

Supporting Information

Pseudo-heterolepticity in Low-Symmetry Metal-Organic Cages

J. E. M. Lewis*

Contents

1.	General Experimental	4
2.	Synthetic Procedures	5
	Synthesis of S1	6
	Synthesis of S2	9
	Synthesis of L ^{P4}	10
	Synthesis of [Pd ₂ (L ^{P4}) ₂](NO ₃) ₄ (C ^{P4})	13
	Synthesis of $[Pd_2(L^{P4})_2 \supset CI](BF_4)_3$	17
	Synthesis of S3	19
	Synthesis of S4	22
	Synthesis of S5	25
	Synthesis of S6	28
	Synthesis of L ^{P3Q}	31
	Synthesis of $[Pd_2(L^{P3Q})_2 \supset NO_3](NO_3)_3 (C^{P3Q})$	34
	Synthesis of S7	40
	Synthesis of L1 ^{Ph}	43
	Synthesis of <i>cis</i> -[Pd ₂ (L1 ^{Ph}) ₄](BF ₄) ₄ (C1 ^{Ph})	46
	Synthesis of S8	51
	Synthesis of S9	54
	Synthesis of L1^{xy}	57
	Synthesis of <i>cis</i> -[Pd ₂ (L1 ^{xy}) ₄](BF ₄) ₄ (C1 ^{xy})	60
	Synthesis of S10	65
	Synthesis of S11	68
	Synthesis of S12	71
	Synthesis of S13	74
	Synthesis of S14	77
	Synthesis of L1 ^{TIPS}	80
	Synthesis of L1 ^{CCH}	83
	Synthesis of L2 ^{Ph}	86
	Synthesis of cis -[Pd ₃ (L2 ^{Ph}) ₄](BF ₄) ₆ (C2 ^{Ph})	90
	Synthesis of L2 ^{xy}	96
	Synthesis of cis -[Pd ₃ (L2 ^{xy}) ₄](BF ₄) ₆ (C2 ^{xy})	
3.	Geometry Optimised Structures	
	C2 ^{Ph}	106
	C2 ^{Xy}	113
4.	Hydrodynamic Radii Calculations	121

5.	X-ray Crystallography	122
С	<i>is</i> -[Pd ₂ (L1 ^{xy}) ₄](BF ₄) ₄	122
[Pd₂(L^{P4})₂⊃Cl](BF₄)₃	124
[Pd₂(L^{P3Q})₂⊃NO₃](NO₃)₃	126
6.	Chirality Assignment in C^{P3Q}	127
7.	References	128

1. General Experimental

Synthesis: Unless otherwise stated, all reagents, including anhydrous solvents, were purchased from commercial sources and used without further purification. All reactions were carried out under an atmosphere of N₂ using degassed, anhydrous solvents unless otherwise stated. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 °C. Analytical TLC was performed on pre-coated silica gel plates (0.25 mm thick, 60F254, Merck, Germany) and observed under UV light. EDTA solution refers to a 0.1 M solution of EDTA-Na₂ in 3% NH_{3(aq)}.

Analysis: NMR spectra were recorded on Bruker AV400 or AV500 instrument, at a constant temperature of 298 K. Chemical shifts are reported in parts per million from low to high field and referenced to residual solvent. Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint = quintet, q = quartet, t = triplet, d = doublet, s = singlet, app. = apparent, br. = broad. Chemical shifts are reported in parts per million (ppm) and referenced to residual solvent peaks (CDCl₃: ¹H δ = 7.26 ppm, ¹³C δ = 77.16 ppm; *d*₆-DMSO: ¹H δ = 2.50 ppm. ¹³C δ = 39.52 ppm; CD₃OD: ^{1H} δ = 3.31 ppm, ¹³C δ = 49.00 ppm). For **C2**^{Ph} and **C2**^{Xy} in *d*₆-DMSO/CDCl₃ mixtures, spectra were referenced to *d*₆-DMSO residual solvent peaks. Signal assignment was carried out using 2D NMR methods (HSQC, HMBC, COSY, NOESY) where necessary. In the case of some signals absolute assignment was not possible. Here indicative either/or assignments (e.g. H_A/H_B for H_A or H_B) are provided. Mass spectrometry was carried out by the Imperial College London, Department of Chemistry Mass Spectroscopy Service using Waters LCT Premier for HR-ESI-MS and Thermo Scientific Q-Exactive.

2. Synthetic Procedures

Scheme S2 Synthetic route to ligands L1^{Ph}, L1^{Xy}, L2^{Ph}, and L2^{Xy}.

6-Bromonicotinic acid (1.01 g, 5 mmol, 1 eq.) was added portionwise to a stirring solution of EDCI·HCI (1.15 g, 6 mmol, 1.2 eq.) and DMAP (0.061 g, 0.5 mmol, 0.1 eq.) in CHCl₃ (25 mL) at 0 °C. After 30 minutes 3-pyridinemethanol (0.53 mL, 5.5 mmol, 1.1 eq.) was added dropwise via syringe and the reaction allowed to warm to rt. After 3 d the reaction mixture was washed with sat. aq. NaHCO₃ (25 mL), brine (25 mL), dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (1:4 acetone/CH₂Cl₂) the product was obtained as a white solid (1.46 g, 99%).

¹**H NMR** (400 MHz, CDCl₃) δ : 8.97 (d, J = 2.4 Hz, 1H, H_f), 8.71 (s, 1H, H_a), 8.62 (dd, J = 4.9, 1.6 Hz, 1H, H_b), 8.12 (dd, J = 8.4, 2.4 Hz, 1H H_g), 7.79 (app. dt, J = 7.9, 1.9 Hz, 1H, H_d), 7.58 (d, J = 8.3 Hz, 1H, H_h), 7.35 (dd, J = 7.9, 4.9 Hz, 1H, H_c), 5.40 (s, 2H, H_e).

¹³**C NMR** (101 MHz, CDCl₃) δ : 164.4, 151.6 (C_f), 150.0 (C_b), 149.8 (C_a), 147.4, 139.3 (C_g), 136.6 (C_d), 131.1, 128.3 (C_h), 125.0, 123.8 (C_c), 64.9 (C_e).

HR-ESI-MS m/z = 292.9936 [M+H]⁺ calc. 292.9926.

To a stirring solution of 1,2-diiodobenzene (0.990 g, 3 mmol, 1 eq.), $Pd(PPh_3)_2Cl_2$ (0.042 g, 0.06 mmol, 2 mol%) and Cul (0.011 g, 0.06 mmol, 2 mol%) in ${}^{i}Pr_2NH$ (30 mL) was added trimethylsilylacetylene (1.25 mL, 9 mmol, 3 eq.) via syringe and the reaction mixture stirred at rt for 24 h. H₂O (25 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 25 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. The residue was filtered through a plug of silica gel (pentane) to give 1,2-bis(trimethylsilylethynyl)benzene as a yellow oil. This was dissolved in 1:1 CH₂Cl₂/MeOH (50 mL) under air and K₂CO₃ (2.07 g, 15 mmol, 5 eq.) added as a solid. After stirring at rt for 2 h the mixture was filtered through celite and the solvent removed *in vacuo*. After filtration through a plug of silica gel (pentane) the product was obtained as a yellow oil (0.291 g, 77% over 2 steps). Spectroscopic data matched literature values.^[1]

¹H NMR (400 MHz, CDCl₃) δ: 7.52 (m, 2H), 7.32 (m, 2H), 3.34 (s, 2H).

Synthesis of LP4

 1 Pr₂NH (1 mL) was added to a solution of **S2** (0.063 g, 0.5 mmol, 1 eq.), **S1** (0.308 g, 1.05 mmol, 2.1 eq.), Pd(PPh₃)₄ (0.014 g, 0.013 mmol, 2.5 mol%) and CuI (0.0024 g, 0.013 mmol, 2.5 mol%) in MeCN (4 mL) at rt and the reaction mixture stirred for 18 h. EDTA solution (10 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (step gradient 0:10 to 5:5 acetone/CH₂Cl₂ in 10% increments) the product was obtained as a beige solid (0.203 g, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ: 9.24 (m, 2H, H_f), 8.75 (s, 2H, H_a), 8.63 (m, 2H, H_b), 8.29 (dd, J = 8.2, 2.2 Hz, 2H, H_g), 7.83-7.81 (m, 4H, H_d, H_h), 7.67 (dd, J = 5.8, 3.3 Hz, 2H, H_i), 7.42 (dd, J = 5.9, 3.3 Hz, 2H, H_j), 7.37 (dd, J = 7.9, 4.9 Hz, 2H, H_c), 5.43 (s, 4H, H_e).

¹³**C NMR** (101 MHz, CDCl₃) δ : 164.7, 151.4 (C_{*f*}), 150.0 (C_{*b*}), 149.9 (C_{*a*}), 147.3, 137.4 (C_{*g*}), 136.6 (C_{*d*}/C_{*h*}), 132.6 (C_{*i*}), 131.3, 129.6 (C_{*j*}), 127.3 (C_{*d*}/C_{*h*}), 125.2, 124.4, 123.8 (C_{*c*}), 92.9, 90.8, 64.8 (C_{*e*}).

HR-ESI-MS m/z = 551.1733 [M+H]⁺ calc. 551.1719.

 L^{P4} (11.0 mg, 20 µmol, 1 eq.) and Pd(NO₃)₂·2H₂O (5.3 mg, 20 µmol, 1 eq.) were sonicated in d_6 -DMSO (0.75 mL) until a homogenous solution was obtained. After standing at rt for less than a day, quantitative conversion to $[Pd_2(L^{P4})_2](NO_3)_4$ was observed by ¹H NMR.

¹**H NMR** (500 MHz, d_6 -DMSO) δ : 10.90 (dd, J = 1.9, 0.7 Hz, 4H, H_f), 9.82 (app. dt, J = 1.7, 0.8 Hz, 4H, H_a), 9.07 (ddd, J = 5.8, 1.4, 0.7 Hz, 4H, H_b), 8.76 (dd, J = 8.3, 1.9 Hz, 4H, H_g), 8.35 (dd, J = 8.2, 0.6 Hz, 4H, H_h), 8.26 (dd, J = 5.7, 3.3 Hz, 4H, H_i/H_j), 8.11 (ddd, J = 7.9, 2.1, 1.2 Hz, 4H, H_a), 7.98 (dd, J = 5.7, 3.4 Hz, 4H, H_i/H_i), 7.70 (m, 4H, H_c), 5.49 (s, 8H, H_e).

Diffusion coefficient (500 MHz, d_6 -DMSO) *D*: 1.16 × 10⁻¹⁰ m²s⁻¹; R_H : 8.64 Å.

¹³**C NMR** (126 MHz, d_6 -DMSO) δ : 162.2, 154.4 (C_f), 150.9 (C_b), 149.3 (C_a), 145.7, 142.7 (C_g), 139.9 (C_d), 135.4, 133.9 (C_i/C_j), 132.5 (C_i/C_j), 132.0 (C_h), 128.2, 127.1 (C_c), 123.3, 99.1, 89.5, 65.2 (C_e).

ESI-MS m/z = 458.75 {[Pd₂(L^{P4})₂](NO₃)}³⁺ calc. 458.71.

Figure S20 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{P4})_2](NO_3)}^{3+}$.

Synthesis of $[Pd_2(L^{P4})_2 \supset CI](BF_4)_3$

 L^{P4} (11.0 mg, 20 µmol), [Pd(CH₃CN)₄](BF₄)₂ (8.9 mg, 20 µmol) and Bu₄NCl (2.8 mg, 10 µmol) were sonicated in d_6 -DMSO (0.75 mL) until a homogenous solution was obtained. After standing at rt for 2 d the solution was diluted with DMF (0.75 mL), filtered through celite and left for vapour diffusion of Et₂O. After 5 d the mother liquor was decanted off and the yellow precipitate washed with Et₂O before drying in air. This was dissolved in DMF, filtered through celite and left for vapour diffusion of Et₂O, resulting in light yellow, X-ray quality crystals. After 11 d, the mother liquor was decanted off and the precipitate washed with Et₂O before drying in air to give the product as a yellow solid (9.5 mg, 59%).

¹**H NMR** (400 MHz, d_6 -DMSO) δ : 11.30 (d, J = 1.9 Hz, 2H, H_f), 10.23 (s, 2H, H_a), 9.25 (d, J = 5.7 Hz, 2H, H_b), 8.75 (dd, J = 8.3, 1.9 Hz, 2H, H_g), 8.34 (d, J = 8.3 Hz, 2H, H_h), 8.27 (dd, J = 5.7, 3.3 Hz, 2H, H_i/H_j), 8.07 (dt, J = 8.0, 1.6 Hz, 2H, H_a), 7.99 (dd, J = 5.7, 3.4 Hz, 2H, H_i/H_j), 7.75 (dd, J = 8.0, 5.8 Hz, 2H, H_c), 5.46 (s, 4H, H_e).

Figure S22 Partial ¹H NMR (400 MHz, d_6 -DMSO, 298 K) of a) 1:1 mixture of L^{P4} and [Pd(CH₃CN)₄](BF₄)₂ after standing at rt for 2 d; b) [Pd₂(L^{P4})₂ \supset Cl](BF₄)₃, and c) [Pd₂(L^{P4})₂ \supset NO₃](NO₃)₃.

S1 (0.586 g, 2.0 mmol, 1 eq.), 2-ethynylaniline (0.281 g, 2.4 mmol, 1.2 eq.), $[Pd(PPh_3)_2Cl_2]$ (0.035 g, 0.050 mmol, 2.5 mol%) and CuI (0.010 g, 0.050 mmol, 2.5 mol%) were stirred at rt in 2:1 dioxane/^{*i*}Pr₂NH (15 mL) for 48 h. EDTA solution (25 mL) was added and the reaction mixture extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were dried (MgSO₄) and the solvent removed *in vacuo*. Following purification by column chromatography on silica gel (step gradient 0:10 to 5:5 acetone/CH₂Cl₂ in 10% increments) the product was obtained as a fluffy yellow solid (0.560 g, 85%).

¹**H NMR** (400 MHz, CDCl₃) δ : 9.21 (dd, J = 2.2, 0.9 Hz, 1H, H_{*j*}), 8.74 (br. s, 1H, H_{*a*}), 8.63 (br. s, 1H, H_{*b*}), 8.28 (dd, J = 8.2, 2.2 Hz, 1H, H_{*g*}), 7.80 (app. dt, J = 7.8, 1.9 Hz, 1H, H_{*d*}), 7.57 (dd, J = 8.2, 0.9 Hz, 1H, H_{*h*}), 7.42 (dd, J = 8.0, 1.6 Hz, 1H, H_{*i*}), 7.35 (dd, J = 7.8, 4.8 Hz, 1H, H_{*c*}) 7.19 (app. td, J = 7.6, 1.5 Hz, 1H, H_{*k*}), 6.74-6.70 (m, 2H, H_{*j*}), 5.42 (s, 2H, H_{*e*}), 4.42 (br. s, 2H, H_{NH}).

¹³**C NMR** (101 MHz, CDCl₃) δ : 164.7, 151.4 (C_f), 150.2 (C_b), 150.0 (C_a), 149.0, 147.7, 137.4 (C_g), 136.4 (C_d), 133.0 (C_i), 131.3 (C_k), 126.5 (C_h), 124.0, 123.8 (C_c), 118.1 (C_j/C_l), 114.7 (C_j/C_l), 106.0, 94.0, 90.1, 64.8 (C_e).

HR-ESI-MS m/z = 330.1241 [M+H]⁺ calc. 330.1243.

To a vigorously stirring mixture of **S3** (0.494 g, 1.5 mmol, 1 eq.) and TsOH·H₂O (0.856 g, 4.5 mmol, 3 eq.) in CH₃CN (9 mL) at 0 °C under air was added dropwise a solution of NaNO₂ (0.207 g, 3.0 mmol, 2 eq.) and KI (0.623 g, 3.75 mmol, 2.5 eq.) in H₂O (1 mL). The reaction was stirred, allowing to warm to rt, for 21 h. H₂O (20 mL), sat. aq. NaHCO₃ (20 mL) and 0.5 M Na₂S₂O_{3(aq)} (20 mL) were added sequentially. The reaction mixtures was extracted with EtOAc (3 × 25 mL) and the combined organic phases dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (1:9 acetone/CH₂Cl₂) the product was obtained as a yellow oil (0.476 g, 72%) that solidified on standing.

¹**H NMR** (400 MHz, CDCl₃) δ : 9.24 (dd, J = 2.2, 0.9 Hz, 1H, H_f), 8.73 (d, J = 1.9 Hz, 1H, H_a), 8.63 (dd, J = 4.9, 1.7 Hz, 1H, H_b), 8.30 (dd, J = 8.2, 2.2 Hz, 1H, H_g), 7.90 (dd, J = 8.0, 1.1 Hz, 1H, H_l), 7.80 (ddd, J = 7.9, 2.3, 1.7 Hz, 1H, H_a), 7.69 (dd, J = 8.2, 0.9 Hz, 1H, H_b), 7.62 (dd, J = 7.8, 1.7 Hz, 2H, H_i), 7.38-7.33 (m, 2H, H_c, H_j), 7.08 (td, J = 7.7, 1.7 Hz, 1H, H_k), 5.42 (s, 2H, H_e).

¹³**C NMR** (101 MHz, CDCl₃) δ: 164.7, 151.4 (C_{*f*}), 150.2 (C_{*b*}), 150.0 (C_{*a*}), 147.3, 139.1 (C_{*i*}), 137.4 (C_{*g*}), 136.4 (C_{*d*}), 133.5 (C_{*i*}), 131.2, 130.8 (C_{*k*}), 128.4, 128.1 (C_{*c*}/C_{*j*}), 127.2 (C_{*h*}), 124.5, 123.7 (C_{*c*}/C_{*j*}), 101.4, 94.4, 91.5, 64.9 (C_{*e*}).

HR-ESI-MS m/z = 441.0087 [M+H]⁺ calc. 441.0100.

$$d \bigoplus_{c} \bigoplus_{b} \bigoplus_{N=a}^{f} \bigoplus_{i=1}^{O} \bigoplus_{j=1}^{g} \bigoplus_{N=a}^{h} \bigoplus_{i=1}^{i} \bigoplus_{Br} \bigoplus_{i=1}^{i} \bigoplus_{i=1}^{i} \bigoplus_{j=1}^{i} \bigoplus_{j=1}$$

To a stirring solution of EDCI-HCI (0.690 g, 3.6 mmol, 1.2 eq.) and DMAP (0.047 g, 0.3 mmol, 0.1 eq.) in CHCl₃ (15 mL) at 0 °C was added 3-quinolinecarboxylic acid (0.520 g, 3.0 mmol, 1 eq.) as a solid. After 30 minutes, 6-bromopyridine-3-methanol (0.620 g, 3.3 mmol, 1.1 eq.) was added as a solid. The reaction mixture was allowed to warm to rt and stirred for 18 h before washing with sat. aq. NaHCO₃ (25 mL) and brine (25 mL), drying (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (1:9 acetone/CH₂Cl₂) the product was obtained as a white solid (0.929 g, 90%).

¹**H NMR** (400 MHz, CDCl₃) δ : 9.44 (d, *J* = 2.1 Hz, 1H, H_a), 8.84 (d, *J* = 2.0 Hz, 1H, H_f), 8.53 (dd, *J* = 2.5, 0.7 Hz, 1H, H_j), 8.17 (dd, *J* = 8.5, 1.0 Hz, 1H, H_e), 7.94 (m, 1H, H_b), 7.86 (ddd, *J* = 8.5, 6.9, 1.4 Hz, 1H, H_a), 7.71 (dd, *J* = 8.2, 2.5 Hz, 1H, H_h), 7.64 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H, H_c), 7.55 (dd, *J* = 8.2, 0.7 Hz, 1H, H_i), 5.43 (s, 2H, H_g).

¹³**C NMR** (101 MHz, CDCl₃) δ : 165.2, 150.4 (C_{*j*}), 150.2, 150.0 (C_{*a*}), 142.6, 139.2 (C_{*j*}), 139.0 (C_{*h*}), 132.4 (C_{*d*}), 130.8, 129.7 (C_{*e*}), 129.3 (C_{*b*}), 128.4 (C_{*i*}), 127.8 (C_{*c*}), 126.9, 122.5, 63.9 (C_{*q*}).

HR-ESI-MS m/z = 343.0086 [M+H]⁺ calc. 343.0082.

$$d \bigoplus_{c} \bigoplus_{b} \bigoplus_{N=0}^{d} \bigoplus_{a} \bigoplus_{j \in N} \bigoplus_{N=0}^{g} \bigoplus_{i=1}^{h} \bigoplus_{i=1}^{k} \bigoplus_{TMS}^{k}$$

To **S5** (0.343 g, 1.0 mmol, 1 eq.), $[Pd(PPh_3)_2Cl_2]$ (0.018 g, 0.025 mmol, 2.5 mol%) and Cul (0.010 g, 0.05 mmol, 5 mol%) in ^{*i*}Pr₂NH (5 mL) was added trimethylsilylacetylene (0.21 mL, 1.5 mmol, 1.5 eq.) via syringe. After stirring at rt for 28 h, EDTA solution (20 mL) was added and the aqueous phase was extracted with CH₂Cl₂ (3 × 15 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography (1st column 1:19 acetone/CH₂Cl₂; 2nd column 0→30% EtOAc in pentane in 10% increments) the product was obtained as an off-white solid (0.266 g, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ : 9.45 (d, *J* = 2.1 Hz, 1H, H_a), 8.85 (dd, *J* = 2.2, 0.9 Hz, 1H, H_f), 8.71 (dd, *J* = 2.3, 0.9 Hz, 1H, H_j), 8.17 (dd, *J* = 8.5, 1.0 Hz, 1H, H_e), 7.94 (dd, *J* = 8.1, 1.3 Hz, 1H, H_b), 7.86 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H, H_d), 7.79 (dd, *J* = 8.1, 2.3 Hz, 1H, H_h), 7.64 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H, H_c), 7.51 (dd, *J* = 8.0, 0.9 Hz, 1H, H_i), 5.46 (s, 2H, H_g), 0.27 (s, 9H, H_k).

¹³**C NMR** (101 MHz, CDCl₃) δ : 165.2, 150.1, 150.1 (C_{*j*}), 150.0 (C_{*a*}), 143.4, 139.2 (C_{*j*}), 136.5 (C_{*h*}), 132.3 (C_{*d*}), 130.8, 129.7 (C_{*e*}), 129.3 (C_{*b*}), 127.8 (C_{*c*}), 127.3 (C_{*i*}), 126.9, 122.6, 103.4, 95.9, 64.4 (C_{*g*}), -0.2 (C_{*k*}).

HR-ESI-MS m/z = 361.1454 [M+H]⁺ calc. 361.1367.

Synthesis of L^{P3Q}

To a solution of **S4** (0.0817 g, 0.186 mmol, 1 eq.), **S6** (0.0669 g, 0.186 mmol, 1 eq.), Pd(PPh₃)₄ (0.0107 g, 0.0093 mmol, 5 mol%) and CuI (0.0018 g, 0.0093 mmol, 5 mol%) in MeCN (1.9 mL) was added DBU (0.17 mL, 1.1 mmol, 6 eq.). After stirring at rt for 21 h, EDTA solution (20 mL) was added. The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL), the combined organic phases dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (0 \rightarrow 40% acetone in CH₂Cl₂ in 10% increments) the product was obtained as a light yellow solid (0.0592 g, 53%).

¹**H NMR** (400 MHz, CDCl₃) δ: 9.46 (d, J = 1.6 Hz, 1H, H_q), 9.23 (d, J = 1.7 Hz, 1H, H_f), 8.86 (d, J = 1.9 Hz, 1H, H_r), 8.79 (d, J = 1.5 Hz, 1H, H_o), 8.75 (br. m, 1H, H_a), 8.63 (br. m, 1H, H_b), 8.29 (dd, J = 8.2, 2.2 Hz, 1H, H_g), 8.17 (d, J = 8.5 Hz, 1H, H_v), 7.94 (d, J = 8.2 Hz, 1H, H_s), 7.87-7.78 (m, 4H, H_d, H_h, H_n, H_u), 7.75 (d, J = 8.0 Hz, 1H, H_m), 7.67-7.61 (m, 3H, H_i, H_j), 7.43-7.37 (m, 2H, H_k, H_l), 7.34 (m, 1H, H_c), 5.49 (s, 2H, H_p), 5.41 (s, 2H, H_e).

¹³**C NMR** (101 MHz, CDCl₃) δ : 165.2, 164.7, 151.3 (C_f), 150.3 (C_o), 150.1, 150.0, 150.0 (C_q), 149.9, 147.4, 143.6, 139.2 (C_r), 137.4 (C_g), 136.6 (C_d/C_h/C_n/C_u), 136.4 (C_d/C_h/C_n/C_u), 132.6 (C_i/C_j/C_t), 132.5 (C_i/C_j/C_t), 132.3 (C_d/C_h/C_n/C_u), 130.8, 129.6 (C_v), 129.5 (C_k/C_l), 129.3 (C_s), 129.1 (C_k/C_l), 127.8 (C_i/C_j/C_t), 127.6 (C_m), 127.4 (C_d/C_h/C_n/C_u), 126.9, 125.7, 125.0, 124.3, 123.8 (C_c) 122.6, 93.0, 92.6, 91.0, 88.3, 64.8 (C_e), 64.5 (C_p) (1 signal missing due to peak overlap).

HR-ESI-MS *m*/*z* = 601.1871 [M+H]⁺ calc. 601.1876.

Figure S43 ¹H NMR (400 MHz, CDCl₃) of L^{P3Q}.

Synthesis of $[Pd_2(L^{P3Q})_2 \supset NO_3](NO_3)_3 (C^{P3Q})$

 L^{P3Q} (12.0 mg, 20 µmol, 1 eq.) and Pd(NO₃)₂·2H₂O (5.3 mg, 20 µmol, 1 eq.) were sonicated in *d*₆-DMSO (0.75 mL) until a solution was obtained. After standing at 50 °C for 2 h, ¹H NMR demonstrated quantitative conversion to C^{P4Q} . The solution was diluted with MeCN (0.75 mL), filtered through celite and left for vapour diffusion of Et₂O. After 1 week the mother liquor was carefully decanted and the precipitate washed with Et₂O and dried *in vacuo* to give the product as a light yellow solid (12.6 mg, 76%).

¹**H NMR** (500 MHz, *d*₆-DMSO) δ: 11.34 (d, *J* = 1.7 Hz, 2H, H_q), 10.68-10.66 (m, 4H, H_f, H_v), 10.00 (s, 2H, H_o), 9.56 (m, 2H, H_r), 9.10 (s, 2H, H_a), 8.77 (d, *J* = 6.0 Hz, 2H, H_b), 8.62 (dd, *J* = 8.2, 1.8 Hz, 2H, H_g), 8.41 (m, 2H, H_s), 8.34 (m, 2H, H_n), 8.27-8.24 (m, 4H, H_h, 1 of H_i, H_j, H_k, H_l), 8.13-8.11 (m, 4H, H_d, 1 of H_i, H_j, H_k, H_l), 8.08 (d, *J* = 8.2 Hz, 3H, H_m), 8.00-7.95 (m, 4H, 2 of H_i, H_j, H_k, H_l), 7.87-7.81 (m, 4H, H_t, H_u), 7.59 (dd, *J* = 7.7, 6.1 Hz, 2H, H_c), 5.73 (d, *J* = 15.8 Hz, 2H, H_p), 5.51 (d, *J* = 15.6 Hz, 2H, H_{p'}), 5.41 (d, *J* = 13.4 Hz, 2H, H_e), 5.11 (d, *J* = 13.5 Hz, 2H, H_{e'}).

Diffusion coefficient (500 MHz, d_6 -DMSO) D: 1.13 × 10⁻¹⁰ m²s⁻¹; R_H : 8.86 Å.

¹³**C NMR** (126 MHz, d_6 -DMSO) δ : 163.2, 162.2, 155.1 (C_f/C_q), 155.1 (C_f/C_q), 152.4 (C_a), 151.2 (C_b), 150.9 (C_o), 146.4, 145.4 (C_r), 145.2, 141.9, 141.7 (C_g), 141.4 ($C_d/C_i/C_j/C_k/C_i$), 140.6 (C_n), 135.9, 134.3 ($C_i/C_j/C_k/C_i$), 134.1 (C_t/C_u), 133.8 ($C_d/C_i/C_j/C_k/C_i$), 132.8 ($C_i/C_j/C_k/C_i$), 132.3 ($C_i/C_j/C_k/C_i$), 131.9 (C_h), 131.4 (C_s), 130.9 (C_m), 129.8 (C_t/C_u), 128.4, 128.1, 127.2 (C_v), 126.5 (C_c), 125.2, 122.8, 122.1, 100.3, 97.0, 91.4, 90.8, 65.4 (C_e/C_p), 65.3 (C_e/C_p) (1 peak missing due to overlap).

ESI-MS $m/z = 491.98 \{ [Pd_2(L^{P3Q})_2](NO_3) \}^{3+} \text{ calc. } 492.05; 768.97 \{ [Pd_2(L^{P3Q})_2](NO_3)_2 \}^{2+} \text{ calc. } 769.07. \}$

Figure S55 ESI-MS of $[Pd_2(L^{P3Q})_2](NO_3)_4$.

Figure S56 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{P3Q})_2](NO_3)_2}^{2+}$.

Figure S57 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L^{P3Q})_2](NO_3)}^{3+}$.

$$c \overset{d}{\underset{b}{\overset{e}{\bigcap}}} \overset{e}{\underset{a}{\overset{f}{\bigcap}}} \overset{g}{\underset{a}{\overset{i}{\bigcap}}} \overset{i}{\underset{b}{\overset{j}{\bigcap}}} \overset{j}{\underset{a}{\overset{j}{\bigcap}}}$$

(3-(Pyridin-3-yl)phenyl)boronic acid (0.597 g, 3 mmol, 1 eq.), 1,4-diiodobenzene (1.93 g, 4.5 mmol, 1.5 eq.), Pd(PPh₃)₂Cl₂ (0.053 g, 0.075 mmol, 2.5 mol%) and K₂CO₃ (1.04 g, 7.5 mmol, 2.5 eq.) were stirred at 90 °C in 2:1 dioxane/H₂O (9 mL) in a sealed vial for 24 h. H₂O (20 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography (5% acetone in 1:1 CH₂Cl₂/pentane) the product was obtained as an orange solid (0.265 g, 25%).

¹**H NMR** (400 MHz, CDCl₃) δ : 8.89 (d, *J* = 1.6 Hz, 1H, H_a), 8.62 (dd, *J* = 4.8, 1.5 Hz, 1H, H_b), 7.92 (ddd, *J* = 7.9, 2.2, 1.7 Hz, 1H, H_a), 7.80 (d, *J* = 8.5 Hz, 2H, H_i/H_j), 7.73 (s, 1H, H_b), 7.60-7.53 (m, 3H, H_e, H_f, H_g), 7.41-7.37 (m, 3H, H_c, H_i/H_j).

¹³**C NMR** (101 MHz, CDCl₃) δ : 148.8 (C_b), 148.5 (C_a), 141.2, 140.4, 138.7, 138.1 (C_i/C_j), 136.6, 134.6 (C_d), 129.8 (C_e/C_f/C_g), 129.2 (C_i/C_j), 126.8 (C_e/C_f/C_g), 126.6 (C_e/C_f/C_g), 125.9 (C_h), 123.8 (C_c), 93.6.

HR-ESI-MS *m*/*z* = 358.0081 [M+H]⁺ calc. 358.0093.

Synthesis of L1^{Ph}

$$\prod_{m=1}^{l} \sum_{n=1}^{k} \prod_{j=1}^{l} \prod_{k=1}^{d} \prod_{j=1}^{d} \prod_{k=1}^{d} \prod_{j=1}^{d} \prod_{k=1}^{d} \prod_{j=1}^{d} \prod_{j$$

S7 (0.107 g, 0.3 mmol, 1 eq.), 3-ethynylpyridine (0.034 g, 0.33 mmol, 1.1 eq.), $Pd(PPh_3)_2Cl_2$ (0.011 g, 0.015 mmol, 5 mol%) and CuI (0.0029 g, 0.015 mmol, 5 mol%) were stirred at rt in 1:1 ^{*i*}Pr₂NH/dioxane (3 mL) for 20 h. EDTA solution (20 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica (pentane with step gradient 0 to 70% EtOAc in 10% increments) the product was obtained as an orange solid (0.090 g, 90%).

¹**H NMR** (400 MHz, CDCl₃) δ : 8.91 (d, *J* = 1.7 Hz, 1H, H_n), 8.79 (dd, *J* = 2.2, 0.9 Hz, 1H, H_a), 8.63 (dd, *J* = 4.8, 1.5 Hz, 1H, H_m), 8.56 (dd, *J* = 4.9, 1.6 Hz, 1H, H_b), 7.94 (dt, *J* = 7.9, 1.9 Hz, 1H, H_k), 7.83 (dt, *J* = 7.9, 1.9 Hz, 1H, H_a), 7.80 (s, 1H, 1 of H_j), 7.66-7.64 (m, 5H, H_e, H_f, 1 of H_g/H_h/H_i), 7.59-7.57 (m, 2H, 2 of H_g/H_h/H_i), 7.40 (dd, *J* = 7.9, 4.8, 0.9 Hz, 1H, H_i), 7.30 (ddd, *J* = 7.9, 4.9, 0.9 Hz, 1H, H_c).

¹³**C NMR** (101 MHz, CDCl₃) δ : 152.4 (C_a), 148.9 (C_m), 148.8 (C_b), 148.5 (C_n), 141.3, 141.2, 138.7, 138.6 (C_d), 136.6, 134.6 (C_k), 132.4 (C_e/C_f), 129.8 (C_g/C_h/C_i), 127.4 (C_e/C_f), 126.9 (C_g/C_h/C_i), 126.7 (C_g/C_h/C_i), 126.1 (C_j), 123.8 (C_i), 123.2 (C_c), 121.9, 120.6, 92.6, 87.0.

HR-ESI-MS *m*/*z* = 333.1396 [M+H]⁺ calc. 333.1392.

Synthesis of cis-[Pd₂(L1^{Ph})₄](BF₄)₄ (C1^{Ph})

L1^{Ph} (10.0 mg, 30 µmol, 2 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (6.7 mg, 15 µmol, 1 eq.) were sonicated in d_6 -DMSO (0.75 mL) until a homogenous solution was obtained. After standing at rt for 1 d, ¹H NMR demonstrated quantitative conversion to **C1**^{Ph}. The solution was diluted with MeCN (0.75 mL), filtered through celite, and left for vapour diffusion of Et₂O. After 7 d the mother liquor was carefully decanted and the precipitate washed with Et₂O and dried *in vacuo* to give the product as a yellow solid (12.1 mg, 85%).

¹**H NMR** (400 MHz, d_6 -DMSO) δ : 9.83 (s, 4H, H_a), 9.47 (s, 4H, H_n), 9.41 (d, J = 5.5 Hz, 4H, H_m), 9.32 (d, J = 5.4 Hz, 4H, H_b), 8.55 (d, J = 8.2 Hz, 4H, H_k), 8.31 (s, 4H, H_j), 8.23 (d, J = 8.0 Hz, 4H, H_d), 8.05 (d, J = 7.9 Hz, 8H, H_f), 7.92 (dd, J = 8.0, 5.8 Hz, 4H, H_i), 7.83-7.76 (m, 20H, H_c, H_e, H_g, H_i), 7.61 (app. t, J = 7.7 Hz, 4H, H_h).

Diffusion coefficient (400 MHz, d_6 -DMSO) *D*: 9.99 × 10⁻¹¹ m²s⁻¹; R_H : 10.0 Å.

¹³**C NMR** (101 MHz, d_6 -DMSO) δ : 153.2 (C_a), 150.3 (C_b), 149.8 (C_m), 148.4 (C_n), 142.1 (C_d), 140.7, 139.9, 138.8 (C_k), 137.9, 134.5, 132.2 (C_e), 130.4 (C_h), 128.1 ($C_c/C_g/C_i/C_i$), 127.7 (C_f), 127.5 ($C_c/C_g/C_i/C_i$), 127.2 ($C_c/C_g/C_i/C_i$), 127.1 ($C_c/C_g/C_i/C_i$), 124.4 (C_j), 122.6, 120.3, 94.6, 84.8.

ESI-MS m/z = 857.09 { $[Pd_2(L1^{Ph})_4](BF_4)_2$ ²⁺ calc. 857.17; 1762.16 { $[Pd_2(L1^{Ph})_4](BF_4)_2(HCO_2)$ }⁺ calc. 1762.34.

Figure S75 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L1^{Ph})_4](BF_4)_2]^{2+}}$.

Figure S76 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L1^{Ph})_4](BF_4)_2(HCO_2)]^+}$.

Figure S77 ESI-MS of $[Pd_2(L1^{Ph})_2](BF_4)_4$.

$$c \xrightarrow{d} b \xrightarrow{e} h \xrightarrow{f} y \xrightarrow{i} y \xrightarrow{j} NH_2$$

(3-(Pyridin-3-yl)phenyl)boronic acid (0.398 g, 2 mmol, 1 eq.), 4-bromo-3,5-dimethylaniline (0.440 g, 2.2 mmol, 1.1 eq.), Pd(PPh_3)₂Cl₂ (0.035 g, 0.05 mmol, 2.5 mol%) and K₂CO₃ (0.691 g, 5 mmol, 2.5 eq.) were stirred at 100 °C in 2:1 dioxane/H₂O (6 mL) in a sealed vial for 18 h. H₂O (20 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 25 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (CH₂Cl₂ with step gradient 0 to 20% acetone in 5% increments) the product was obtained as an orange oil that solidified on standing (0.531 g, 97%).

¹**H NMR** (400 MHz, *d*₆-DMSO) δ: 8.91 (s, 1H, H_{*a*}), 8.56 (d, *J* = 4.6 Hz, 1H, H_{*b*}), 8.10 (d, *J* = 7.9 Hz, 1H, H_{*d*}), 7.65 (d, *J* = 7.7 Hz, 1H, H_{*e*}), 7.52 (app. t, *J* = 7.7 Hz, 1H, H_{*f*}), 7.46 (dd, *J* = 7.7, 4.9 Hz, 1H, H_{*c*}), 7.42 (s, 1H, H_{*h*}), 7.14 (d, *J* = 7.5 Hz, 1H, H_{*q*}), 6.34 (s, 2H, H_{*j*}), 4.93 (s, 2H, H_{NH}), 1.89 (s, 6H, H_{*i*}).

¹³**C NMR** (101 MHz, *d*₆-DMSO) δ: 148.4 (*C_b*), 147.7 (*C_a*), 147.4, 142.1, 137.0, 135.6, 135.5, 134.2 (*C_d*), 129.8 (*C_g*), 129.1 (*C_f*), 128.3 (*C_h*), 124.7 (*C_e*), 123.9 (*C_c*), 113.0 (*C_j*), 20.8 (*C_i*) (1 signal missing).

HR-ESI-MS *m*/*z* = 275.1544 [M+H]⁺ calc. 275.1548.

To a vigorously stirring solution of **S8** (0.412 g, 1.5 mmol, 1 eq.) in CH₃CN (9 mL) at 0 °C under air was added TsOH·H₂O (0.856 g, 4.5 mmol, 3 eq.) portionwise. A solution of NaNO₂ (0.207 g, 3 mmol, 2 eq.) and KI (0.623 g, 2.75 mmol, 2.5 eq.) in H₂O (1 mL) was added dropwise and the reaction mixture stirred, allowing to warm to rt, for 15 h. H₂O (20 mL), sat. aq. NaHCO₃ (20 mL) and 0.5 M Na₂S₂O_{3(aq)} were added sequentially. The aqueous phase was extracted with EtOAc (3 × 25 mL) and the combined organic phases dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (1:9 acetone/CH₂Cl₂) the product was obtained as an orange oil (0.427 g, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ: 8.87 (dd, J = 2.4, 0.9 Hz, 1H, H_a), 8.60 (dd, J = 4.8, 1.6 Hz, 1H, H_b), 7.89 (ddd, J = 7.9, 2.4, 1.6 Hz, 1H, H_d), 7.60-7.52 (m, 2H, H_e/H_g, H_f), 7.50 (s, 2H, H_j), 7.38-7.34 (m, 2H, H_c, H_h) 7.16 (app. dt, J = 7.2, 1.6 Hz, 1H, H_e/H_g), 2.02 (s, 6H, H_i).

¹³**C NMR** (101 MHz, CDCl₃) δ: 148.8 (C_b), 148.5 (C_a), 141.1, 141.1, 138.5, 138.3, 136.5, 136.3 (C_j), 134.5 (C_a), 129.6 (C_f), 128.8 (C_e/C_g), 127.6 (C_h), 125.9 (C_e/C_g), 123.7 (C_c), 93.1, 20.6 (C_i).

HR-ESI-MS *m*/*z* = 386.0394 [M+H]⁺ calc. 386.0406.

Synthesis of L1^{Xy}

$$\lim_{m \to \infty}^{k} \sum_{n=1}^{j} \frac{a}{a} \int_{n}^{g} \int_{b}^{f} e^{a}$$

S9 (0.193 g, 0.5 mmol, 1 eq.), 3-ethynylpyridine (0.057 g, 0.55 mmol, 1.1 eq.), Pd(PPh₃)₂Cl₂ (0.0088 g, 0.013 mmol, 2.5 mol%) and CuI (0.0048 g, 0.025 mmol, 5 mol%) were stirred at rt in ⁱPr₂NH (5 mL) for 2 d. EDTA solution (20 mL) was added and the aqueous phase extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. Following purification by column chromatography (pentane with step gradient 0 to 45% EtOAc in 15% increments) the product was obtained as a thick, orange oil (0.178 g, 99%).

¹**H NMR** (400 MHz, CDCl₃) δ : 8.88 (dd, *J* = 2.4, 0.9 Hz, 1H, H_n), 8.78 (dd, *J* = 2.1, 0.9 Hz, 1H, H_a), 8.60 (dd, *J* = 4.8 1.6 Hz, 1H, H_m), 8.55 (dd, *J* = 4.9, 1.7 Hz, 1H, H_b), 7.90 (m, 1H, H_k), 7.82 (dt, *J* = 7.9, 1.9 Hz, 1H, H_d), 7.61-7.54 (m, 2H, 2 of H_g/H_h/H_i/H_j), 7.39-7.34 (m, 4H, H_e, H_l, 1 of H_g/H_h/H_i/H_j), 7.29 (ddd, *J* = 7.9, 4.9, 0.9 Hz, 1H, H_c), 7.19 (app. dt, *J* = 7.1, 1.6 Hz, 1H, H_g/H_i), 2.09 (s, 6H, H_f).

¹³**C NMR** (101 MHz, CDCl₃) δ: 152.4 (C_a), 148.8 (C_m), 148.6 (C_b), 148.5 (C_n), 142.3, 141.4, 138.6 (C_d), 138.3, 136.6, 136.5, 134.5 (C_k), 130.7 (C_e), 129.5 (C_g/C_h/C_i/C_j), 128.8 (C_g/C_i), 127.6 (C_i/C_g/C_h/C_i/C_j), 125.9 (C_g/C_h/C_i/C_j), 123.7 (C_i/C_g/C_h/C_i/C_j), 123.2 (C_c), 121.4, 120.8, 92.9, 85.7, 20.9 (C_f).

HR-ESI-MS *m*/*z* = 361.1705 [M+H]⁺ calc. 361.1705.

Synthesis of *cis*- $[Pd_2(L1^{Xy})_4](BF_4)_4(C1^{Xy})$

L1^{xy} (10.8 mg, 30 μ mol, 2 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 15 μ mol, 1 eq.) were sonicated in d_{6^-} DMSO (0.75 mL) until a homogenous solution was obtained. After standing at rt for 6 h, quantitative conversion to *cis*-[Pd₂(**L1**^{xy})₄](BF₄)₄ was observed by ¹H NMR.

¹**H NMR** (400 MHz, d_6 -DMSO) δ : 9.61 (s, 4H, H_a), 9.27 (d, J = 5.5 Hz, 4H, H_m), 9.16-9.13 (m, 8H, H_b, H_n), 8.60 (d, J = 8.7 Hz, 4H, H_k), 8.20 (app. dt, J = 8.0, 1.5 Hz, 4H, H_d), 7.93 (dd, J = 8.1, 5.7 Hz, 4H, H_l), 7.81 (d, J = 7.7 Hz, 4H, H_i), 7.73-7.70 (m, 8H, H_c, H_j), 7.64 (app. t, J = 7.6 Hz, 4H, H_h), 7.45 (s, 4H, H_e), 7.30-7.28 (m, 8H, H_{e'}, H_g), 2.13 (s, 12H, H_f), 1.99 (s, 12H, H_f).

Diffusion coefficient (400 MHz, d_6 -DMSO) D: 9.10 × 10⁻¹¹ m²s⁻¹; R_H : 11.0 Å.

¹³**C NMR** (101 MHz, d_6 -DMSO) δ : 152.6 (C_a), 150.6 (C_b/C_n), 149.6 (C_m), 149.0 (C_b/C_n), 142.6 (C_d), 142.5, 140.2, 138.4 (C_k), 137.7, 137.0, 136.7, 134.3, 130.3 (C_e), 130.1 (C_h), 129.8 (C_{e'}/C_g), 129.8 (C_{e'}/C_g), 127.5 (C_i), 127.2 (C_c/C_j), 126.3 (C_i), 126.2 (C_c/C_j), 122.4, 119.7, 94.0, 82.7, 20.6 (C_f/C_{f'}), 20.5 (C_f/C_{f'}).

ESI-MS m/z = 914.73 {[Pd₂($L1^{xy}$)₄](BF₄)₂}²⁺ calc. 914.73; 1874.41 {[Pd₂($L1^{xy}$)₄](BF₄)₂(HCO₂)}⁺ calc. 1874.47.

Figure S100 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L1^{xy})_4](BF_4)_2]^{2+}}$.

Figure S101 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_2(L1^{Xy})_4](BF_4)_2(HCO_2)]^+}$.

3-Aminophenylboronic acid (1.37 g, 10.0 mmol, 1 eq.), 3,5-dibromopyridine (3.55 g, 15.0 mmol, 1.5 eq.), Pd(PPh₃)₂Cl₂ (0.070 g, 0.10 mmol, 1 mol%) and K₂CO₃ (3.46 g, 25.0 mmol, 2.5 eq.) were stirred at 80 °C in 2:1 1,4-dioxane/H₂O (30 mL) for 22 h. H₂O (100 mL) was added and the reaction mixture extracted with CH₂Cl₂ (3 × 50 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. Following purification by column chromatography on silica gel (1:19 acetone/CH₂Cl₂) the product was obtained as a waxy off-white solid (1.66 g, 67%).

¹**H NMR** (400 MHz, CDCl₃) δ : 8.72 (d, *J* = 1.9 Hz, 1H, H_{a/b}), 8.63 (d, *J* = 2.2 Hz, 1H, H_{a/b}), 7.98 (app. t, *J* = 2.1 Hz, 1H, H_c), 7.26 (m, H_e), 6.93 (d, *J* = 7.6 Hz, 1H, H_{d/f}), 6.84 (s, H_g) 6.74 (dd, *J* = 8.1, 2.3 Hz, 1H, H_{d/f}).

¹³**C NMR** (101 MHz, CDCl₃) δ: 149.4 (C_{*a*}/C_{*b*}), 147.3, 146.5 (C_{*a*}/C_{*b*}), 138.6, 137.6, 137.0 (C_{*c*}), 130.3 (C_{*e*}), 121.0, 117.6 (C_{*d*}/C_{*f*}), 115.5 (C_{*g*}), 113.6 (C_{*d*}/C_{*f*}).

HR-ESI-MS *m*/*z* = 249.0031 [M+H]⁺ calc. 249.0022.

$$\stackrel{i}{\underset{p \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{N}}{\overset{d \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{a \in \mathcal{G}}{\overset{d \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{N}}{\overset{d \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{a \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{N}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{a \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{N}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{a \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{N}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{a \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\overset{j \in \mathcal{F}}{\longrightarrow}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\xrightarrow}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\xrightarrow}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\xrightarrow}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\xrightarrow}} \stackrel{j \in \mathcal{F}}{\underset{b \in \mathcal{F}}{\xrightarrow}} \stackrel{j \in \mathcal{F}}{\underset{b \in$$

\$10 (1.25 g, 5.0 mmol, 1.0 eq.), triisopropylsilylacetylene (1.35 mL, 6.0 mmol, 1.2 eq.), $Pd(PPh_3)_2Cl_2$ (0.070 g, 0.10 mmol, 2 mol%) and CuI (0.048 g, 0.25 mmol, 5 mol%) in 1:1 1,4-dioxane/ⁱPr₂NH (20 mL) were stirred at 80 °C in a sealed vial for 20 h. EDTA solution (50 mL) was added to the cooled reaction mixture and extracted with CH₂Cl₂ (3 × 25 mL), dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (15:85 EtOAc/pentane) the product was obtained as a brown oil (1.74 g, 99%).

¹**H NMR** (500 MHz, CD₃OD) δ: 8.71 (br. s, 1H, H_a/H_b), 8.54 (br. s, 1H, H_a/H_b), 7.98 (s, 1H, H_c), 7.21 (app. t, *J* = 7.9 Hz, 1H, H_e), 6.97 (t, *J* = 1.9 Hz, 1H, H_g), 6.92 (ddd, *J* = 7.6, 1.7, 0.9 Hz, 1H, H_d/H_f), 6.77 (ddd, *J* = 8.0, 2.3, 0.9 Hz, 1H, H_d/H_f), 1.16 (app. s, 21H, H_h).

¹³**C NMR** (126 MHz, CD₃OD) δ: 151.0 (C_{*a*}/C_{*b*}), 149.9, 147.7 (C_{*a*}/C_{*b*}), 138.4, 138.3, 131.0 (C_{*e*}), 117.5 (C_{*d*}/C_{*f*}), 116.7 (C_{*d*}/C_{*f*}), 114.6 (C_{*g*}), 104.5, 96.0, 19.0 (C_{*i*}), 12.4 (C_{*h*}) (2 × 4° signals missing).

HR-EI-MS *m*/*z* = 350.2181 [M]⁺ calc. 350.2173.

To a solution of **S11** (1.72 g, 4.91 mmol, 1.0 eq) in CH₃CN (30 mL) was added TsOH·H₂O (2.80 g, 14.7 mmol, 3.0 eq.). The resultant suspension was cooled to 0 °C and NaNO₂ (0.677 g, 9.81 mmol, 2.0 eq) and KI (2.04 g, 12.3 mmol, 2.5 eq.) in H₂O (3 mL) was added dropwise. The reaction mixture was allowed to warm to rt and stirred for 17 h. H₂O (50 mL), sat. aq. NaHCO₃ (50 mL) and 0.5 M Na₂S₂O₃ (50 mL) were added and extracted with EtOAc (3 × 50 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (5:95 EtOAc/pentane) the product was obtained as a yellow oil (1.56 g, 69%).

¹**H NMR** (400 MHz, CDCl₃) δ: 8.69 (br. s, 2H, H_a, H_b), 7.92-7.90 (m, 2H, H_c, H_g), 7.76 (ddd, J = 7.9, 1.7, 1.0 Hz, 1H, H_d/H_f), 7.53 (ddd, J = 7.8, 1.8, 1.0 Hz, 1H, H_d/H_f), 7.22 (app. t, J = 7.8 Hz, 1H, H_e), 1.15-1.14 (m, 21H, H_h, H_i).

¹³**C NMR** (101 MHz, CDCl₃) δ : 151.5 (C_a/C_b), 146.6 (C_a/C_b), 139.2, 137.6 (C_c/C_d/C_f/C_g), 137.5 (C_c/C_d/C_f/C_g), 136.2 (C_c/C_g), 135.0, 130.9 (C_e), 126.6 (C_d/C_f), 121.0, 103.0, 96.0, 95.1, 18.8 (C_i), 11.4 (C_h).

HR-EI-MS *m*/*z* = 461.1032 [M]⁺ calc. 461.1030.

Synthesis of S13

$$\overset{i}{\overset{h}{\underset{pr'}{\text{Si}}}} \overset{j}{\underset{b}{\overset{pr}{\underset{N}{\text{Si}}}}} \overset{c}{\underset{a}{\overset{g}{\underset{g}{\text{Si}}}}} \overset{d}{\underset{a}{\overset{e}{\underset{g}{\text{Si}}}}} \overset{f}{\underset{A}{\overset{f}{\underset{g}{\text{Si}}}}} \overset{k}{\underset{NH_{2}}{\overset{k}{\underset{B}{\text{Si}}}}}$$

S12 (1.35 g, 2.93 mmol,1.0 eq.), 4-aminophenylboronic acid pinacol ester (0.802 g, 3.66 mmol, 1.25 eq.), Pd(PPh₃)₂Cl₂ (0.051 g, 0.073 mmol, 2.5 mol%) and K₂CO₃ (1.01 g, 7.33 mmol, 2.5 eq.) in 2:1 1,4-dioxane/H₂) (9.0 mL) were stirred at 90 °C in a sealed vial for 22 h. H₂O (50 mL) was added and the aqueous phase extracted with EtOAc (3×50 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. Following purification by column chromatography (1st column 0 \rightarrow 3% acetone in 1:1 CH₂Cl₂/pentane; 2nd column 0 \rightarrow 10% EtOAc in 1:1 CH₂Cl₂/pentane) the product was obtained as an orange/brown oil that solidified on standing (1.06 g, 85%).

¹**H NMR** (400 MHz, CD₃OD) δ: 8.79 (d, J = 1.8 Hz, 1H, H_a), 8.57 (d, J = 1.4 Hz, 1H, H_b), 8.09 (t, J = 2.1 Hz, 1H, H_c), 7.77 (m, 1H, H_g), 7.60 (m, 1H, H_f), 7.51-7.50 (m, 2H, H_d, H_e), 7.46 (d, J = 8.7 Hz, 2H, H_j), 6.81 (d, J = 8.7 Hz, 2H, H_k), 1.18 (app. s, 21H, H_h, H_i).

¹³**C NMR** (101 MHz, CD₃OD) δ : 151.4 (C_b), 148.9, 148.0 (C_a), 143.9, 138.6 (C_c), 138.1, 131.3, 130.7 (C_d/C_e), 128.8 (C_j), 127.5 (C_f), 125.9 (C_d/C_e/C_g), 125.9 (C_d/C_e/C_g), 122.1, 116.8 (C_k), 104.4, 96.2, 19.1 (C_i), 12.5 (C_h) (one 4° signal missing).

HR-APCI-MS *m*/*z* = 427.2563 [M+H]⁺ calc. 427.2564.

Synthesis of S14

$$\begin{array}{c} \stackrel{i}{\overset{h}{\underset{j \in \Gamma}{\sum}}} \stackrel{j}{\underset{j \in \Gamma}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{d}{\underset{j \in V}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{k}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{k}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{k}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{k}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{k}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}}} \stackrel{j}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\sum} \stackrel{j}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\sum} \stackrel{j}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\underset{j \in V}{\sum}} \stackrel{j}{\underset{j \in V}{\underset{j \in V$$

To a solution of **S13** (0.812 g, 1.90 mmol, 1.0 eq) in CH₃CN (19 mL) was added TsOH·H₂O (1.09 g, 5.71 mmol, 3.0 eq.). The resultant suspension was cooled to 0 °C and NaNO₂ (0.263 g, 3.81 mmol, 2.0 eq) and KI (0.790 g, 4.76 mmol, 2.5 eq.) in H₂O (2 mL) was added dropwise. The reaction mixture was allowed to warm to rt and stirred for 19 h. H₂O (50 mL), sat. aq. NaHCO₃ (50 mL) and 0.5 M Na₂S₂O₃ (50 mL) were added and the aqueous phase extracted with EtOAc (3 × 50 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (1:1 CH₂Cl₂/pentane) the product was obtained as a light yellow oil (0.755 g, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ: 8.80-8.72 (br. m, 2H, H_a, H_b), 7.99 (s, H_c), 7.81 (d, J = 8.6 Hz, 2H, H_j), 7.71 (m, 1H, H_g), 7.62-7.55 (m, 3H, H_d, H_e, H_f), 7.38 (d, J = 8.6 Hz, H_k), 1.16-1.15 (m, 21H, H_h, H_i).

¹³**C NMR** (101 MHz, CDCl₃) δ : 151.0 (C_a/C_b), 146.6 (C_a/C_b), 141.3, 140.2, 138.2 (C_j), 137.8, 137.8, 129.9 (C_d/C_e/C_f), 129.2 (C_k), 127.2 (C_d/C_e/C_f), 126.7 (C_d/C_e/C_f), 126.0 (C_g), 103.1, 96.0, 93.7, 18.8 (C_i), 11.4 (C_h) (2 × 4° signals missing).

HR-APCI-MS *m*/*z* = 538.1412 [M+H]⁺ calc. 538.1421.

Synthesis of L1^{TIPS}

S14 (0.403 g, 0.75 mmol, 1.0 eq.), 3-ethynylpyridine (0.085 g, 0.83 mmol, 1.1 eq.), Pd(PPh₃)₄ (0.022 g, 0.019 mmol, 2.5 mol%) and CuI (0.0036 g, 0.019 mmol, 2.5 mol%) in 1:1 1,4-dioxane/^{*i*}Pr₂NH (7.5 mL) were stirred at rt for 22 h. EDTA solution (50 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 25 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. After purification by column chromatography on silica gel (pentane with step gradient 0 to 20% EtOAc in 5% increments) the product was obtained as an off-white solid (0.343 g, 89%).

¹**H NMR** (400 MHz, CDCl₃) δ: 8.80 (app. s, 2H, H_a, H_l), 8.70 (s, 1H, H_m), 8.57 (d, J = 4.8 Hz, 1H, H_b), 8.00 (br. s, 1H, H_k), 7.88 (m, 1H, H_d), 7.78 (s, 1H, H_j), 7.66 (app. s, 5H, H_e, H_f, H_h), 7.58 (app. d, J = 4.4 Hz, 2H, H_g, H_l), 7.34 (dd, J = 7.9, 5.0 Hz, 1H, H_c), 1.16 (app. s, 21 H, H_n, H_o).

¹³**C NMR** (101 MHz, CDCl₃) δ: 151.9 (C_a), 151.2 (C_m), 148.2 (C_b), 146.9 (C_i), 141.4, 141.1, 139.1 (C_d), 137.8, 137.7 (C_k), 136.3, 132.4 (C_e/C_f), 129.9 (C_g/C_i), 127.4 (C_e/C_f), 127.4, 126.8 (C_g/C_i), 126.1 (C_j), 123.4 (C_c), 121.9, 120.9, 120.8, 103.2, 95.8, 92.9, 86.8, 18.8 (C_o), 11.4 (C_n).

HR-APCI-MS *m*/*z* = 513.2722 [M+H]⁺ calc. 513.2721.

Synthesis of L1^{CCH}

To a solution of L1^{TIPS} (0.256 g, 0.5 mmol, 1 eq.) in THF (5 mL) was added 1M TBAF in THF (1.0 mL, 1.0 mmol, 2 eq.). After stirring at rt for 2 h, sat. aq. NH₄Cl (20 mL) was added and the aqueous phase extracted with CH_2Cl_2 (3 \times 20 mL). The combined organic phases were dried (MgSO₄) and the solvent removed in vacuo. After purification by column chromatography (1:9 acetone/CH₂Cl₂) the product was obtained as a white solid (0.175 g, 98%).

¹**H NMR** (400 MHz, CDCl₃) δ: 8.85 (s, 1H, H_i), 8.80 (s, 1H, H_a), 8.72 (s, 1H, H_m), 8.56 (d, J = 4.0 Hz, 1H, H_b), 8.03 (s, 1H, H_k), 7.84 (d, J = 7.8 Hz, 1H, H_d), 7.78 (s, 1H, H_i), 7.68-7.64 (m, 5H, H_e, H_f, 1 of H_a/H_h/H_i), 7.58-7.57 (m, 2H, 2 of $H_g/H_h/H_i$), 7.30 (dd, J = 7.8, 5.0 Hz, 1H, H_c), 3.27 (s, 1H, H_n).

¹³C NMR (101 MHz, CDCl₃) δ: 152.4 (C_a), 151.6 (C_m), 148.8 (C_b), 147.9 (C_l), 141.4, 141.0, 138.6 (C_d), 137.7, 137.6 (C_k), 136.1, 132.4 (C_e/C_f), 129.9 (C_g/C_h/C_i), 127.4 (× 2, 1 of C_e/C_f, 1 of C_g/C_h/C_i), 126.7 (C_g/C_h/C_i), 126.1 (C_j), 123.2 (C_c), 122.0, 120.6, 119.4, 92.5, 87.0, 81.1 (C_n), 80.4.

HR-ESI-MS *m*/*z* = 357.1381 [M+H]⁺ calc. 357.1392.

Figure S133 ¹H NMR (400 MHz, CDCl₃) of L1^{CCH}.

Synthesis of L2^{Ph}

L1^{CCH} (0.0535 g, 0.15 mmol, 1 eq.), **S9** (0.0534 g, 0.15 mmol, 1 eq.), Pd(PPh₃)₄ (0.0087 g, 0.0075 mmol, 5 mol%) and Cul (0.0014 g, 0.0075 mmol, 5 mol%) were stirred at rt in 1:1 dioxane/ⁱPr₂NH (2 mL) for 19 h, with additional dioxane (1 mL) added after 2 h. EDTA solution (20 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. The crude residue was dissolved in 2:1 CH₂Cl₂/ⁱPrOH (6 mL). The CH₂Cl₂ was removed *in vacuo* to give a precipitate. Following addition of pentane (4 mL) the suspension was filtered over celite, washing copiously with pentane until the filtrate ran clear. After discarding the filtrate, the solid was dissolved in CH₂Cl₂ and the solvent removed *in vacuo* to give the product as a yellow solid (0.0804 g, 91%).

¹**H NMR** (400 MHz, CDCl₃) δ : 8.92 (s, 1H, H_w), 8.84 (d, *J* = 1.9 Hz, 1H, H_i), 8.80 (br. app. s, 2H, H_a, H_m), 8.63 (d, *J* = 4.8 Hz, 1H, H_v), 8.56 (dd, *J* = 5.0, 1.7 Hz, 1H, H_b), 8.09 (app. t, *J* = 2.1 Hz, 1H, H_k), 7.94 (app. dt, *J* = 7.9, 1.9 Hz, 1H, H_t), 7.85-7.80 (m, 3H, H_d, H_j, H_s), 7.69-7.57 (m, 14H, H_e, H_f, H_g, H_h, H_i, H_n, H_o, H_p, H_q, H_r), 7.41 (dd, *J* = 7.9, 4.8 Hz, 1H, H_u), 7.30 (ddd, *J* = 7.9, 4.9, 0.9 Hz, 1H, H_c).

¹³**C NMR** (101 MHz, CDCl₃) δ : 152.4 (C_a/C_m), 151.1 (C_a/C_m), 148.8 (× 2, C_b, C_v), 148.4 (C_w), 147.4 (C_i), 141.4, 141.3, 141.0, 138.7, 138.6 (C_d/C_j/C_s), 137.9, 137.0 (C_k), 136.7, 136.2, 134.7 (C_t), 132.4 (1 of C_e/C_f/C_o/C_n), 132.4 (1 of C_e/C_f/C_o/C_n), 129.9, 129.8, 127.4 (1 of C_e/C_f/C_o/C_n), 127.4 (1 of C_e/C_f/C_o/C_n), 127.3, 127.0, 126.7, 126.7, 126.1 (2 of C_d/C_j/C_s), 123.8 (C_u), 123.2 (C_c), 122.0, 121.9, 120.6, 92.9, 92.6, 87.0, 86.9 (3 signals missing due to peak overlap).

HR-ESI-MS m/z = 586.2265 [M+H]⁺ calc. 586.2283.

Synthesis of *cis*-[Pd₃(L2^{Ph})₄](BF₄)₆ (C2^{Ph})

To a solution of $[Pd(CH_3CN)_4](BF_4)_2$ (6.7 mg, 15 µL) in d_6 -DMSO (0.75 mL) was added L2^{Ph} (11.7 mg, 20 µmol, 4 eq.) in CDCl₃ (0.25 mL). After standing at 50 °C for 3 d, quantitative conversion to *cis*- $[Pd_3(L2^{Ph})_4](BF_4)_6$ (C2^{Ph}) was observed by ¹H NMR.

¹**H NMR** (400 MHz, 3:1 d_6 -DMSO/CDCl₃) δ : 9.94 (s, 4H, H_m), 9.89 (s, 4H, H_a), 9.60 (s, 4H, H_i), 9.51 (s, 4H, H_w), 9.44 (d, J = 5.9 Hz, 4H, H_v), 9.33 (d, J = 5.5 Hz, 4H, H_b), 8.78 (s, 4H, H_k), 8.55 (d, J = 8.3 Hz, 8H, H_t), 8.42 (s, 4H, H_j), 8.34 (s, 4H, H_s), 8.20 (d, J = 8.1 Hz, 4H, H_a), 8.09 (d, J = 7.7 Hz, 8H, H_o), 8.04 (d, J = 7.8 Hz, 8H, H_f), 7.94-7.90 (m, 8H, H_i, H_u), 7.86-7.75 (m, 64H, H_c, H_e, H_g, H_n, H_p, h_r), 7.63-7.59 (m, 8H, H_h), H_h).

Diffusion coefficient (400 MHz, 3:1 d_6 -DMSO/CDCl₃) D: 8.73 × 10⁻¹¹ m²s⁻¹.

¹³**C NMR** (101 MHz, 3:1 d_6 -DMSO/CDCl₃) δ : 153.6 (C_a), 152.0 (Cm), 150.6 (C_b), 150.2 (C_v), 148.6 (C_w), 148.1 (C_l), 142.5 (C_d), 141.2, 140.6, 140.1 (C_k), 139.1 (C_t), 138.6, 138.0, 134.9, 133.9, 132.7, 130.8, 129.1, 128.4, 128.2, 128.0, 127.5, 127.3, 124.9 (×2, C_j, C_s), 123.6, 123.5, 121.0, 120.8, 118.0, 95.8, 95.3, 85.3, 85.0 (5 signals missing due to peak overlap).

ESI-MS m/z = 973.74 { $[Pd_3(L2^{Ph})_4(BF_4)_3]^{3+}$ calc. 973.87; 1504.10 { $[Pd_3(L2^{Ph})_4(BF_4)_4]^{2+}$ calc. 1504.31.

c,e,g,n,p,r h,q i II d ma s b t M 4 4 1 11 Т т ۲ Ч Ч 9.9 9.1 8.1 9.7 9.5 9.3 8.9 8.7 8.5 8.3 7.9 7.7 7.5 H_2O ح^{ار} کا 2 ھ 2 77 ۲ ኛ ጆጀ h 6.5 6.0 5.5 Chemical Shift (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 Figure S144 ¹H NMR (400 MHz, 3:1 *d*₆-DMSO/CDCl₃) of [Pd₃(L2^{Ph})₄](BF₄)₆. MeCN MeCN 100 90 80 Chemical Shift (ppm) 170 160 150 140 130 120 110 70 60 50 40 30 20 10 Ó

MeCN

Figure S152 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_3(L2^{Ph})_4(BF_4)_4]^{2+}}$.

Figure S153 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_3(L2^{Ph})_4(BF_4)_3]^{3+}}$.

Synthesis of L2^{Xy}

L1^{CCH} (0.0535 g, 0.15 mmol, 1 eq.), **S9** (0.0578 g, 0.15 mmol, 1 eq.), Pd(PPh₃)₄ (0.0087 g, 0.0075 mmol, 5 mol%) and CuI (0.0014 g, 0.0075 mmol, 5 mol%) were stirred at rt in 1:1 ⁱPr₂NH/dioxane (2 mL) for 24 h. EDTA solution (20 mL) was added and the aqueous phase extracted with CH₂Cl₂ (3 × 10 ML). The combined organic phases were dried (MgSO₄) and the solvent removed *in vacuo*. Following purification by column chromatography on silica gel (CH₂Cl₂ with step gradient 0 to 30% acetone in 10% increments) a light orange oil was obtained. This was dissolved in a minimal amount of CH₂Cl₂ before the addition of ⁱPrOH (2 mL). The CH₂Cl₂ was removed under a flow of air before an excess of pentane was added. The mother liquor was carefully decanted from the resultant precipitate which was dried *in vacuo* to give the product as an off-white foam (0.0647 g, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ : 8.89 (br. s, 1H, H_w), 8.84 (d, J = 2.2 Hz, 1H, H_i), 8.80 (d, J = 1.5 Hz, 1H, H_a), 8.78 (d, J = 1.9 Hz, 1H, H_m), 8.61 (br. d, J = 4.8 Hz, 1H, H_v), 8.57 (dd, J = 4.9, 1.7 Hz, 1H, H_b), 8.08 (t, J = 2.1 Hz, 1H, H_k), 7.94 (ddd, J = 7.9, 2.4, 1.6 Hz, 1H, H_t), 7.86-7.82 (m, 2H, H_d, H_j), 7.70-7.55 (m, 9H, H_e, H_f, H_g, H_h, H_i, H_q, H_r), 7.42-7.37 (m, 4H, H_n, H_s, H_u), 7.31 (ddd, J = 7.9, 4.9, 0.9 Hz, 1H, H_c), 7.21 (app. dt, J = 6.9, 1.7 Hz, 1H, H_p), 2.10 (s, 6H, H_o).

¹³**C NMR** (101 MHz, CDCl₃) δ : 152.4 (C_a), 151.1 (C_m), 148.8 (C_b), 148.4 (C_v), 148.1 (C_w), 147.2 (C_l), 142.4, 141.4 (×2), 141.1, 138.6 (C_d), 138.1, 138.0, 137.0, 136.7, 136.6 (C_k), 136.1, 134.8 (C_l), 132.4 (C_e/C_f), 130.8 (C_n/C_s/C_u), 129.9 (C_g/C_h/C_l/C_q/C_r), 129.6 (C_g/C_h/C_l/C_q/C_r), 128.9 (C_p), 127.6 (C_n/C_s/C_u), 127.4 (C_e/C_f), 127.3 (C_g/C_h/C_l/C_q/C_r), 126.7 (C_g/C_h/C_l/C_q/C_r), 126.1 (C_g/C_h/C_l/C_q/C_r), 125.9 (C_j), 123.9 (C_n/C_s/C_u), 123.2 (C_c), 122.0, 121.3, 120.8, 120.6, 93.3, 92.6, 87.0, 85.6, 21.0 (C_o).

HR-ESI-MS m/z = 614.2582 [M+H]⁺ calc. 614.2596.

Figure S154 ¹H NMR (400 MHz, CDCl₃) of **L2**^{Xy}.

Synthesis of *cis*-[Pd₃(L2^{Xy})₄](BF₄)₆ (C2^{Xy})

To a solution of $[Pd(CH_3CN)_4](BF_4)_2$ (6.7 mg, 15 µL) in d_6 -DMSO (0.75 mL) was added L2^{Xy} (12.3 mg, 20 µmol, 4 eq.) in CDCl₃ (0.25 mL). After standing at 50 °C for 3 d, quantitative conversion to *cis*- $[Pd_3(L2^{Xy})_4](BF_4)_6$ (C2^{Xy}) was observed by ¹H NMR.

¹**H NMR** (400 MHz, 3:1 d_6 -DMSO/CDCl₃) δ : 10.00 (s, 4H, H_m), 9.71 (s, 4H, H_a), 9.61 (s, 4H, H_i), 9.30 (d, J = 5.3 Hz, 4H, H_v), 9.26 (d, J = 5.9 Hz, 4H, H_b), 9.16 (s, 4H, H_w), 8.78 (s, 4H, H_k), 8.55-8.53 (m, 8H, H_j, H_t), 8.24 (m, 8H, H_f), 8.18 (d, J = 8.1 Hz, 4H, H_d), 7.96 (d, J = 7.9 Hz, 4H, H_i), 7.92-7.89 (m, 8H, H_g, H_u), 7.80 (d, J = 7.9 Hz, 8H, H_e), 7.76-7.73 (m, 8H, H_c, H_t), 7.65-7.60 (m, 12H, H_h, H_p, H_s), 7.47 (s, 4H, H_a), 7.29-7.27 (m, 8H, H_{n'}, H_q), 2.03 (s, 12H, H_o), 1.93 (s, 12H, H_o').

Diffusion coefficient (400 MHz, 3:1 d_6 -DMSO/CDCl₃) D: 8.68 × 10⁻¹¹ m²s⁻¹.

¹³**C NMR** (101 MHz, 3:1 d_6 -DMSO/CDCl₃) δ : 152.3 (C_a), 151.8 (C_m), 150.2 (C_b), 149.4 (C_v), 148.2 (C_w), 147.1 (C_l), 142.4, 142.1 (C_d), 140.5, 140.1, 139.6, 139.3 (C_k), 138.4 (C_j/C_t), 137.9, 137.8, 136.3, 136.1, 134.3, 133.5, 132.3 (C_e), 130.3, 130.1, 129.5, 128.1, 127.6, 127.4, 127.1, 127.0, 126.3, 125.5, 123.7 (C_j/C_t), 123.5, 122.9, 120.2, 120.1, 117.5, 95.0, 94.9, 84.3, 82.9, 20.5 (C_o), 20.3 (C_o').

ESI-MS m/z = 969.48 { $[Pd_3(L2^{Xy})_4(HCO_2)_3]^{3+}$ calc. 969.57; 1477.36 { $[Pd_3(L2^{Xy})_4(HCO_2)_4]^{2+}$ calc. 1477.23.

MeCN

Figure S168 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_3(L2^{Xy})_4(HCO_2)_3]^{3+}}$.

Figure S169 Observed (top) and calculated (bottom) isotopic patterns for ${[Pd_3(L2^{xy})_4(HCO_2)_4]^{2+}}$.

3. Geometry Optimised Structures

Geometry optimisations were performed using the semi-empirical method PM6^[2] in Gaussian 16.^[3]

C2^{Ph}

Calculation Type = FOPT Calculation Method = RPM6 Formula = $C_{172}H_{108}N_{12}Pd_3$ Basis Set = ZDO Charge = 6Spin = Singlet Solvation = None E(RPM6) = 3.7386819 Hartree RMS Gradient Norm = 3.2e-08 Hartree/Bohr Dipole Moment = 0.84660001 Debye Point Group = C1 Molecular Mass = 2658.5924 amu Maximum force = 0 RMS force = 0 Maximum displacement = 0.000714 RMS displacement = 8.8e-05 Predicted energy change = -3.740876e-11 Hartree Atom coordinates: 1 Pd1 -0.0000 0.0000 -0.0161 Pd 2 N2 -0.5059 -1.3334 1.4511 N 3 C3 -1.8163 -1.6402 1.6397 C 4 C4 0.4288 -1.8862 2.2687 C 5 C5 -2.2352 -2.5471 2.6438 C 6 H6 -2.5493 -1.1593 0.9786 H 7 H7 1.4732 -1.5954 2.0872 H 8 C8 -1.2581 -3.1287 3.4697 C 9 H9 -1.5643 -3.8504 4.2390 H 10 N10 0.5059 1.3332 1.4512 N 11 C11 -0.4288 1.8860 2.2689 C 12 C12 1.8163 1.6400 1.6399 C 13 C13 -0.0973 2.7888 3.3105 C 14 H14 -1.4732 1.5952 2.0874 H 15 H15 2.5493 1.1592 0.9787 H 16 C16 1.2581 3.1283 3.4701 C 17 H17 1.5643 3.8499 4.2394 H 18 N18 -0.5029 -1.3355 -1.4782 N 19 C19 0.4295 -1.8785 -2.3046 C 20 C20 -1.8112 -1.6604 -1.6493 C 21 H21 1.4720 -1.5714 -2.1393 H

22 C22	-2.2305	-2.5780	-2.6442 C
23 H23	-2.5432	-1.1844	-0.9838 H
24 C24	-1.2548	-3.1503	-3.4788 C
25 H25	-1.5597	-3.8798	-4.2406 H
26 N26	0.5029	1.3357	-1.4780 N
27 C27	1.8112	1.6606	-1.6492 C
28 C28	-0.4295	1.8788	-2.3044 C
29 H29	2.5432	1.1846	-0.9837 H
30 C30	-0.0973	2.7913	-3.3377 C
31 H31	-1.4720	1.5717	-2.1391 H
32 C32	1.2548	3.1507	-3.4785 C
33 H33	1.5597	3.8803	-4.2402 H
34 C34	-1.1392	3.3213	4.2092 C
35 C35	-0.7959	3.7555	5.5028 C
36 C36	-2.4852	3.3804	3.8018 C
37 C37	-1.7782	4.2452	6.3677 C
38 H38	0.2381	3.7103	5.8503 H
39 C39	-3.4716	3.8489	4.6798 C
40 H40	-2.7726	3.0786	2.7966 H
41 C41	-3.1136	4.2934	5.9643 C
42 H42	-1.4993	4.5905	7.3689 H
43 H43	-3.8794	4.6690	6.6496 H
44 C44	-4.8981	3,8485	4.2796 C
45 C45	-5.5217	2.6346	3.9410 C
46 C46	-5 6409	5 0391	4 2721 C
47 (47	-6 8743	2 6089	3 6077 C
48 H48	-4.9507	1.7078	3.9665 H
49 (49	-6 9967	5 0208	3 9384 C
50 H50	-5.1608	5.9859	4,5352 H
51 (51	-7 6213	3 8040	3 6058 C
52 H52	-7 3597	1 6650	3 3641 H
53 H53	-7 5729	5 9499	3 9448 H
54 (54	-9 0002	3 7658	3 2804 C
55 (55	-10 1770	3 7094	2 9968 C
56 (56	-11 5480	3 6546	2.5500 C
57 (57	-12 4769	4 5650	3 2214 C
58 (58	-12 0220	2 6757	1 7682 C
59 (59	-13 8182	4 4730	2 8536 C
60 H60	-12 1412	5 3329	3 9307 H
61 H61	-11 3381	1 9399	1 3256 H
62 (62	-14 2204	3 4830	1.9200 M
63 H63	-14 5594	5 1683	3 2704 H
64 H64	-15 2700	3 3937	1 6233 H
65 (65	-3 6028	-2 8740	-2 7714 C
66 C66	-4.7882	-3,1089	-2.8699 C
67 (67	-6 1212	-3 3512	-2.00000 C
68 (68	-6 7627	-3 8181	- <u>4</u> 1465 C
69 (69	-6.9927	-3,1159	-1.8232 C
	0.0027	0.1100	1.0202 0

70 C70	-8.1401	-4.0369	-4.2110 C	
71 H71	-6.1381	-4.0130	-5.0218 H	
72 C72	-8.3663	-3.3357	-1.8953 C	
73 H73	-6.5436	-2.7701	-0.8933 H	
74 C74	-8.9493	-3.7954	-3.0898 C	
75 H75	-8.5892	-4.4004	-5.1403 H	
76 H76	-8.9908	-3.1701	-1.0183 H	
77 C77	-10.4093	-4.0418	-3.1466 C	
78 C78	-11.3131	-2.9923	-2.9273 C	
79 C79	-10.8866	-5.3373	-3.4049 C	
80 C80	-12.6962	-3.2396	-2.9485 C	
81 H81	-10.9354	-1.9852	-2.7677 H	
82 (82	-12 2617	-5 5803	-3 4268 C	
83 H83	-10 1854	-6 1562	-3 5858 H	
84 (84	-13 1668	-4 5408	-3 1955 C	
	-12 6220	-6 5007	-3 6783 H	
	14 2201	4 7527	-3.0283 H	
	12 6607	-4./55/	-3.2040 F	
07 C07	-13.0007	-2.1407	-2.7040 C	
	-14.8555	-2.0458	-3.4405 C	
89 (89	-13.4230	-1.1855	-1.7027 C	
90 (90	-15./645	-1.0298	-3.1542 C	
91 H91	-15.0685	-2.7603	-4.2533 H	
92 H92	-12.5048	-1.2126	-1.1028 H	
93 (93	-15.4705	-0.1146	-2.1294 C	
94 H94	-16./041	-0.9430	-3./15/ H	
95 H95	-16.1/28	0.6889	-1.8633 H	
96 N96	-14.3104	-0.1867	-1.4201 N	
97 N97	-13.3344	2.5972	1.4063 N	
98 (98	-1.1345	3.3115	-4.2490 C	
99 (99	-2.4875	3.3499	-3.8620 C	
100 C10	0 -0.7778	3 3.753	5 -5.5363 C	
101 C10	1 -3.467	7 3.7952	1 -4.7585 C	
102 H10	2 -2.786	2 3.039	4 -2.8630 H	
103 C10	3 -1.754(0 4.2267	7 -6.4172 C	
104 H10	0.2624	4 3.727	5 -5.8664 H	
105 C10	5 -3.0969	9 4.2448	3 -6.0377 C	
106 H10	6 -1.464	4 4.582	5 -7.4114 H	
107 H10	-3.858	1 4.613	8 -6.7320 H	
108 C10	8 -4.9012	1 3.7705	5 -4.3833 C	
109 C10	9 -5.7894	4 2.9663	3 -5.1180 C	
110 C11	0 -5.3819	9 4.5480) -3.3188 C	
111 C11	1 -7.1429	9 2.9292	2 -4.7866 C	
112 H11	.2 -5.421	4 2.375	9 -5.9599 H	
113 C11	3 -6.7369	9 4.5187	7 -2.9839 C	
114 H11	.4 -4.700	7 5.198	8 -2.7683 H	
115 H11	.5 -7.831	5 2.313	6 -5.3687 H	
116 H11	.6 -7.111	2 5.141	1 -2.1696 H	
117 C11	7 -3.6102	2 -2.827	7 2.7901 C	
118 C1	118	-4.7941	-3.0582	2.9089 C
--------	--------------	----------	-------------------	-----------
119 C1	119	-6.1870	-3.3009	3.0150 C
120 C1	120 ·	-6.8273	-4.1290	2.0720 C
121 C1	121 -	-6.9340	-2.7135	4.0540 C
122 C1	122	-8.2018	-4.3445	2.1573 C
123 H	123	-6.2466	-4.6144	1.2860 H
124 C1	124	-8.3107	-2.9289	4.1295 C
125 H	125	-6.4362	-2.1007	4.8074 H
126 C1	126	-8.9527	-3.7387	3.1796 C
127 H	127	-8.6955	-4.9994	1.4361 H
128 H	128	-8.8872	-2.4868	4.9455 H
129 C1	129 -	10.4146	-3.9721	3.2500 C
130 C1	130 -	11.3108	-2.9140	3.0448 C
131 C1	131 -	10 8996	-5 2647	3 5085 C
132 C1	132 -	12 6955	-3 1523	3.0716 C
132 U	132 -	10 0277	_1 0/00	2 8816 H
124 01	124	10.5277	-1.5055 E /0E1	2.001011
105 U	134 - 135	10 2022	-3.4931 6.0000	3.3317 C
135 C1	122 -	12 1750	-0.0000	3.0002 F
100 U	130 - 137	13.1750	-4.440Z	
100 II	137 - 130	14 2490	-0.5010	
130 C	130 -	12.2480	-4.0512	3.3487 F
139 CI	139 -	13.0530	-2.05/6	2.8182 C
140 C1	140 -	14.8333	-1.9215	3.5//2 C
141 CI	141 -	13.4237	-1.1266	1.7844 C
142 C1	142 -	15./3/0	-0.9047	3.2/0/ C
143 H	143 -	15.0392	-2.6110	4.4073 H
144 H	144 -	12.5156	-1.181/	1.1702 H
145 C1	145 -	15.4523	-0.0234	2.2139 C
146 H	146 -	16.6656	-0.7914	3.8456 H
147 H	147 -	16.1515	0.7788	1.9363 H
148 N	148 -	14.3059	-0.1284	1.4867 N
149 Pc	149	-13.8591	1.2001	0.0054 Pd
150 N	150 -	13.3325	2.5363	-1.4537 N
151 C1	151 -	12.0182	2.6086	-1.8106 C
152 C1	152 -	14.2228	3.3855	-2.0379 C
153 C1	153 -	11.5473	3.5432	-2.7603 C
154 H	154 -	11.3304	1.9033	-1.3265 H
155 C1	155 -	13.8234	4.3308	-2.9985 C
156 H	156 -	15.2736	3.3030	-1.7235 H
157 C1	157 -	12.4804	4.4153	-3.3628 C
158 H	158 -	14.5674	4.9977	-3.4546 H
159 H	159 -	12.1461	5.1492	-4.1084 H
160 C1	160 -	10.1749	3.5947	-3.0843 C
161 C1	161 ·	-8.9997	3.6547	-3.3726 C
162 C1	162 ·	-7.6228	3.7012	-3.7105 C
163 Pc	163	13.8591	-1.2002	0.0053 Pd
164 N	164	13.3343	-2.5974	1.4060 N
165 C1	165	12.0220	-2.6759	1.7679 C

166 C166	14.2204	-3.4833	1.9396 C
167 C167	11.5480	-3.6550	2.6705 C
168 H168	11.3381	-1.9401	1.3254 H
169 C169	13.8182	-4.4734	2.8530 C
170 H170	15.2700	-3.3940	1.6229 H
171 C171	12.4769	-4.5654	3.2209 C
172 H172	14.5594	-5.1687	3.2697 H
173 H173	12.1412	-5.3334	3.9301 H
174 N174	14.3059	0.1282	1.4867 N
175 C175	13.4237	1.1264	1.7845 C
176 C176	15.4523	0.0231	2.2139 C
177 C177	13.6531	2.0572	2.8184 C
178 H178	12.5156	1.1815	1.1704 H
179 C179	15.7370	0.9043	3.2708 C
180 H180	16.1515	-0.7791	1.9362 H
181 C181	14.8334	1.9211	3.5774 C
182 H182	16.6656	0.7909	3.8457 H
183 H183	15.0392	2.6104	4.4076 H
184 N184	13.3325	-2.5362	-1.4540 N
185 C185	14.2227	-3.3854	-2.0383 C
186 C186	12.0182	-2.6084	-1.8110 C
187 C187	13.8233	-4.3305	-2.9990 C
188 H188	15.2736	-3.3029	-1.7239 H
189 C189	11.5473	-3.5429	-2.7607 C
190 H190	11.3304	-1.9031	-1.3267 H
191 C191	12.4803	-4.4149	-3.3633 C
192 H192	14.5674	-4.9974	-3.4551 H
193 H193	12.1460	-5.1488	-4.1090 H
194 N194	14.3104	0.1868	-1.4201 N
195 C195	15.4705	0.1148	-2.1294 C
196 C196	13.4236	1.1855	-1.7026 C
197 C197	15.7645	1.0301	-3.1541 C
198 H198	16.1728	-0.6887	-1.8634 H
199 C199	13.6607	2.1490	-2.7044 C
200 H200	12.5048	1.2127	-1.1027 H
201 C201	14.8555	2.0462	-3.4463 C
202 H202	16.7041	0.9434	-3.7156 H
203 H203	15.0685	2.7607	-4.2530 H
204 C204	12.6955	3.1519	3.0719 C
205 C205	13.1750	4.4477	3.3281 C
206 C206	11.3108	2.9137	3.0452 C
207 C207	12.2763	5.4946	3.5523 C
208 H208	14.2480	4.6508	3.3492 H
209 C209	10.4146	3.9717	3.2504 C
210 H210	10.9278	1.9095	2.8818 H
211 C211	10.8996	5.2643	3.5091 C
212 H212	12.6548	6.5005	3.7643 H
213 H213	10.2023	6.0876	3.6869 H

214 C214	8.9527	3.7383	3.1800 C
215 C215	8.3107	2.9284	4.1298 C
216 C216	8.2018	4.3442	2.1578 C
217 C217	6.9340	2.7130	4.0543 C
218 H218	8.8872	2.4862	4.9458 H
219 C219	6.8274	4.1288	2.0725 C
220 H220	8.6955	4.9993	1.4366 H
221 C221	6.1870	3.3005	3.0153 C
222 H222	6.4362	2.1002	4.8077 H
223 H223	6.2466	4.6142	1.2866 H
224 C224	4,7941	3.0579	2,9092 C
225 C225	10.1749	-3.5943	-3.0848 C
226 C226	8.9997	-3.6543	-3.3730 C
220 C220	7.6228	-3,7008	-3.7110 C
228 C228	7.1429	-2.9286	-4.7870 C
229 (229	6 7369	-4 5184	-2 9845 C
220 (220	5 7894	-2 9656	-5 1183 C
230 C230	7 8315	-2 3130	-5 3689 H
232 (222)	5 3819	-4 5476	-3 3194 C
232 C232	7 1112	-5 1409	-2 1702 H
233 11233	/ 0011	-3 7600	-// 3838 C
234 C234	4.JOII 5 // 21/	-3.7055	-4.3030 C
232 11232	J.4214 4 7007	-2.3731 E 100E	-3.3002 II
230 1230	4.7007	2 7045	-2.7090 F
237 C237	3.4077 3.4075	2 2 4 0 4	-4.7390 C
230 (230	2.4675	-5.5494	-3.0024 C
239 (239	3.0909	-4.2440	-0.0382 C
	2.7802	-3.0390	
241 (241	1.7540	-4.2258	-0.41// C
242 H242	3.8580	-4.6129	-0./325 H
243 (243	0.///8	-3./52/	-5.5368 C
244 H244	1.4643	-4.5815	-7.4120 H
245 H245	-0.2624	-3./26/	-5.8669 H
246 C246	12.6962	3.2398	-2.9481 C
24/ C24/	11.3131	2.9926	-2.92/0 C
248 C248	13.1668	4.5411	-3.1950 C
249 C249	10.4094	4.0421	-3.1462 C
250 H250	10.9354	1.9855	-2.7675 H
251 C251	12.2618	5.5807	-3.4261 C
252 H252	14.2381	4.7540	-3.2035 H
253 C253	10.8866	5.3376	-3.4043 C
254 H254	12.6340	6.5911	-3.6276 H
255 H255	10.1854	6.1566	-3.5851 H
256 C256	8.9493	3.7957	-3.0894 C
257 C257	8.1401	4.0374	-4.2105 C
258 C258	8.3663	3.3359	-1.8949 C
259 C259	6.7628	3.8186	-4.1460 C
260 H260	8.5893	4.4010	-5.1398 H
261 C261	6.9927	3.1161	-1.8229 C

262 H262	8.9908	3.1702	-1.0180 H
263 H263	6.1382	4.0135	-5.0213 H
264 H264	6.5436	2.7702	-0.8930 H
265 C265	10.1770	-3.7097	2.9964 C
266 C266	9.0002	-3.7662	3.2800 C
267 C267	7.6213	-3.8044	3.6054 C
268 C268	6.9967	-5.0212	3.9379 C
269 C269	6.8743	-2.6093	3.6074 C
270 C270	5.6409	-5.0395	4.2716 C
271 H271	7.5729	-5.9504	3.9443 H
272 C272	5.5217	-2.6350	3.9407 C
273 H273	7.3597	-1.6654	3.3638 H
274 C274	4.8981	-3.8489	4.2792 C
275 H275	5.1608	-5.9864	4.5346 H
276 H276	4.9507	-1.7082	3.9663 H
277 C277	3.4716	-3.8494	4.6794 C
278 C278	2.4852	-3.3808	3.8014 C
279 C279	3.1136	-4.2939	5.9638 C
280 H280	2.7726	-3.0789	2.7963 H
281 C281	1.7782	-4.2458	6.3672 C
282 H282	3.8794	-4.6696	6.6491 H
283 C283	0.7959	-3.7560	5.5024 C
284 H284	1.4993	-4.5912	7.3684 H
285 H285	-0.2380	-3.7108	5.8499 H
286 C286	4.7882	3.1092	-2.8696 C
287 C287	6.1813	3.3516	-2.9519 C
288 C288	1.1344	-3.3110	-4.2494 C
289 C289	0.0973	-2.7909	-3.3381 C
290 C290	2.2352	2.5468	2.6441 C
291 C291	2.2305	2.5783	-2.6439 C
292 C292	0.0973	-2.7892	3.3102 C
293 C293	1.1392	-3.3217	4.2088 C
294 C294	3.6028	2.8743	-2.7710 C
295 C295	3.6102	2.8274	2.7904 C

$C2^{Xy}$

Calculation Type = FOPT Calculation Method = RPM6 Formula = $C_{180}H_{124}N_{12}Pd_3$ Basis Set = ZDO Charge = 6 Spin = Singlet Solvation = None E(RPM6) = 3.6079528 Hartree RMS Gradient Norm = 3e-08 Hartree/Bohr Dipole Moment = 2.486 Debye Point Group = C1 Molecular Mass = 2770.7176 amu

Maximum force = 0 RMS force = 0 Maximum displacement = 5.6e-05 RMS displacement = 9e-06 Predicted energy change = -1.065522e-11 Hartree

Atom Coordinates:

1 Pd1	-0.0000	-0.4068	3 -0.000	0 Pd
2 N2	0.4711	1.0435	-1.3602	Ν
3 C3	1.7091	1.6026	-1.3039	С
4 C4	-0.4015	1.4504	-2.3200	С
5 C5	2.1186	2.6015	-2.2210	С
6 H6	2.3872	1.2501	-0.5160	Н
7 H7	-1.3778	0.9471	-2.3442	н
8 C8	1.1962	3.0413	-3.1876	С
9 H9	1.4836	3.8417	-3.8822	Н
10 N1	0 -0.471	1 1.043	35 1.36	02 N
11 C12	1 0.401	5 1.450	4 2.319	99 C
12 C12	2 -1.709	1 1.602	1.303	39 C
13 C13	3 0.081	5 2.461	.5 3.259	90 C
14 H14	4 1.377	8 0.947	1 2.34	42 H
15 H1	5 -2.387	2 1.250	0.51	60 H
16 C16	5 -1.196	2 3.041	3.18	76 C
17 H1	7 -1.483	6 3.842	17 3.88	22 H
18 N1	8 0.462	8 -1.84	73 -1.36	36 N
19 C19	-0.473	3 -2.71	18 -1.83	73 C
20 C20	0 1.745	1 -1.952	21 -1.79	86 C
21 H2	1 -1.491	6 -2.60	29 -1.43	79 H
22 C22	2 2.134	8 -2.931	-2.74	72 C
23 H2	3 2.480	0 -1.24	76 -1.38	78 H
24 C24	4 1.1540	0 -3.803	33 -3.25	12 C
25 H2	5 1.432	6 -4.548	36 -4.00	76 H
26 N2	6 -0.462	8 -1.84	73 1.36	36 N

27 C27	-1.7451	-1.9521	1.7986 C
28 C28	0.4733	-2.7118	1.8373 C
29 H29	-2.4800	-1.2476	1.3878 H
30 C30	0.1711	-3.7159	2.7901 C
31 H31	1.4916	-2.6029	1.4378 H
32 C32	-1.1540	-3.8033	3.2512 C
33 H33	-1.4326	-4.5486	4.0076 H
34 C34	1.0538	2.8712	4.2908 C
35 C35	0.5978	3.2759	5.5580 C
36 C36	2.4350	2.8552	4.0259 C
37 C37	1.5103	3.6712	6.5397 C
38 H38	-0.4681	3.2802	5.7915 H
39 C39	3.3495	3.2255	5.0222 C
40 H40	2.8050	2.5642	3.0455 H
41 C41	2.8814	3.6474	6.2790 C
42 H42	1.1483	4.0005	7.5193 H
43 H43	3.5891	3.9646	7.0510 H
44 C44	4.8072	3.1505	4.7709 C
45 C45	5.3839	3.7968	3.6654 C
46 C46	5.6237	2.4240	5.6553 C
47 C47	6.7567	3.7035	3.4349 C
48 H48	4,7607	4.3951	2.9999 H
49 (49	6.9965	2.3306	5.4325 C
50 H50	5.1838	1.9348	6.5278 H
51 C51	7.5698	2.9615	4.3110 C
52 H52	7 2061	4 2191	2 5752 H
53 H53	7.6275	1.7775	6.1317 H
54 (54	8 9626	2 8360	4 0743 C
55 C55	10.1491	2.6954	3.8742 C
56 C56	11.5311	2.5140	3.6525 C
57 (57	12 5052	3 2107	4 4012 C
58 C58	11.9683	1.6032	2.6659 C
59 (59	13 8548	2 9754	4 1444 C
60 H60	12 1972	3 9258	5 1757 H
61 H61	11 2449	1 0391	2 0620 H
62 C62	14,2221	2.0516	3.1493 C
63 H63	14.6313	3.5041	4.7138 H
64 H64	15.2800	1.8441	2.9257 H
65 C65	3,4897	-3.0004	-3.1306 C
66 C66	4.6656	-3.0391	-3.4220 C
67 C67	6.0553	-3.0417	-3.7192 C
68 C68	6.7852	-4.2378	-3.6954 C
69 C69	6.6927	-1.8241	-4.0138 C
70 C70	8.1686	-4.2228	-3.9432 C
71 H71	6.2808	-5.1840	-3.4965 H
72 C72	8.0702	-1.7996	-4.2677 C
73 H73	6.1135	-0.9044	-4.0632 H
74 C74	8.8147	-2.9976	-4.2090 C

75 C75	10.2772	-2.9615	-4.4510 C
76 C76	11.1633	-2.7871	-3.3780 C
77 C77	10.7728	-3.0889	-5.7590 C
78 C78	12.5468	-2.7329	-3.6154 C
79 H79	10.7725	-2.7167	-2.3663 H
80 C80	12.1487	-3.0339	-5.9899 C
81 H81	10.0825	-3.2350	-6.5935 H
82 C82	13.0377	-2.8539	-4.9255 C
83 H83	12.5355	-3.1358	-7.0092 H
84 H84	14,1095	-2.8055	-5.1259 H
85 (85	13,4947	-2.5587	-2.4966 C
86 C86	14 6489	-3 3608	-2 3940 C
87 (87	13 2802	-1 5776	-1 5061 C
88 688	15 5/0/	-3 1563	-1 3/09 C
20 H20	1/ 8/32	-3.1303	-1.3405 C
	12 2000	-4.1433	-3.1382 II
90 H90	12.5960	-0.9250	-1.5406 F
91 (91	15.2080	-2.1505	
92 192	10.4474	-3.7080	-1.2507 H
93 H93	15.9525	-1.9645	0.4453 H
94 N94	14.1493	-1.3820	-0.4725 N
95 195	13.2915	1.3/50	2.4216 N
96 (96	1.2201	-4.64/4	3.2479 C
9/ (9/	2.5694	-4.2485	3.2797 C
98 C98	0.8806	-5.9563	3.6332 C
99 (99	3.5665	-5.1559	3.6615 C
100 H10	0 2.851	8 -3.231	9 3.0149 H
101 C10	1 1.8/4	8 -6.8494	4 4.0431 C
102 H10	2 -0.157	4 -6.292	7 3.6102 H
103 C10	3 3.215	0 -6.4589	9 4.0536 C
104 H10	4 1.601	0 -7.862	5 4.3556 H
105 H10	5 3.988	6 -7.163	6 4.3730 H
106 C10	6 4.993	2 -4.7566	5 3.6261 C
107 C10	7 5.881	4 -5.4407	7 2.7787 C
108 C10	8 5.465	8 -3.7072	1 4.4294 C
109 C10	9 7.224	1 -5.0692	2 2.7185 C
110 H11	0 5.522	0 -6.273	4 2.1702 H
111 C11	1 6.809	3 -3.3327	7 4.3773 C
112 H11	2 4.786	5 -3.198	9 5.1155 H
113 H11	3 7.912	3 -5.610	8 2.0666 H
114 H11	4 7.177	2 -2.529	6 5.0172 H
115 C11	5 3.434	7 3.1048	3 -2.1676 C
116 C11	6 4.574	7 3.5157	7 -2.1463 C
117 C11	7 5.923	8 3.9613	3 -2.1132 C
118 C11	8 6.669	3 4.0179	9 -3.2996 C
119 C11	9 6.505	5 4.3293	3 -0.8888 C
120 C12	0 8.014	2 4.4218	3 -3.2671 C
121 H12	1 6.203	1 3.7637	7 -4.2519 H
122 C12	2 7.845	3 4.7397	7 -0.8468 C

123	H123	5.9104	4.3158	0.0217 H
124	C124	8.6090	4.7609	-2.0338 C
125	C125	10.0371	5.1565	-1.9793 C
126	C126	11.0251	4.1782	-1.7991 C
127	C127	10.3983	6.5090	-2.0912 C
128	C128	12.3769	4.5530	-1.7096 C
129	H129	10.7365	3.1318	-1.7474 H
130	C130	11.7426	6.8770	-2.0103 C
131	H131	9.6294	7.2704	-2.2434 H
132	C132	12.7318	5.9079	-1.8143 C
133	H133	12.0262	7.9311	-2.1005 H
134	H134	13.7754	6.2194	-1.7374 H
135	C135	13 4238	3 5350	-1 4919 C
136	C136	14 6711	3 6082	-2 1451 C
137	C137	13 2106	2 4635	-0 6000 C
138	C138	15 6485	2.4000	-1 8755 C
120	L120	1/ 9720	2.0310 1/120	-1.8735 C
1/0	П139 П139	11 2525	4.4155	-2.0041 H
140	C1/1	15 2722	2.3300	0.071011
1/12		16 6284	2 7000	-0.3013 C
142		16 1272	2.7000	-2.3060 H
145	П145 N144	10.1272	0.0000	-0.7109 N
144		14.1052	1.5235	
145	P0145	13./505	1 4972	0.9085 PU
140	N140	13.2840	-1.48/3	2.2803 N
147	C147	11.9916	-1.91/1	2.3553 C
148	C148	14.2023	-2.0158	3.1424 C
149	C149	11.5/01	-2.8827	3.2973 C
150	H150	11.2818	-1.4815	1.6398 H
151	C151	13.8544	-2.9936	4.0902 C
152	H152	15.2336	-1.6406	3.0638 H
153	C153	12.5330	-3.4297	4.1/3/C
154	H154	14.6208	-3.4058	4.7602 H
155	H155	12.2381	-4.1887	4.9107 H
156	C156	10.2153	-3.2727	3.3599 C
157	C157	9.0555	-3.6144	3.4379 C
158	C158	7.6934	-4.0039	3.5111 C
159	Pd159	-13.7565	0.0082	-0.9685 Pc
160	N160	-13.2915	1.3756	-2.4216 N
161	C161	-11.9683	1.6032	-2.6659 C
162	C162	-14.2221	2.0516	-3.1493 C
163	C163	-11.5311	2.5140	-3.6525 C
164	H164	-11.2449	1.0391	-2.0620 H
165	C165	-13.8548	2.9754	-4.1443 C
166	H166	-15.2800	1.8441	-2.9257 H
167	C167	-12.5052	3.2107	-4.4012 C
168	H168	-14.6313	3.5041	-4.7138 H
169	H169	-12.1972	3.9258	-5.1756 H
170	N170	-14.1652	1.5235	0.3382 N

171 C171	-13.2106	2.4635	0.6000 C
172 C172	-15.3723	1.6202	0.9615 C
173 C173	-13.4238	3.5350	1.4919 C
174 H174	-12.2535	2.3566	0.0716 H
175 C175	-15.6485	2.6510	1.8756 C
176 H176	-16.1272	0.8588	0.7169 H
177 C177	-14.6711	3.6082	2.1451 C
178 H178	-16.6284	2.7000	2.3680 H
179 H179	-14.8720	4.4139	2.8641 H
180 N180	-13.2840	-1.4873	-2.2863 N
181 C181	-14.2023	-2.0158	-3.1424 C
182 C182	-11.9916	-1.9171	-2.3553 C
183 C183	-13.8544	-2.9936	-4.0902 C
184 H184	-15,2336	-1.6406	-3.0638 H
185 C185	-11.5701	-2.8827	-3.2973 C
186 H186	-11.2817	-1.4815	-1.6398 H
187 C187	-12 5330	-3 4297	-4 1737 C
188 H188	-14 6208	-3 4058	-4 7602 H
189 H189	-12 2381	-4 1887	-4 9107 H
190 N190	-14 1493	-1 3820	0.4725 N
191 (191	-15 2680	-2 1565	0.4725 N
192 (192	-13 2802	-1 5776	1 5061 C
192 0192	-15 5404	-3 1563	1 3409 C
194 H194	-15 9525	-1 9645	-0 4453 H
195 (195	-13 / 9/7	-2 5587	2 4966 C
106 H106	-12 3080	-0 0238	2. 4 500 С 1 5/08 Н
197 (197	-14 6489	-3 3608	2 3940 C
108 H108	-16 4474	-3 7680	1 2507 H
100 H100	-14 8432	-4 1453	2 1282 H
200 C200	-12 3769	4 5530	1 7096 C
200 0200	-12.3703	5 9078	1 81/13 C
201 C201	-12.7510	<i>1</i> 1782	1.0145 C
202 0202	-11 7/26	6 8770	2 0103 C
203 0203	-13 775/	6 210/	2.0105 C
204 11204	-10 0371	5 156/	1 0703 C
205 0205	-10.0371	3 1318	1.5755 С 1 7474 Н
200 11200	-10.7505	6 5000	2 0013 0
207 0207	-12 0262	7 9311	2.0010 C
200 H200	-12.0202	7 2704	2.1000 H
203 11203	-8 6090	1 7609	2.243311
210 C210	-7 8/52	4.7009	2.0338 C
211 C211	-7.0 4 .05	4.7357 A A217	2 2671 C
212 C212	-0.0142	4.4217	0 0000 C
213 C213	-0.3033	4.3293	0.0000 C
214 C214	-0.0093 _5 0720	4.01/9 2.0610	3.2990 L 2 1122 C
212 (212	-2.9238 E 0104	2.2023 1 2150	
	-3.9104 6 2024	4.3158	-U.UZ1/ H
21/ H21/	-0.2031	3./030	4.2519 H
219 C218	-4.5/4/	3.5127	2.1403 C

219 C219	-10.2153	-3.2727	-3.3599 C
220 C220	-9.0555	-3.6144	-3.4379 C
221 C221	-7.6934	-4.0039	-3.5111 C
222 C222	-7.2241	-5.0692	-2.7185 C
223 C223	-6.8093	-3.3327	-4.3774 C
224 C224	-5.8814	-5.4407	-2.7787 C
225 H225	-7.9123	-5.6107	-2.0666 H
226 C226	-5.4658	-3.7071	-4.4294 C
227 H227	-7.1772	-2.5296	-5.0172 H
228 C228	-4.9932	-4.7566	-3.6261 C
229 H229	-5.5220	-6.2734	-2.1702 H
230 H230	-4.7865	-3.1989	-5.1155 H
231 C231	-3.5665	-5.1559	-3.6615 C
232 C232	-2.5694	-4.2485	-3.2797 C
233 C233	-3.2150	-6.4589	-4.0536 C
234 H234	-2.8518	-3.2319	-3.0149 H
235 C235	-1.8748	-6.8493	-4.0432 C
236 H236	-3.9886	-7.1636	-4.3730 H
237 C237	-0.8806	-5.9563	-3.6332 C
238 H238	-1.6010	-7.8625	-4.3557 H
239 H239	0.1574	-6.2927	-3.6103 H
240 C240	-12.5468	-2.7329	3.6154 C
241 C241	-11.1633	-2.7871	3.3780 C
242 C242	-13.0377	-2.8539	4.9255 C
243 C243	-10.2772	-2.9615	4.4510 C
244 H244	-10.7725	-2.7167	2.3663 H
245 C245	-12.1487	-3.0339	5.9899 C
246 H246	-14.1095	-2.8055	5.1259 H
247 C247	-10.7728	-3.0889	5.7590 C
248 H248	-12.5355	-3.1358	7.0092 H
249 H249	-10.0825	-3.2350	6.5935 H
250 C250	-8.8147	-2.9976	4.2090 C
251 C251	-8.1686	-4.2228	3.9432 C
252 C252	-8.0702	-1.7996	4.2676 C
253 C253	-6.7852	-4.2378	3.6954 C
254 C254	-6.6927	-1.8241	4.0138 C
255 H255	-6.2808	-5.1840	3.4965 H
256 H256	-6.1135	-0.9044	4.0632 H
257 C257	-10.1491	2.6954	-3.8742 C
258 C258	-8.9626	2.8360	-4.0743 C
259 C259	-7.5698	2.9615	-4.3110 C
260 C260	-6.9965	2.3306	-5.4325 C
261 C261	-6.7567	3.7035	-3.4349 C
262 C262	-5.6237	2.4240	-5.6553 C
263 H263	-7.6275	1.7776	-6.1317 H
264 (264	-5.3839	3.7968	-3.6654 (
265 H265	-7,2061	4,2191	-2.5751 H
266 C266	-4,8072	3.1505	-4.7709 C
		2.2000	

267 H267	-5.1838	1.9348	-6.5278 H
268 H268	-4.7607	4.3952	-2.9999 H
269 C269	-3.3495	3.2256	-5.0222 C
270 C270	-2.4350	2.8552	-4.0259 C
271 C271	-2.8814	3.6474	-6.2790 C
272 H272	-2.8050	2.5642	-3.0455 H
273 C273	-1.5103	3.6712	-6.5397 C
274 H274	-3.5891	3.9646	-7.0510 H
275 C275	-0.5978	3.2759	-5.5580 C
276 H276	-1.1483	4.0005	-7.5193 H
277 H277	0.4681	3.2802	-5.7915 H
278 C278	-4.6656	-3.0391	3.4220 C
279 C279	-6.0553	-3.0417	3.7192 C
280 C280	-1.2201	-4.6474	-3.2479 C
281 C281	-0.1711	-3.7159	-2.7901 C
282 C282	-2.1186	2.6014	2.2210 C
283 C283	-2.1348	-2.9312	2.7472 C
284 C284	-0.0815	2.4616	-3.2590 C
285 C285	-1.0538	2.8712	-4.2908 C
286 C286	-3.4897	-3.0004	3.1306 C
287 C287	-3.4347	3.1048	2.1676 C
288 C288	8.9292	-5.5035	-3.9432 C
289 H289	9.1511	-5.8272	-4.9768 H
290 H290	9.8995	-5.4229	-3.4319 H
291 H291	8.3855	-6.3348	-3.4727 H
292 C292	8.7287	-0.5077	-4.6232 C
293 H293	8.9003	-0.4544	-5.7137 H
294 H294	8.1282	0.3707	-4.3561 H
295 H295	9.7132	-0.3926	-4.1501 H
296 C296	8.7878	4.5085	-4.5372 C
297 H297	9.8057	4.1025	-4.4450 H
298 H298	8.3074	3.9913	-5.3791 H
299 H299	8.9056	5.5623	-4.8514 H
300 C300	8.4386	5.1771	0.4507 C
301 H301	9.4852	4.8637	0.5670 H
302 H302	8.4390	6.2809	0.5179 H
303 H303	7.8826	4.8084	1.3302 H
304 C304	-8.9292	-5.5035	3.9432 C
305 H305	-9.1510	-5.8272	4.9768 H
306 H306	-9.8995	-5.4229	3.4319 H
307 H307	-8.3855	-6.3348	3.4726 H
308 C308	-8.7287	-0.5077	4.6232 C
309 H309	-9.7131	-0.3926	4.1501 H
310 H310	-8.9004	-0.4544	5.7137 H
311 H311	-8.1282	0.3707	4.3561 H
312 C312	-8.7878	4.5085	4.5372 C
313 H313	-9.8057	4.1025	4.4450 H
314 H314	-8.3073	3.9913	5.3791 H

315 H315	-8.9057	5.5623	4.8514 H
316 C316	-8.4386	5.1772	-0.4507 C
317 H317	-9.4852	4.8637	-0.5669 H
318 H318	-8.4390	6.2809	-0.5179 H
319 H319	-7.8826	4.8085	-1.3302 H

4. Hydrodynamic Radii Calculations

Hydrodynamic radii were calculated using a variation of the Stokes-Einstein equation:

$$R_H = \frac{k_B T}{6\pi\eta D}$$

Where R_H is the hydrodynamic radius (m)

 k_B is the Boltzmann constant (1.38 × 10⁻²³ J K⁻¹)

T is the temperature (K)

 η is the solvent viscosity (2.180 × 10⁻³ kg s⁻¹m⁻¹ for d₆-DMSO)^[4]

D is the diffusion coefficient (m²s⁻¹)

5. X-ray Crystallography

cis-[Pd₂(L1^{Xy})₄](BF₄)₄

 $L1^{xy}$ (10.8 mg, 30 µmol) and [Pd(CH₃CN)₄](BF₄)₂ (6.7 mg, 15 µmol) were sonicated in DMF (1 mL) until a homogenous solution was obtained. After standing at rt for 24 h, the solution was diluted with additional DMF (1 mL), filtered through celite and left for vapour diffusion of Et₂O, from which X-ray quality crystals were obtained.

Crystal data for **C1**^{xy}: $[C_{104}H_{80}N_8Pd_2](BF_4)_4 \cdot 6.75(C_3H_7NO)$, M = 2495.19, triclinic, P-1 (no. 2), a = 12.7020(6), b = 22.5260(12), c = 23.6140(12) Å, $\alpha = 112.784(5)$, $\beta = 101.482(4)$, $\gamma = 94.081(4)^\circ$, V = 6021.9(6) Å³, Z = 2 [two independent C_i -symmetric complexes], $D_c = 1.376$ g cm⁻³, μ (Cu-K α) = 3.135 mm⁻¹, T = 173 K, colourless plates, Agilent Xcalibur PX Ultra A diffractometer; 22923 independent measured reflections ($R_{int} = 0.0772$), F^2 refinement,^[5,6,7] R_1 (obs) = 0.0890, wR_2 (all) = 0.2920, 12546 independent observed absorption-corrected reflections [$|F_o| > 4\sigma(|F_o|)$, completeness to $\theta_{full}(67.7^\circ) = 98.3\%$], 1299 parameters. CCDC 2202606.

The structure of C1^{xy} was found to contain two independent complexes (C1^{xy}-A and C1^{xy}-B) both of which sit across a centre of symmetry at the middle of the cage. The four unique tetrafluoroborate anions were each found to be disordered. In each case two orientations were identified (of ca. 69:31, 76:24, 71:29 and 60:40% occupancy for the B60-, B70-, B80-, and B90-based BF₄ anions respectively), the geometries of each pair of orientations were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only the atoms of the major occupancy orientations were refined anisotropically (those of the minor occupancy orientations were refined isotropically). The included solvent was found to be highly disordered, and the best approach to handling this diffuse electron density was found to be the SQUEEZE routine of PLATON.^[8] This suggested a total of 537 electrons per unit cell, equivalent to 268.5 electrons per complex. Before the use of SQUEEZE the solvent clearly resembled dimethylformamide (C₃H₇NO, 40 electrons), and 6.75 dimethylformamide molecules corresponds to 270 electrons, so this was used as the solvent present. As a result, the atom list for the asymmetric unit is low by $6.75(C_3H_7NO) = C_{20.25}H_{47.25}N_{6.75}O_{6.75}$ (and that for the unit cell low by $C_{40.5}H_{94.5}N_{13.5}O_{13.5}$) compared to what is actually presumed to be present. The two largest residual electron density peaks (Q1 and Q2 of 2.22 and 2.17 $e^{A^{-3}}$ respectively), are both less than 1 Å away from palladium atoms. Three of the next four peaks (Q3, Q4 and Q6 of 1.37, 1.01 and 0.85 eÅ⁻³ respectively) are similarly within ca. 1.2 Å of the palladium centres. These peaks are not in chemically sensible positions, and so are highly likely to be artefacts related to residual absorption effects.

Figure S171 The structure of the *C*_{*i*}-symmetric complex **C1**^{xy}-**A**, one of the two independent complexes present in the crystal of **C1**^{xy}, showing the encapsulated tetrafluoroborate anions (20% probability ellipsoids).

Figure S172 The structure of the C_r-symmetric complex **C1**^{xy}-**B**, one of the two independent complexes present in the crystal of **C1**^{xy} (20% probability ellipsoids).

[Pd₂(L^{P4})₂⊃Cl](BF₄)₃

 L^{P4} (11.0 mg, 20 µmol), [Pd(CH₃CN)₄](BF₄)₂ (8.9 mg, 20 µmol) and Bu₄NCI (2.8 mg, 10 µmol) were sonicated in d_6 -DMSO (0.75 mL) until a homogenous solution was obtained. After standing at rt for 2 d the solution was diluted with DMF (0.75 mL), filtered through celite and left vapour diffusion of Et₂O. After 5 d the mother liquor was decanted off and the yellow precipitate washed with Et₂O before drying in air. This was dissolved in DMF, filtered through celite and left for vapour diffusion of Et₂O, from which X-ray quality crystals were obtained.

Crystal data for **C**^{P4}: [C₆₈H₄₄N₈O₈Pd₂](BF₄)₃(Cl)·5(C₂H₆OS), *M* = 2000.43, monoclinic, *P*2/*n* (no. 13), *a* = 11.8232(6), *b* = 15.259(4), *c* = 28.9453(18) Å, β = 98.438(5)°, *V* = 5165.6(13) Å³, *Z* = 2 [*C*₂ symmetry], *D*_c = 1.286 g cm⁻³, μ(Cu-Kα) = 4.646 mm⁻¹, *T* = 173 K, pale yellow platy needles, Agilent Xcalibur PX Ultra A diffractometer; 9828 independent measured reflections (*R*_{int} = 0.0707), *F*² refinement,^[5,6,7] *R*₁(obs) = 0.1117, *wR*₂(all) = 0.3999, 3162 independent observed absorption-corrected reflections [|*F*_o| > 4σ(|*F*_o|), completeness to θ_{full}(67.7°) = 97.9%], 393 parameters. CCDC 2202605.

The structure of $\mathbf{C}^{\mathbf{P4}}$ was found to sit across a C_2 axis that passes through the encapsulated chloride anion Cl1, and bisects the O33...O33A vector. The crystal that was studied was a weak scatterer, the full data set having a mean I/σ of only 2.27 for a 15 hour data collection designed for only the symmetry unique data. The drop-off of intensity with resolution is quite rapid, with the mean $F^2/\sigma(F^2)$ already dropping below 2 past ca. 1.25 Å. This suggests significant disorder, so it was not surprising that both the presumed tetrafluoroborate anions and the included solvent were found to be highly disordered. The best approach to handling this diffuse electron density was found to be the SQUEEZE routine of PLATON.^[8] (Before the use of SQUEEZE, only two partial occupancy tetrafluoroborate anion sites could be identified amongst the extensive presumed disordered solvent peaks, and these did not refine in a sensible manner.) This suggested a total of 688 electrons per unit cell, equivalent to 344 electrons per complex. Accounting for the electron density of the presumed three tetrafluoroborate anions per complex (BF₄, 41 electrons, the Cl1 chlorine atom located at the middle of the cage providing the fourth negative charge required for charge balance) leaves 344 - (4 x 41) = 221 electrons for the solvent. With the refinements from before the use of SQUEEZE giving no clear indication as to the identity of the solvent, the most recently used solvent (dmso, C₂H₆SO, 42 electrons) was assumed; 5 dimethylsulphoxide molecules corresponds to 210 electrons, so this was used as the solvent present. As a result, the atom list for the asymmetric unit is low by $0.5 \times [3(BF_4) + 5(C_2H_6SO)] = C_5H_{15}B_{1.5}F_6O_{2.5}S_{2.5}$ (and that for the unit cell low by $C_{20}H_{60}B_6F_{24}O_{10}S_{10}$) compared to what is actually presumed to be present.

Figure S173 The crystal structure of the C_2 -symmetric complex **C**^{P4} showing the encapsulated chloride anion (20% probability ellipsoids).

[Pd₂(L^{P3Q})₂⊃NO₃](NO₃)₃

 L^{P3Q} (12.0 mg, 20 µmol) and Pd(NO₃)₂·2H₂O (5.3 mg, 20 µmol) were sonicated in d_6 -DMSO (0.75 mL) until a homogenous solution was obtained. After standing at 50 °C for 2 h, ¹H NMR showed quantitative conversion to [Pd₂(L^{P3Q})₂](NO₃)₄. The solution was diluted with CH₃CN (0.75 mL), filtered through celite and left vapour diffusion of Et₂O, from which X-ray quality crystals were obtained.

Crystal data for C^{P3Q} :[C₇₆H₄₈N₈O₈Pd₂](NO₃)₄·3(C₂H₆OS), *M* = 1896.44, monoclinic, *I*2/*a* (no. 15), *a* = 24.9892(14), *b* = 10.3668(5), *c* = 33.204(2) Å, β = 110.848(7)°, *V* = 8038.6(8) Å³, *Z* = 4 [*C*₂ symmetry], *D*_c = 1.567 g cm⁻³, µ(Cu-Kα) = 5.065 mm⁻¹, *T* = 173 K, pale yellow platy needles, Agilent Xcalibur PX Ultra A diffractometer; 7730 independent measured reflections (*R*_{int} = 0.0490), *F*² refinement, ^[5,6,7] *R*₁(obs) = 0.0557, *wR*₂(all) = 0.1683, 4750 independent observed absorption-corrected reflections [|*F*₀| > 4σ(|*F*₀|), completeness to θ_{full}(67.7°) = 98.6%], 479 parameters. CCDC 2202607.

The structure of C^{P3Q} was found to sit across a C_2 axis that passes through the N50 and O52 atoms of the encapsulated nitrate anion, and bisects the O33…O33A vector. Three of the four expected nitrate anions per complex were reliably located, but the fourth could not be found and so has been presumed to be somewhere amongst the highly disordered solvent. The best approach to handling this diffuse electron density was found to be the SQUEEZE routine of PLATON.^[8] This suggested a total of 607 electrons per unit cell, equivalent to 151.75 electrons per complex. Accounting for the electron density of the presumed "missing" nitrate anion (NO₃, 31 electrons) leaves 151.75 – 31 = 120.75 electrons for the solvent. Before the use of SQUEEZE the solvent most resembled dimethylsulphoxide (C_2H_6OS , 42 electrons), and 3 dimethylsulphoxide molecules corresponds to 126 electrons, so this was used as the solvent present. As a result, the atom list for the asymmetric unit is low by 0.5 x [NO₃ + 3(C_2H_6SO)] = $C_3H_9N_{0.5}O_3S_{1.5}$ (and that for the unit cell low by $C_{24}H_{72}N_4O_{24}S_{12}$) compared to what is actually presumed to be present.

Figure S174 The crystal structure of the C_2 -symmetric complex **C**^{P3Q} showing the encapsulated nitrate anion (20% probability ellipsoids).

6. Chirality Assignment in C^{P3Q}

Priorities for the pairs of *trans*-coordinating units were assigned using CIP priority rules. These are indicated below with the higher priority shown in blue, the lower in orange. Using these, the axial chirality of each Pd(II) centre was assigned. The cage was found to crystallise as a racemic mixture of (S,S)- and (R,R)-**C**^{P3Q} enantiomers (shown in pink and green, respectively).

Figure S175 Chirality assignment for the (S,S)- (shown in pink) and (R,R)- C^{P3Q} (shown in green) cage enantiomers. For each of the two *trans*-heterobidentate coordinating pairs, the higher priority coordinating nitrogen atom is shown in blue, the lower in orange.

7. References

[1] P. Reine, A. G. Campaña, L. Alvarez de Cienfuegos, V. Blanco, S. Abbate, A. J. Mota, G. Longhi, D. Miguel and J. M. Cuerva, *Chem. Commun.*, 2019, **55**, 10685-10688.

[2] J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173-1213.

[3] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[4] M. Holz, X. Mao, D. Seiferling and A. Sacco, J. Chem. Phys., 1996, 104, 669.

[5] O. V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.

[6] SHELXTL v5.1, Bruker AXS, Madison, WI, 1998.

[7] SHELX-2013, G.M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

[8] A.L. Spek (2003, 2009) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands. See also A.L. Spek, *Acta. Cryst.*, 2015, **C71**, 9-18.