-: n=23		comparisons test	wt vs 7 <i>a</i> ^{-/-}	
			Bonferroni's multiple	static	<i>P</i> =0.0224
			comparisons test	wt vs 7 <i>a</i> -/-	
Fig EV1I	straight	two-tailed unpaired Mann-Whitney test		wt straight vs wt curved	<i>P</i> =0.0773
	wt: n=58, 7 <i>a</i> -/-: n=38	two-tailed unpaired Mann-	Whitney test	$7a^{-/-}$ straight vs $7a^{-/-}$ curved	<i>P</i> =0.0022
	curved	two-tailed unpaired Mann-	Whitney test	wt straight vs $7a^{-/-}$ straight	<i>P</i> < 0.0001
	wt: n=32, 7 <i>a</i> : n=61	two-tailed unpaired Studen	ıt's t-test	wt curved vs $7a^{-/-}$ curved	<i>P</i> < 0.0001
Fig EV1J	straight	two-tailed unpaired Studen	it's t-test	wt straight vs wt curved	<i>P</i> =0.1086
	wt: n=49, 7 <i>a</i> -/-: n=31	two-tailed unpaired Student's t-test		$7a^{-/-}$ straight vs $7a^{-/-}$ curved	<i>P</i> =0.1459
	curved	two-tailed unpaired Student's t-test		wt straight vs 7a ^{-/-} straight	P < 0.0001
	wt: $n=31, 7a^{-/-}$: $n=41$	two-tailed unpaired Student's t-test		wt curved vs $7a^{-/-}$ curved	P < 0.0001
Fig EV2C	axons: wt: n=48,7 <i>a</i> ^{-/-} : n=43	two-sided Fisher's Exact test			<i>P</i> =0.6444

	glia: wt: n=48, 7 <i>a</i> -/-: n=43	two-sided Fisher's Exact test		<i>P</i> =0.8285
Fig EV2D	wt: n=35; 7 <i>a</i> -/-: n=27	two-tailed unpaired Mann-Whitney test		<i>P</i> =0.4089
Fig EV2F	straight	two-tailed unpaired Student's t-test	wt straight vs wt curved	<i>P</i> =0.0696
	wt: n=12, 7 <i>a</i> -/-: n=31	two-tailed unpaired Student's t-test	$7a^{-/-}$ straight vs $7a^{-/-}$ curved	<i>P</i> =0.0886
	curved	two-tailed unpaired Student's t-test	wt straight vs $7a^{-/-}$ straight	<i>P</i> =0.0233
	wt: n=27, 7 <i>a</i> -/-: n=31	two-tailed unpaired Student's t-test	wt curved vs 7a ^{-/-} curved	<i>P</i> =0.0299
Fig EV5B	ctr MO: n=16 cells	two-tailed unpaired Mann-Whitney test		<i>P</i> =0.0017
	$7a \text{ MO}^{-}$: n=24 cells			
Fig EV5E	ctr MO: n=15 cells	two-tailed unpaired Student's t-test		<i>P</i> =0.0056
	7 <i>a</i> MO: n=23 cells			