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Materials and Methods 

Equivariance 

Fundamentally, the goal of ARES’s design is to be able to encode detailed geometric 

patterns while also automatically being able to recognize and compose them at different 

positions and orientations. We refer to such patterns as structural motifs: a specific arrangement 

of atoms in 3D. A key to this ability is a property known as equivariance. Informally, a function 

or neural network layer is equivariant to some transformation (such as a rotation or translation in 

3D space) if a transformation of the input results in the same transformation of the output. 

Invariance is a related property in which the function output does not vary with respect to 

transformations of the input. See the work by Cohen and Welling (37) for more formal 

definitions and additional background. We require that all network layers be equivariant to 

rotations and translations. Furthermore, the initial layers accumulate information locally and 

preserve information about orientation and position of their inputs, while later layers gather 

information globally. In the following, we focus on rotational equivariance, as translational 

equivariance for neural network architectures is more common and easier to achieve (e.g., by 

encoding relative positions of atoms).  

 

It is important to note that when training and testing ARES we never explicitly rotate the 

network inputs; instead, the inbuilt equivariance property and ability to preserve information 

about orientations allow the network to learn to recognize a pattern in any orientation while also 

keeping track of the orientation in which the pattern occurs. ARES can then learn higher-level 

patterns, which combine lower-level patterns in specific orientations. As an example, we could 

imagine a single network layer learning to recognize aromatic rings. We could then further 

compose this layer with a second layer to discover 𝜋 interaction patterns, by having the second 

layer reason about the relative orientations and positions of aromatic rings. If the first layer did 

not preserve information about orientations and positions, the second layer would be unable to 

tell if the stacking was in a sandwich conformation (where the two rings would be parallel to one 

another) versus a t-shape conformation (where the two rings would be perpendicular). By 

keeping the layers and their compositions equivariant and preserving orientation information, we 

can not only recognize the specific conformation, but also pass on the overall orientation of the 

stack to further layers.  

 

Equivariant convolution 

One of our primary layers that preserves information about orientations and positions is the 

equivariant convolution, originally defined in the publication on Tensor Field Networks (16). 

Our equivariant convolutions take in a set of atoms in three-dimensional (3D) space, represented 

as points in 3D with associated features for each point, and compute new features for each atom. 

The function that computes this output is learnable. We describe our implementation below. 

 

For a given atom 𝑎 (referred to as the source atom), the equivariant convolution is based on 

filter functions applied one at a time to each atom 𝑏 within its local neighborhood (referred to as 

the neighbor atoms). We define 𝑟𝑎𝑏 as the 3D vector between the source atom and a given 

neighbor atom. The filter functions only take as input this vector 𝑟𝑎𝑏, and their output is 

combined with a given neighbor atom’s current features to produce updated features for the 

source atom. In this way, a neighboring atom’s information is shared with the source atom. The 

design of the filter functions, as well how their outputs are combined with neighbor’s features, is 
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the key to ensuring the layer can capture detailed geometric information while still maintaining 

equivariance and preserving orientation information. 

 

In this work, these filter functions are composed by combining two classes of sub-functions: 

radial (𝑅) and angular (𝐴) functions. We define these two sets of sub-functions next. 

 

Radial functions 

The radial functions encode the distance relationships between atoms, without considering 

their relative orientations. Our radial functions take the form of a dense neural network (11). The 

inputs to this network, 𝐺, are computed by applying a filter bank of Gaussians (examples shown 

in Figure S1B) to the magnitude 𝑟𝑎𝑏 = ‖𝑟𝑎𝑏‖: 

 

𝐺(𝑟𝑎𝑏) = [𝐺0(𝑟𝑎𝑏), 𝐺1(𝑟𝑎𝑏), … ,𝐺𝑛(𝑟𝑎𝑏) ]  
with: 

𝐺𝑗(𝑟𝑎𝑏) =  
1

√2𝜋𝜎
𝑒
−
(𝑟𝑎𝑏−𝜇𝑗)

2

2𝜎2   

 

where 𝜎 = 1, 𝑛 = 11, and 𝜇𝑗 =
12

11
𝑗  and 𝑟𝑎𝑏 is expressed in units of ångstrom (we omit 

units for simplicity). The dense network has one hidden layer of dimension 12, with a ReLU 

activation (38) before the hidden layer, and produces 𝐸 scalar radial filter outputs:  

 

[𝑅0(𝑟𝑎𝑏), 𝑅1(𝑟𝑎𝑏),… , 𝑅𝐸(𝑟𝑎𝑏)] = Dense(𝐺(𝑟𝑎𝑏)) 
 

The dense network contains learnable bias parameters as part of the hidden and output 

layers. As these functions only consider distances between atoms, they are invariant to 

translations and rotations. 

 

Angular functions 

The angular functions, on the other hand, only consider orientations between atoms, not 

distances. We use the real spherical harmonics, 𝑌, as our angular functions. Spherical harmonics 

are grouped by their angular resolution 𝑙 ∈ ℤ0
+, which we refer to as angular order—there are 

2𝑙 + 1 harmonics per order. To index within each order, we use an angular index 𝑚, with 𝑚 ∈
{−𝑙, −𝑙 + 1,… , 𝑙 − 1, 𝑙}. These functions are applied to the unit vector 𝑟̂𝑎𝑏 = 𝑟𝑎𝑏 𝑟𝑎𝑏⁄ . 

 

We define 𝐿 as the maximum order used, thus using 𝑀 = ∑ (2𝑙 + 1)𝐿
𝑙=0  scalar-valued 

angular functions total. We use 𝐿 = 2, giving us the zeroth-, first-, and second-order harmonics 

(Figure S1B). Spherical harmonics form an orthonormal basis for functions on the unit sphere 

and are equivariant with respect to rotations in 3D Euclidean space. The maximum angular order 

governs the resolution to which angular dependencies can be captured within a network layer. 

 

Filter functions 

We define filter functions, 𝐹𝑐𝑚
𝑙 , as combinations of our scalar-valued radial and angular 

functions. These form the core of the equivariant convolution: 

 

𝐹𝑐𝑚
𝑙 (𝑟𝑎𝑏) = 𝑅𝑐(𝑟𝑎𝑏) 𝑌𝑚

𝑙 (𝑟̂𝑎𝑏) 
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where 𝑐 ∈ {0,1,… , 𝐸}, 𝑙 ∈ {0, 1, … , 𝐿},𝑚 ∈ {−𝑙, −𝑙 + 1,… , 𝑙}. We refer to 𝐸 as the 

dimension of the equivariant convolution. The three equivariant convolutions have dimensions 

24, 12, and 4 (see Figure S1A). As the radial sub-function is invariant to rotations, and the 

angular sub-function is equivariant to rotations within an angular order, each filter function is 

equivariant to rotations within an angular order. 

 

Combining filter functions and features  

The features, 𝑉, associated with a point (here point index 𝑎) have multiple components 

indexed by angular, radial, and order indices 𝑚, 𝑐, and 𝑙, respectively. For the input to the first 

network layer, we only have scalar features (angular order 𝑙 = 0) and a total of 𝐸 = 3 radial 

features for the three possible element types that we encode.  

 

The equivariant convolution, 𝐿, uses a tensor product that allows us to combine the point-

associated features and filter functions in an equivariant manner to update our features 𝑉:  

 

 𝐿𝑎𝑐𝑚𝑜

𝑙𝑜 ( 𝑉𝑎𝑐𝑚𝑖

𝑙𝑖 )  = ∑ 𝐶(𝑙𝑓,𝑚𝑓)(𝑙𝑖,𝑚𝑖)
(𝑙𝑜,𝑚𝑜) ∑ 𝐹𝑐𝑚𝑓

𝑙𝑓 (𝑟𝑎𝑏) 𝑉𝑏𝑐𝑚𝑖

𝑙𝑖

b ∈ neighbors(a)𝑚𝑖,𝑚𝑓

 

 

where the subscripts f, i, and o denote filter, input, and output feature, respectively. 𝐶 are 

Clebsch-Gordan coefficients which are non-zero only for |𝑙𝑖 − 𝑙𝑓| ≤ 𝑙𝑜 ≤ 𝑙𝑖 + 𝑙𝑓 (39). Note that 

different combinations of 𝑙𝑓 and 𝑙𝑖 can yield outputs of the same angular order 𝑙𝑜. Thus, we 

compute the new value of 𝑉 for each of these combinations of 𝑙𝑓 and 𝑙𝑖 and concatenate these 

outputs together along the 𝑐 dimension, which effectively increases the dimensionality of 𝑉  

along the 𝑐 dimension. We restrict the point convolution to the K nearest neighbors of a given 

point to account for the fact that the laws of physics that govern inter- and intramolecular 

interactions are local (17). Note that the only learned parameters in the equivariant convolution 

are the weights of the dense network that operate on the inter-point distance.  

 

We describe other used layers next; these are more straightforwardly equivariant to 

rotations as they only operate on individual atoms (atomic embedding, pointwise normalization, 

pointwise non-linearity, and pointwise self-interaction) or only operate on rotationally invariant 

features (per-channel mean and subsequent layers). Composing these individually equivariant 

layers together yields a network that is overall equivariant (16, 17). 

 

Pointwise normalization 

The pointwise normalization operation, 𝑁, acts separately on the features associated with 

each atom (17): 

 

𝑁(𝑉𝑎𝑐𝑚
𝑙 ) =

𝑉𝑎𝑐𝑚
𝑙

√∑ (𝑉𝑎𝑐𝑚
𝑙 )2𝑐,𝑚

 

where 𝑚, 𝑐, and 𝑙 are the same angular, radial, and order indices as defined in previous 

layers. 
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Pointwise non-linearity 

The pointwise non-linearity operation, 𝑃, also acts separately on the features associated 

with each atom. We use a non-linearity adapted from Tensor Field Networks (16): 

 

𝑃(𝑉𝑎𝑐𝑚
𝑙 ) =

{
 
 

 
 𝜂(𝑉𝑎𝑐𝑚

𝑙 )                                           if 𝑙 = 0    

 𝑉𝑎𝑐𝑚
𝑙 ∙  𝜂 (√∑(𝑉𝑎𝑐𝑚

𝑙 )
2

𝑚

+ 𝑏𝑙)  otherwise
 

 

where 𝑏𝑙  is a learnable scalar bias term (one per order), 𝑚, 𝑐, and 𝑙 are the same angular, 

radial, and order indices as defined in previous layers, and 𝜂 is a shifted soft plus non-linearity, 

as in SchNet (40): 

 

𝜂(𝑥) = ln(0.5𝑒𝑥 + 0.5) 
 

Pointwise self-interaction 

We use self-interaction layers, 𝑆, as in SchNet (40) to mix information across radial 

channels between equivariant convolution layers and update our features 𝑉: 

 

𝑆𝑎𝑑𝑚
𝑙 (𝑉𝑎𝑐𝑚

𝑙 ) = 𝑏𝑑 +∑𝑉𝑎𝑐𝑚
𝑙

𝑐

𝑊𝑐𝑑 

 

where 𝑊 is a learnable weight matrix, 𝑏 is a learnable bias term, 𝑚, 𝑐, and 𝑙 are the same 

angular, radial, and order indices as defined in previous layers, and 𝑑 is the new radial index. 

Note that the bias term is only used when operating on angular order 0 (i.e. 𝑙 = 0). Within a 

given self-interaction layer, the number of output radial indices is the same for each angular 

order of spherical harmonics; this value is referred to as the dimension of the pointwise self-

interaction. The 6 self-interaction layers have dimensions 24, 24, 12, 12, 4, and 4, respectively. 

 

Atomic embedding 

The atomic embedding is used to generate the initial features associated with each atom 

(which only inhabits angular order 0). We use a one-hot representation which encodes if the 

atom is a carbon, nitrogen, or oxygen. All atoms of other element types are not represented: 

 

𝑉𝑎00
0 = 1 if atom 𝑎 has element type carbon 

 

𝑉𝑎10
0 = 1 if atom 𝑎 has element type oxygen 

 

𝑉𝑎20
0 = 1 if atom 𝑎 has element type nitrogen 

 

 

Per-channel mean 

After these initial layers, we drop the positions of the atoms, as well as any features that do 

not correspond to the zeroth-order harmonic. We then compute the average, across all atoms, of 
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each of the remaining features. This averaging produces a molecule-wide embedding that is 

insensitive to the original RNA’s size. As we are keeping only the entries corresponding to the 

zeroth-order harmonic, this causes further layers to be invariant to rotations, as the zeroth-order 

harmonic is itself invariant to rotations. This results in new features 𝐸 that are indexed only by 

the radial channel 𝑐: 

 

𝐸𝑐 =∑𝑉𝑎𝑐0
0

𝑎

 

 

Dense layers 

Our dense layers are standard fully connected neural network layers: 

 

𝐸𝑑 = 𝑏𝑑 +∑𝑊𝑐𝑑𝐸𝑐
𝑐

 

where 𝑊 and 𝑏  are a learnable weight matrix and learnable bias parameters, respectively. 

 

Network architecture 

In total, there are 15 layers with learnable parameters (6 self-interactions, 3 equivariant 

convolutions, 3 pointwise non-linearities, and 3 fully connected), and 5 layers with fixed 

parameters (1 atomic embedding, 3 pointwise normalizations, and 1 per-channel mean) (16, 17). 

The first fully connected layer uses an ELU non-linearity (41) while the other two use no non-

linearities. All learnable biases were initialized to 0, and all learnable weight matrices were 

initialized using Xavier uniform initialization (42). Each equivariant convolution uses the real 

spherical harmonics of orders 0, 1, and 2, for a total of 9 angular sub-functions. We define the 

local neighborhood of an atom as the nearest 50 atoms (including the source atom itself). The 

overall network design, the dimension of the equivariant convolution and pointwise self-

interaction layers, and the number of neurons in the dense layers, are shown in Figure S1A.  

 

Training  

The network was trained with the Adam optimizer (43) to minimize the Huber (44) loss, as 

applied to the difference between the predicted and true root mean square deviation (RMSD) 

between the atoms of the experimentally determined structure and a candidate structural model 

after alignment: 

 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑|𝑝⃑𝑎 − 𝑝⃑𝑎′|2

𝑎

 

 

where 𝑁 is the total number of atoms present, and 𝑝⃑𝑎 and 𝑝⃑𝑎′ are the positions of atom 𝑎 in 

the candidate model and the experimentally determined structure, respectively. We performed all 

RMSD calculations using Rosetta, excluding hydrogen atoms as well as the rare bases and sugars 

that make no atomic contacts in the experimentally determined structure. RMSD is a common 

evaluation metric in the field of RNA structure prediction (45). 
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We trained on 18 RNAs selected from the FARNA benchmark (18). For each RNA, we 

randomly selected 1,000 structural models generated by FARFAR2 from the FARFAR2-Classics 

dataset (19). The experimentally determined structure for each of these RNAs was taken from 

the FARNA benchmark (18). We randomly split the dataset by RNA, with 14 RNAs used for 

training the network’s parameters and the other 4 for selecting hyperparameters that specify 

characteristics of the training process (Figure S2). The RNAs used for hyperparameter selection 

were those corresponding to PDB codes 1Q9A, 1I9X, 1A4D, and 1KKA, with the rest used for 

training network parameters. 

 

The network was trained using 4 Titan X Pascal GPUs in parallel with Horovod (46), using 

synchronous gradient descent with the batch evenly split across the GPUs. We optimized several 

hyperparameters that specify characteristics of the training process: batch size, number of 

epochs, learning rate, and number of candidate structural models per RNA to feed in. We 

considered ~100 sets of hyperparameter values. For each of these sets, we trained the network 

parameters using structural models for 14 RNAs, and then evaluated the loss of the trained 

network over structural models for another four RNAs (1Q9A, 1I9X, 1A4D, and 1KKA). The set 

of hyperparameter values with the lowest loss was a batch size of 16, 1,000 randomly selected 

structural models for each sequence, a learning rate of 0.01, and a single training epoch. The 

specific network parameters that yielded this lowest loss were used for all ARES results reported 

in this manuscript, including the blind structure prediction competition.  

 

Benchmark 1 dataset 

We benchmarked on the first 21 RNAs from the RNA-Puzzles blind RNA structure 

prediction challenges (45). For each RNA, we used all the structural models from the 

FARFAR2-Puzzles dataset (19). These RNAs are generally quite large, ranging in size from 41–

188 nucleotides, and include riboswitch aptamers, ribozymes, and viral noncoding RNAs, 

providing a diverse range of targets against which to assess performance. On average, over 

20,000 structural models were available per RNA. 

 

Depending on the difficulty of the prediction target, the best models generally range from 

2–10 Å RMSD to the experimentally determined structure. To guarantee the generation of near-

native structural models (< 2 Å RMSD) for each sequence in FARFAR2-Puzzles, we employed 

the same FARFAR2 simulation conditions as used for the FARFAR2-Puzzles dataset, but we 

added in an energetic restraint to the experimentally determined structure and omitted the 

exclusion of homologous fragments (19). Specifically, we used flat-bottomed harmonic functions 

𝑦 restraining every heavy atom of the RNA model to the corresponding coordinates from the 

experimentally determined structure, piecewise such that for each atom 𝑎: 

 

𝑦𝑎 = 0 if  |𝑝⃑𝑎 − 𝑝⃑𝑎′| ≤ 1 Å 

𝑦𝑎 = |𝑝⃑𝑎 − 𝑝⃑𝑎′| if |𝑝⃑𝑎 − 𝑝⃑𝑎′| > 1 Å 

 

For each RNA, the number of restrained structural models was 1% the number of 

unrestrained models from the FARFAR2-Puzzles dataset. 
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Benchmark 2 dataset 

To choose RNAs for our de novo prediction benchmark in an unbiased fashion, we began 

by identifying all structures in the PDB (accessed on January 30th, 2021) that met several quality 

criteria. First, structures must be more recent than 2007 (that is, more recent than any of those in 

the training set). Second, structures must be relatively high-quality: cryo-EM and X-ray 

structures must have better resolution than 3.0 Å; NMR structures must have a clashscore of 

zero. Third, each RNA must comprise 25 to 150 nucleotides, in order to eliminate ribosomes, 

spliceosome states, and other targets too large to sample thoroughly, as well as simple duplexes 

and stem loops whose successful prediction is not a meaningful indication of scoring function 

quality. 

 

We filtered these structures to remove any molecules that shared a family-level Rfam 

classification with cases from the training set, Benchmark 1, or the four blind predictions. Where 

this reduced set contained more than one structure in the same Rfam family (47), we applied two 

criteria to select only one structure per family. First, we favored structures in an apo state or with 

their cognate ligand bound over structures in a holo state or with a non-cognate ligand bound. 

Second, we favored more recently deposited structures over older structures. This deduplication 

and filtering procedure yielded 16 structures for 16 distinct RNAs. These structures are shown in 

Figure S1. The corresponding PDB codes, nucleotide sequences, and RNA names are listed in 

Table S4. 

 

For each of these 16 RNAs, we generated 5,000 structural models with the FARFAR2 

rna_denovo application, using only sequence and secondary structure information (Table S4). 

All secondary structure information was predicted from Rfam alignments (47) or from sequence 

alone (48), or based on predictions published before the corresponding 3D structures (49, 50). 

We scored the resulting models with seven scoring functions: RASP (21), 3dRNAscore (22), 

SimRNA (51), ARES, and three versions of the Rosetta scoring function published in 2007 

(rna_lores.wts) (18), 2010 (rna_hires.wts) (52), and 2020 

(stepwise/rna/rna_res_level_energy4.wts) (19). For each RNA, we selected the best-scoring 

model and the ten best-scoring models according to each scoring function; these were used to 

compute the results shown in Figure S5, panels A and C.  

 

We also performed a bootstrap analysis to determine the extent to which accuracy of the 

top-scoring models depends on the precise set of candidate models considered. For each RNA, 

we selected 20,000 bootstrap samples, each comprising 1,000 structural models from the 5,000 

models available for that RNA. For each scoring function, we calculated the RMSD of the best-

scoring model in each bootstrap sample and the lowest RMSD among the ten best-scoring 

models in each sample, and then calculated the median of these values across the 20,000 

bootstrap samples. We used the same set of bootstrap samples to calculate 95% confidence 

intervals. To estimate p-values for difference-of-medians between two scoring functions a and b, 

we calculated the fraction of bootstrap samples for which median(a) < median(b). These 

bootstrapped median results appear in Figure 2D and Figure S5B. 

 

Scripts for scoring models with each scoring function and parsing the resulting output, as 

well as the raw data for each model, are deposited online (35, 36). 
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Study of complex tertiary interactions (Figure S9) 

To test whether ARES correctly identifies various canonical tertiary interactions, we 

conducted an additional FARFAR2 simulation of an adenine riboswitch (PDB code: 1Y26). We 

used the same FARFAR2 protocol as in Benchmark 1 but omitted any input templates. The 

structural model with the best ARES score (Figure S9A, B) exhibits closely packed helices and 

base triplets of correct geometry. We also illustrate RNAs from Benchmark 1 where the 

structural model with the best ARES score included an intercalated T-loop (Fig. S9C; RNA 

Puzzle 15; a synthetic hammerhead ribozyme; PDB code 5DI4) and a loop-into-helix motif (Fig 

S9D; RNA Puzzle 21; Thermobifida fusca guanidinium III riboswitch; PDB code: 5NWQ).  

 

Helix width experiment (Figure 4A) 

An ideal five-base-pair A-form helix was constructed using Rosetta’s RNA tools: 

 

rna_helix.py -seq gcgcg cgcgc 

 

The two strands from the resulting PDB were translated relative to each other using 

PyRosetta (53): the rigid-body degree-of-freedom between the two strands was placed between 

the C4′ atom of the third and eighth residues of the PDB (i.e., the middle residue of each strand), 

and Rosetta’s RigidBodyTransMover was employed to sample strand translations every 0.1 Å 

for 10 Å in both directions. 

 

RNA characteristics experiment (Fig. 4B) 

We assembled a set of non-redundant RNA structures based on the Representative Sets of 

RNA 3D Structures (54). We used version 3.91 at 2.5 Å resolution cutoff, which consisted of 

1952 structures total. We removed structures with fewer than 100 non-hydrogen atoms (348 

structures, 17.8% of total), because RNAs with fewer than five nucleotides generally do not form 

well-defined monomeric structures in solution. We also removed structures with more than 

20,000 non-hydrogen atoms (29 structures, 1.5% of total) due to memory limitations of the 

GPUs we used.  

 

To extract ARES’s learned features for a given RNA, we applied the final selected ARES 

network to this RNA and took the penultimate dense layer’s activations (a vector of length 256). 

We repeated this process for every RNA in the nonredundant RNA structures set, and then 

computed the principal components of the resulting set of activations, comparing them against 

RNA properties as computed by x3dna (55). 

 

Blind structure prediction 

The format of the RNA Puzzles competition involves submitting 10 predictions for an 

RNA, whose structure is only released after the competition. The FARFAR2 protocol (19) was 

used to generate 87170, 52659, 93798, and 150810 candidate structural models for the blind 

prediction challenge of RNA-Puzzles 24, 26, 27, and 28, respectively. Exact inputs to the 

FARFAR2 protocol are described in Table S1 and include secondary structures previously 

predicted in the literature (56–58) as well as threaded local template structures from homologous 

RNAs. Puzzle 24 is the Adenovirus VA-I RNA (59) (PDB code: 6OL3), Puzzle 26 is the 

Geobacillus kaustophilus T-box discriminator–tRNAGly complex (60) (PDB code: 6PMO), 
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Puzzle 27 is the Bacillus subtilis T-box–tRNAGly complex (60) (PDB code: 6POM), and Puzzle 

28 is the Nocardia farcinic T-box–tRNAIle complex (61) (PDB code: 6UFM).  

 

These candidates were ranked by ARES, and then either the top 1% of structures (for Puzzle 

24) or the best 400 structures (for Puzzles 26, 27, and 28) were clustered using Rosetta’s 

rna_cluster application, using a cluster radius of either 5.0 Å (for Puzzle 24) or a function of the 

simulation ‘convergence’ as measured by the mean pairwise RMSD among the top 10 models 

(19, 62) (for Puzzles 26, 27, 28). This resulted in a cluster radius of 5.0 Å for Puzzles 26 and 27. 

For Puzzle 28, three distinct model sets starting from slightly different template structures and 

modeling conditions were analyzed in this fashion and their resulting clusters pooled (see Table 

S1). The radii in this case were 9.0 Å (for the “cst” subset) and 14.0 Å (for the other two 

subsets). For each cluster, we submitted as a representative the model with the best Rosetta 

score. The best 10 cluster representatives, again ranked by ARES score, were submitted to each 

competition. These are available at https://www.rnapuzzles.org under the name DasTFN for 

Puzzle 24 and the name TFN for Puzzles 26, 27, and 28. 

 

For each competition, we also submitted another set using the same procedure applied to the 

same pool of candidate structural models, but instead using the all-atom Rosetta energy function 

for initial and cluster rankings, under the name FARFAR2.  

 

The structural models submitted for Puzzles 24, 26, 27, and 28 were locked down upon 

submission to the RNA Puzzles competition. The dates they were submitted, as well as the 

organizers of each Puzzle, can be found on rnapuzzles.org. Note that FARFAR2 does not predict 

coordinates for phosphate atoms on 5′ chain termini; for RNA Puzzles submissions, they are 

grafted on using a deterministic procedure (the rna_graft executable with the flag  

-unvirtualize_phosphate), simply to meet model formatting requirements. For Puzzles 26, 27, 

and 28, where 5′ phosphate atoms had been erroneously omitted in the original submission, the 

competition organizers accepted updated models with 5′ phosphate atoms placed. 

 

After the release of the experimentally determined structure, the exact same procedures 

(ranking, selecting the top 400 or top 1% of structures, and clustering) were applied to the same 

pool of candidate structural models, using other scoring functions for the ranking of both 

individual models and clusters. These scoring functions were RNA3DCNN (23), 3dRNAscore, 

and RASP. All of our blind and retrospective submissions are listed in Table S5. 

 

ARES usability and performance 

We have created an ARES webserver that accepts candidate structural models and provides 

the ARES score for each: http://drorlab.stanford.edu/ares.html. The candidate structural models 

described in this manuscript were created with the FARFAR2 software (19). FARFAR2 is 

available as a webserver at http://rosie.rosettacommons.org/farfar2.  

 

ARES itself is computationally inexpensive, and its memory and compute requirements 

scale linearly with the number of nucleotides in an RNA. As a concrete data point, on a single 

Titan X Pascal GPU, scoring all 87,000 structural models for blind prediction A (Figure 3) took 

less than 3.5 hours (i.e., ARES scored 7 models per second). This RNA has 112 nucleotides and 

2352 non-hydrogen atoms. While the Titan X Pascal GPU’s 12 gigabytes of memory can 

http://167.99.175.117/static/ares.html
http://rosie.rosettacommons.org/farfar2
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accommodate up to 20,000 non-hydrogen atoms (~1,000 nucleotides), more recent GPUs are 

much faster and have much more memory, accommodating RNAs of over 6,500 nucleotides. 

RNAs larger than this are extremely rare but could be accommodated by parallelization across 

multiple GPUs. We provide a Pytorch (63) implementation of ARES (32, 33). This 

implementation draws on the E3NN library (64). 

 

Use of ARES, like any other scoring function, requires that one first generate candidate 

models to be scored. This “sampling” procedure is typically more computationally expensive 

than the scoring itself. For example, generating the 87,000 structural models mentioned above 

with FARFAR2 required 906 CPU-hours on a 32-core, 2.5 GHz AMD EPYC 7502 CPU. More 

powerful CPUs are now available, and this calculation can easily be parallelized both across 

cores and across CPUs, substantially reducing the compute time. FARFAR2’s memory and 

compute requirements scale sub-quadratically with the number of nucleotides in an RNA. Using 

16 GB of memory, FARFAR2 can generate structural models for RNAs with over 6,500 

nucleotides.  

 

  



 

12 

 

 

Fig. S1.  

ARES architecture. A, Composition of layers in the ARES network. A structural model is 

provided as input, and mapped through the layers, resulting in a scalar prediction of the RMSD 

to the experimentally determined structure (12). B, Equivariant convolutions combine radial (a) 

and angular (b) sub-functions, allowing for the efficient capture of detailed geometric 

information. The radial sub-functions only take into account distance between atoms, whereas 

the angular sub-functions only take into account their relative orientations. Together, they can 

represent complex geometric patterns. 
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Fig. S2. 

Experimentally determined structures for RNAs in the training and benchmark. A, The 

training set is composed of small RNA structures. They are derived from FARFAR2-Classics, 

which consists of RNAs whose structures were published in 2007 or earlier. The final four RNAs 

are used for hyperparameter tuning (the three in the last row, and the rightmost one in the 

penultimate row). B, Benchmark 1 is composed of larger RNA structures. These are from 

FARFAR2-Puzzles, which consists of RNA molecules used in more recent blind structure 

prediction challenges (structures published in 2011 or later). C, Benchmark 2 is composed of 

RNAs whose structures were published in 2008 or later. Each is in a different Rfam family from 

any other and from any structure in the training set, Benchmark 1, or the blind prediction set. 

Each includes one or more of the following hallmarks of structural complexity: multiway 

junctions, tertiary contacts, and ligand binding sites. 
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Fig. S3. 

Detailed analysis of near-native ranking task from Figure 2. For each RNA in Benchmark 1, 

we rank a large set of structural models using ARES as well as three leading scoring functions. 

For each scoring function, we then select the N best-scoring structural models for each RNA, 

where N takes on the values 1, 10, and 100. For each scoring function, RNA, and value of N, we 

record the lowest RMSD across structural models in this set. We quantize these results by 

determining if this RMSD is below 2 Å, between 2 Å and 5 Å, between 5 Å and 10 Å, or above 

10 Å. For each value of N and for each RMSD threshold (2 Å, 5 Å, or 10 Å), the number of 

RNAs with at least one selected model whose RMSD is below the threshold is greater when 

using ARES than when using any of the other three scoring functions. 
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Fig. S4.  

Scatter plots comparing performance of the Rosetta and ARES scoring functions for 

Benchmark 1. We consider again the FARFAR2-Puzzles dataset, which consists of FARFAR2-

generated models of RNA molecules included in previous RNA Puzzles blind structure 

prediction challenges. Each pair of scatter plots compares ARES and Rosetta scores on a 

different RNA from this set, plotting the score assigned to each structural model versus its 

RMSD to the experimentally determined structure. To aid with visualization, the “Rosetta score” 
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plotted here is computed by adding 105 to the original Rosetta score and then taking the natural 

logarithm of the sum. We first consider the structural models provided within FARFAR2-

Puzzles (blue), finding that ARES achieves a better Spearman correlation (bottom right of each 

plot, denoted as 𝒓𝒔) on 17 of the 21 RNAs when ranking these models. To ensure that some 

models were near-native (i.e., within 2 Å RMSD of the experimentally determined native 

structure), we then added a smaller number of models (red) that were generated with energetic 

restraints to the native structure’s coordinates (12). When using only the FARFAR2-Puzzles 

dataset, ARES and Rosetta tend to choose models of similar accuracy, but when the restrained 

near-natives are added in, ARES generally chooses much more accurate models than Rosetta 

(see also Figure 2). Note that analyses based on the FARFAR2-Puzzles data set are biased in 

favor of the Rosetta scoring function, because the FARFAR2 sampling method was tuned using 

this scoring function—specifically, FARFAR2 was tuned to ensure that the best models it 

produced for the RNAs in this particular dataset would be ranked highly by the Rosetta scoring 

function.  
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Fig. S5. 

Further results for Benchmark 2. A, As in Figure 2D, we determine the RMSD of the model 

scored as best by each of seven scoring functions for each RNA, and then plot the median RMSD 

across RNAs for each scoring function. This plot differs from that of Figure 2D because here, we 

score all 5,000 structural models for each RNA and then select the best-scoring one, whereas in 

Figure 2D, we consider 1,000 structural models in each bootstrap sample. B, For each RNA and 

for each of the seven scoring functions, we determine the minimum RMSD across the 10 best-

scoring structural models. For each scoring function, we plot the median across RNAs, with a 

95% confidence interval determined by bootstrapping (12). ARES significantly outperforms each 

of the other scoring functions (p values 0.0004–0.0033; (12)). Of the other scoring functions, 

none significantly outpeforms any other (p values 0.065–0.842). C, Results of an analysis 

identical to that of panel B, except that we score all 5,000 structural models for each RNA and 

then select the 10 best-scoring ones, rather than bootstrapping.  
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Fig. S6. 

The blind predictions on T-box riboswitches are significantly distinct challenges. The three 

T-box riboswitch complexes (RNA B: the Geobacillus kaustophilus T-box discriminator–

tRNAGly, PDB code 6PMO; RNA C: the Bacillus subtilis T-box–tRNAGly, PDB code 6POM; and 

RNA D: the Nocardia farcinic T-box–tRNAIle, PDB code 6UFM), with their tRNA ligands 

shown in gray. The T-box nucleotides of RNA-Puzzle 26 (RNA B), 27 (RNA C), and 28 (RNA 

D) are blue, pink, and lime green respectively. This alignment emphasizes that each of these 

blind prediction challenges involves a distinct subset of residues from different T-box 

riboswitches. Even in the one instance of substantial overlap (RNA B consists exclusively of a 

tRNA bound to a discriminator domain, while RNA C features a larger T-box construct that 
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includes a discriminator domain), there is a visually apparent difference in the conformation of 

the overlapping domain. 
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Fig. S7. 

ARES accurately recovers a structural motif that differs substantially from any in the 

structures used to train ARES. A, In the hinge region shown above (RNA A, PDB code 6OL3, 

the adenovirus VA RNA I), a pseudoknot (red) defines the geometry of an unusual three-way 

junction (helices forming junction in blue). B, ARES accurately recovers the 3D geometry of this 

interaction, and with it the global fold of RNA A (Figure 3). C, The most accurate RNA-Puzzles 

submission for this RNA from any other method( specifically, from Rosetta) recovers this hinge 

region much less accurately. Inter-stem angles shown in top right of each panel are calculated 

between bases 59, 94, and 137, with base numbering as in 6OL3. We note that the hinge region 

bears no resemblance to any interaction found in the FARFAR2-Classics dataset used to train 

ARES. FARFAR2-Classics contains six duplexes, eight stem-loops, two H-type pseudoknots, 

and a hook-turn. Nowhere does a multiway junction appear, let alone one whose geometry is 

constrained by a pseudoknot. 

  



 

21 

 

 

Fig. S8.  

Further blind challenge visualizations. RNAs are as defined in Figure 3 (B: PDB code 6PMO, 

the Geobacillus kaustophilus T-box discriminator–tRNAGly; C: PDB code 6POM, the Bacillus 

subtilis T-box–tRNAGly; D: PDB code 6UFM, the Nocardia farcinic T-box–tRNAIle). For RNA 

B, the best ARES structural model (blue) achieved a 12.5 Å RMSD to the experimentally 

determined structure (green). The best competing structural model (orange) for RNA B, 

identified by human experts in the Das lab, achieved an RMSD of 13.3 Å. For RNA C, the best 

ARES structural model achieved 9.5 Å RMSD. The best competing structural model for RNA C, 

identified by Rosetta automated selection and also by human experts in the Das lab, achieved an 

RMSD of 10.0 Å. For RNA D, the best ARES structural model achieved a 14.5 Å RMSD. The 

best competing structural model for RNA D, submitted by the Adamiak group, achieved an 

RMSD of 18.2 Å.  
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Fig. S9. 

ARES correctly identifies intimate tertiary interactions. We examine the structural model 

with the best ARES score for each of three RNA molecules. Sugar and base atoms of nucleotides 

involved in highlighted interactions are colored in blue and/or red. A, For the Vibrio vulnificus 

purine riboswitch (PDB code 1Y26), ARES accurately places three closely packed helices. B, 

For the same purine riboswitch, ARES correctly identifies a base triplet motif (in blue). C, For a 

synthetic hammerhead ribozyme (RNA Puzzle 15, PDB code 5DI4), ARES identifies an 
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intercalated T-loop motif (T-loop in blue, intercalated base in red). D, For the Thermobifida 

fusca guanidinium-III riboswitch (RNA Puzzle 21, PDB code 5NWQ), ARES identifies a loop-

into-helix motif (helix in blue, loop in red).  
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RNA Sequence Secondary Structure Threaded template inputs 

A:  

VA-I RNA 
(PDB code: 6OL3) 

ggucaugagugccagcgucaagccccggc

uugcuggccggcaacccuccaaccgcggu

ggggugccccgggugaugaccagguuga

guagccgugacggcuacgcggcaagcgcg

gguc  

((((....(.((((((....((.[[[[[)).)

))))))(((..(((.((..{{{.))..))).

)))]]]]]....))))..((((.((((((...

..)))))).)))).....}}}... 

None 

B:  

G. kaustophilus T-box 
discriminator/tRNAGly 

(PDB code: 6PMO) 

gcggaaguaguucagugguagaacaccac
cuugccaaggugggggucgcggguucga

aucccgucuuccgcucca, 
gaaagugggugcgcguuuggcgcaucaa

cucggguggaaccgcgggagcuacgcuc

ucgucccgag 

(((((................................................
.............)))))[[[[, 

.......(((((((.....)))))))....((((]]]]...(((((

.........))))))))).. 

Threaded tRNA template from 
4LCK: residues B:6-66 

C:  

B. subtilis T-box/tRNAGly  

(PDB code: 6POM) 

gcggaaguaguucagugguagaacaccac

cuugccaaggugggggucgcggguucga

aucccgucuuccgcucca, 
guugcagugagagaaagaaguacuugcg

uuuaccucaugaaagcgaccuuagggcgg
uguaagcuaaggaugagcacgcaacgaaa

ggcauucuugagcaauuuuaaaaaagagg

cugggauuuuguucucagcaacuagggu

ggaaccgcgggagaacucucgucccua 

(((((................................................

.............)))))[[[[, 

.((((......((((.......(((((((....(((((........(

(((((...........))))))))))).)))))))........)))

)...)))).............(((((((......)))))))...(((
((]]]]...((((((....))))))))))) 

Threaded tRNA template from 

4LCK: residues B:6-66; threaded 

T-box template from 4LCK: 

residues A:2-12 A:19-29 A:34-74 

A:76-84 A:87-89 A:94-101 

D:  

N. farcinica T-box/tRNAIle (PDB 

code: 6UFM) 

gggccuauagcucaggcgguuagagcgc

uucgcugauaacgaagaggucggagguu

cgaguccuccuaggcccacca, 
ggcgacgauccggccaucaccggggagcc

uucggaagaacggcgccgccggaaacggc
ggcgcucaguagaaccgaacgggugagcc

cgucacagcuc 

 

(((((((..((((.........)))).(((((..[[[..))))).

....(((((.......))))))))))))...., 

(((.....(((((..]]].)))))..)))(((((......(((((

(((((....))))))))))........)))))((((.[[[))))

......]]] 

Each of the three runs used kink-

turn residues C:5-11 C:95-98 

from 4LCK renumbered to B:2-8 

B:25-28, and S-loop residues 

A:19-22 A:82-84 from 4MGN 
renumbered to B:66-69 B:37-39.  

 

One run used an ideal specifier 

helix B:16-18 A:35-37, as well as 

residues A:1-34 A:38-73 from 
1FFK for the tRNA 

(“full_native_28”). The other two 

runs omitted the specifier helix 

and used only A:1-15 A:18-19 

A:22-32 A:40-47 A:49-73 from 
1FFK. One of those two latter 

runs employed constraints to 

specifically reward either of a set 

of contacts: either the S-turn and 

T-loop should make contact, or 
the terminal pseudoknot and the 

D-loop should (“cst”); the other 

did not (“no_cst”).  

 

 

Table S1.  

Exact inputs to FARFAR2 used in producing candidate structural models for each blind 

prediction challenge in this work. These inputs can consist of primary sequence, secondary 

structure, and RNA templates. RNAs are as lettered as in Figure 3. 
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METHOD RNA 
A B C D 

ARES 5.6 15.2 11.9 17.5 

Adamiak 12.0 22.1 24.3 23.4 
Bujnicki 11.2 17.1 21.9 28.5 

Chen 13.2 21.8 14.4 41.7 
Ding 30.3 25.0 — 52.0 

Das (Human) 15.8 16.1 12.7 34.7 

iFoldRNA 12.1 — 108.3 36.2 
RNAComposer 12.6 23.7 18.7 24.3 

Rosetta 9.0 18.0 12.7 27.0 
SimRNA 20.1 21.7 88.2 34.3 

Xiao 18.9 40.5 43.9 48.3 

Table S2. 

Blind RNA structure prediction results quantified with deformation index metric. We 

report the deformation index across base pairing and base stacking interactions (DI all) (65) for 

the blind challenge submissions. Each entry in the table represents the best (lowest) DI across the 

models submitted for one method, as reported by the RNA-Puzzles organizers. RNAs are lettered 

as in Figure 3 (RNA A: the Adenovirus VA-I RNA, PDB code 6OL3; RNA B: the Geobacillus 

kaustophilus T-box discriminator–tRNAGly, PDB code 6PMO; RNA C: the Bacillus subtilis T-

box–tRNAGly, PDB code 6POM; and RNA D: the Nocardia farcinic T-box–tRNAIle, PDB code 

6UFM). For all four RNAs, ARES produced the most accurate structural model of any method as 

measured by the DI all metric. 
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METHOD RNA 
A B C D 

ARES 4.8 12.5 9.5 14.5 

3dRNAscore 9.2 14.9 8.9 24.6 

RASP 4.8 14.1 9.8 24.8 

RNA3DCNN 7.7 13.9 10.3 25.0 

Table S3.  

Analysis of scoring method accuracies on blind prediction challenges. ARES outperforms 

other scoring methods run on the same model sets used to select its own blind challenge 

submissions. These other methods were run after the experimentally determined structures 

became available, using the same ranking and clustering procedure as in the ARES submissions. 

For each of these methods, the tables shows the RMSD (Å) of the most accurate of the ten 

structural models that would have been submitted. RNA3DCNN (23) included the benchmark set 

in its training set and therefore could not be compared in other assessments. RNAs are as defined 

in Figure 3 (A: PDB code 6OL3, the Adenovirus VA-I RNA; B: PDB code 6PMO, the 

Geobacillus kaustophilus T-box discriminator–tRNAGly; C: PDB code 6POM, the Bacillus 

subtilis T-box–tRNAGly; D: PDB code 6UFM, the Nocardia farcinic T-box–tRNAIle).  
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RNA (PDB code) Sequence Secondary Structure 

C. acetobutylicum c-di-

GMP-II riboswitch 

(3Q3Z) 

gcgcggaaacaaugaugaauggguuuaaauugggcacuugac

ucauuuugaguuaguagugcaaccgaccgugcu 

((((((..((......(((((((((......[[[[[[[.)))))))))...))....]]]]]..]]

..)))))). 

Candidatus Koribacter 
versatilis Ellin345  

ADP-binding domain 

(6TFF) 

ggcuucaacaaccccguagguugggccgaaaggcagcgaaucuacuggag

cc (((((((........((((((((.(((....)))..).)))))))))))))) 

B. subtilis cobalamin 
riboswitch (6VMY) 

ggucaaauaggugccgguccgugaacaacagccggcuuaaaagggaaacc

gguaaaagccggugcggucccgccacuguaauuggccaagcgccaagagc
caggauaccugccuguuugaucagcacgaauucugcgaggacagauga 

((((((((((((((((((..((.....)).)))))).....(((...(((((......)))))[[((.....)).(((
...(((((.....)))))..]])))....))))))))))))))).......................... 

Synthetic NiCo 

transition metal binder 

(4RUM) 

gggaacugagcaggcaaugaccagagcggucaugcagccgggcugcgaaa

gcggcaacagaugauacacgcacaucugugggacaguuccca 

((((((((.....((.((((((.....))))))...))...(((((....))))).(((((((.........)))))))

....)))))))). 

Xanthmonas oryzae 
manganese riboswitch 

(6N2V) 

ggcuuggggaguagccugcuuucggaaacgaaagcgccuguaucaacaua

cucggcgaaagccguggugcaggaccgaaaggucuggcgagaccaggcc 

(((((((......(((((((((((....))))))))(((((((((.......((((....)))))))))))))(((.

...)))..)))....))))))) 

Neomycin aptamer 

domain (2MXS) ggcugcuuguccuuuaaugguccaguc (((((...(.((......)).)))))) 

Prochlorococcus 
glutamine (II) 

riboswitch (6QN3) cguucacccuucggggcgcaugggaguagggaacgggauucucau (((((.(((....)))...,[[[[[[[[...)))))..]]]]]]]] 

Enterrococcus faecalis 

SAM-III riboswitch 

(6C27) gggacaaguucccgaaaggauggcggaaacgccagaugccuuguccc ((((((((.((((....)).(((((....)))))))...)))))))) 

Geobacter 3′,3′-cGAMP 

riboswitch (4YAZ) 

gguacacgacaauacuaaaccauccgcgaggauggggcggaaagccuaag

ggucucccugagacagccgggcugccgaaauauc 

((((..((......((...((((((....))))))...))...((((..(((((((...)))))..))))))...))...

)))) 

Fusobacterium 

nucleatum flavin 

monomucleotide 
aptamer domain (6WJR) 

ggaucuucggggcagggugaaauucccgaccggugguauaguccacgaaa

guauuugcuuugauuuggugaaauuccaaaaccgacaguagagucuggau
gagagaagauu 

.(((((((......(((.......)))...((((((....[[))))..(((......)))...(((((.......)))))]
])).(((......))).......))))))) 

Streptococcus mutans 

UA159 tetrahydrofolate 

aptamer (6Q57) 

ggagaguagaugauucgcguuaagugugugugaaugggaugucgucaca

caacgaagcgagagcgcggugaaucauugcauccgcucca 

((((....((((((((((((......(((((((...[[[[[...))))))).....((....))))).))))))))).

]]]]].)))). 

Caldanaerobacter 

subterraneus 

tengcongensis class I 

PreQ1 riboswitch 

(6E1W) cugggucgcaguccccaguuaacaaaacaag (((((..........)))))............. 

Syntrophothermus 

lipocalidus DSM 12680  

phosphoribosyl 

pyrophosphate 

riboswitch (6DLQ) 

ggaaagugugucuaggguuccgcgugcuucggcacggacugguccaagu

gacacagacgcauucgugcguuacaccggagggauagaagcccaggcggg

uagguuuc 

.((((.((((((..((...((((((((....)))))..).)).))....))))))((((((....))))))...(((.

.(((.......)))...))).....)))) 

B. subtilis guanine 

riboswitch (6UBU) 

ggacauauaaucgcguggauauggcacgcaaguuucuaccgggcaccgua

aauguccgacuaugucc ((((((((..(.(((((.....[[))))).)[.....)]((((((]].....))))))..))))))) 

Lactococcus lactis 

YkoY motif (6CB3) 

aaaggggaguagcgucgggaaaccgaaacaaagucgucaauucgugagga

aacucaccggcuuuguugacauacgaaaguauguuuagcaagaccuuuc 

(((((......((.((((....))))((((((((((.......(((((....)))))))))))))))(((((((....

)))))))..))....))))). 

E. coli thiM domain 
(4NYA) 

ggacucggggugcccuucugcgugaaggcugagaaauacccguaucaccu
gaucuggauaaugccagcguagggaaguuc (((((((((.((((.(((.....))))))......)..)))).....(((...((((......))))...)))..))))) 

 

 

Table S4.  
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Exact inputs to FARFAR2 used in producing candidate structural models for each RNA in 

Benchmark 2. These inputs can consist of primary sequence and secondary structure. No RNA 

templates were employed. 
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METHOD RNA RMSD SUBMISSION_ID TAG SUBSET RANK 

3dRNAScore A 10.231 
 

S_000007_228 
 

1 

3dRNAScore A 19.669 
 

S_000007_1345 
 

2 

3dRNAScore A 16.628 
 

S_000011_452 
 

3 

3dRNAScore A 9.176 
 

S_000001_1984 
 

4 

3dRNAScore A 17.985 
 

S_000002_110 
 

5 

3dRNAScore A 13.223 
 

S_000023_1559 
 

6 

3dRNAScore A 17.288 
 

S_000010_753 
 

7 

3dRNAScore A 10.686 
 

S_000001_1325 
 

8 

3dRNAScore A 19.640 
 

S_000037_320 
 

9 

3dRNAScore A 11.573 
 

S_000008_179 
 

10 

3dRNAScore B 23.552 
 

340S_000040 
 

1 

3dRNAScore B 20.168 
 

386S_000046 
 

2 

3dRNAScore B 15.78 
 

23S_000042 
 

3 

3dRNAScore B 17.33 
 

448S_000001 
 

4 

3dRNAScore B 17.487 
 

756S_000047 
 

5 

3dRNAScore B 19.3 
 

788S_000075 
 

6 

3dRNAScore B 18.794 
 

693S_000014 
 

7 

3dRNAScore B 21.831 
 

103S_000014 
 

8 

3dRNAScore B 20.389 
 

692S_000039 
 

9 

3dRNAScore B 14.875 
 

461S_000030 
 

10 

3dRNAScore C 10.318 
 

1311S_000068 
 

1 

3dRNAScore C 15.532 
 

950S_000013 
 

2 

3dRNAScore C 8.879 
 

173S_000008 
 

3 

3dRNAScore C 13.413 
 

1264S_000061 
 

4 

3dRNAScore C 12.383 
 

1288S_000094 
 

5 

3dRNAScore C 16.388 
 

425S_000071 
 

6 

3dRNAScore C 10.341 
 

825S_000076 
 

7 

3dRNAScore C 11.47 
 

627S_000052 
 

8 

3dRNAScore C 10.329 
 

328S_000078 
 

9 

3dRNAScore C 11.928 
 

1126S_000044 
 

10 

3dRNAScore D 29.828 
 

783S_000017  no_cst 1 

3dRNAScore D 24.666 
 

897S_000060  cst 2 

3dRNAScore D 32.915 
 

1159S_000093 cst 3 

3dRNAScore D 32.963 
 

507S_000099  cst 4 

3dRNAScore D 24.550 
 

467S_000027  cst 5 

3dRNAScore D 30.861 
 

256S_000009  no_cst 6 

3dRNAScore D 28.652 
 

651S_000005  no_cst 7 

3dRNAScore D 27.617 
 

1903S_000003 no_cst 8 

3dRNAScore D 35.452 
 

397S_000001  no_cst 9 

3dRNAScore D 24.684 
 

422S_000063  cst 10 

ARES A 10.865 24_DasTFN_1_rpr_0001 S_000001_1684 
 

1 

ARES A 13.228 24_DasTFN_2_rpr_0001 S_000029_113 
 

2 

ARES A 16.643 24_DasTFN_3_rpr_0001 S_000002_1479 
 

3 

ARES A 21.778 24_DasTFN_4_rpr_0001 S_000001_1899 
 

4 

ARES A 19.542 24_DasTFN_5_rpr_0001 S_000027_1292 
 

5 

ARES A 6.53 24_DasTFN_6_rpr_0001 S_000009_1646 
 

6 

ARES A 16.713 24_DasTFN_7_rpr_0001 S_000009_699 
 

7 

ARES A 10.595 24_DasTFN_8_rpr_0001 S_000001_2684 
 

8 

ARES A 8.886 24_DasTFN_9_rpr_0001 S_000007_1799 
 

9 

ARES A 4.828 24_DasTFN_10_rpr_0001 S_000001_2963 
 

10 

ARES B 15.78 PZ26_TFN_1_0001 957S_000037 
 

1 

ARES B 17.66 PZ26_TFN_2_0001 248S_000050 
 

2 

ARES B 12.472 PZ26_TFN_3_0001 700S_000015 
 

3 

ARES B 17.295 PZ26_TFN_4_0001 812S_000012 
 

4 

ARES B 22.753 PZ26_TFN_5_0001 425S_000027 
 

5 

ARES B 17.107 PZ26_TFN_6_0001 170S_000039 
 

6 

ARES B 12.763 PZ26_TFN_7_0001 184S_000018 
 

7 

ARES B 14.756 PZ26_TFN_8_0001 436S_000007 
 

8 

ARES B 18.029 PZ26_TFN_9_0001 902S_000042 
 

9 

ARES B 19.92 PZ26_TFN_10_0001 506S_000011 
 

10 
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ARES C 12.949 PZ27_TFN_1_0001 867S_000066 
 

1 

ARES C 9.454 PZ27_TFN_2_0001 407S_000004 
 

2 

ARES C 11.227 PZ27_TFN_3_0001 596S_000003 
 

3 

ARES C 11.589 PZ27_TFN_4_0001 654S_000048 
 

4 

ARES C 13.691 PZ27_TFN_5_0001 944S_000046 
 

5 

ARES C 12.476 PZ27_TFN_6_0001 461S_000063 
 

6 

ARES C 13.303 PZ27_TFN_7_0001 176S_000044 
 

7 

ARES C 15.104 PZ27_TFN_8_0001 216S_000015 
 

8 

ARES C 11.559 PZ27_TFN_9_0001 133S_000010 
 

9 

ARES C 10.866 PZ27_TFN_10_0001 115S_000021 
 

10 

ARES D 25.162 PZ28_TFN_1_0001 590S_000004 no_cst 1 

ARES D 35.976 PZ28_TFN_2_0001 921S_000013 no_cst 2 

ARES D 14.49 PZ28_TFN_3_0001 1394S_000008 no_cst 3 

ARES D 31.924 PZ28_TFN_4_0001 1660S_000011 no_cst 4 

ARES D 30.054 PZ28_TFN_5_0001 1206S_000006 no_cst 5 

ARES D 31.364 PZ28_TFN_6_0001 1194S_000023 cst 6 

ARES D 30.525 PZ28_TFN_7_0001 489S_000006 cst 7 

ARES D 33.036 PZ28_TFN_8_0001 1801S_000007 no_cst 8 

ARES D 29.111 PZ28_TFN_9_0001 346S_000003 no_cst 9 

ARES D 23.035 PZ28_TFN_10_0001 534S_000001 no_cst 10 

Das (Human) A 15.866 24_Das_1_rpr_0001 n/a 
 

1 

Das (Human) A 17.21 24_Das_2_rpr_0001 n/a 
 

2 

Das (Human) A 16.757 24_Das_3_rpr_0001 n/a 
 

3 

Das (Human) A 14.965 24_Das_4_rpr_0001 n/a 
 

4 

Das (Human) A 14.323 24_Das_5_rpr_0001 n/a 
 

5 

Das (Human) A 14.525 24_Das_6_rpr_0001 n/a 
 

6 

Das (Human) A 13.57 24_Das_7_rpr_0001 n/a 
 

7 

Das (Human) A 14.882 24_Das_8_rpr_0001 n/a 
 

8 

Das (Human) A 14.056 24_Das_9_rpr_0001 n/a 
 

9 

Das (Human) A 16.417 24_Das_10_rpr_0001 n/a 
 

10 

Das (Human) B 15.243 PZ26_Das_1_0001 n/a 
 

1 

Das (Human) B 14.302 PZ26_Das_2_0001 n/a 
 

2 

Das (Human) B 15.631 PZ26_Das_3_0001 n/a 
 

3 

Das (Human) B 16.832 PZ26_Das_4_0001 n/a 
 

4 

Das (Human) B 15.26 PZ26_Das_5_0001 n/a 
 

5 

Das (Human) B 17.084 PZ26_Das_6_0001 n/a 
 

6 

Das (Human) B 16.277 PZ26_Das_7_0001 n/a 
 

7 

Das (Human) B 17.57 PZ26_Das_8_0001 n/a 
 

8 

Das (Human) B 13.329 PZ26_Das_9_0001 n/a 
 

9 

Das (Human) B 17.483 PZ26_Das_10_0001 n/a 
 

10 

Das (Human) C 12.219 PZ27_Das_1_0001 n/a 
 

1 

Das (Human) C 10.046 PZ27_Das_2_0001 n/a 
 

2 

Das (Human) C 12.12 PZ27_Das_3_0001 n/a 
 

3 

Das (Human) C 14.725 PZ27_Das_4_0001 n/a 
 

4 

Das (Human) C 10.63 PZ27_Das_5_0001 n/a 
 

5 

Das (Human) C 11.742 PZ27_Das_6_0001 n/a 
 

6 

Das (Human) C 12.042 PZ27_Das_7_0001 n/a 
 

7 

Das (Human) C 10.788 PZ27_Das_8_0001 n/a 
 

8 

Das (Human) C 11.774 PZ27_Das_9_0001 n/a 
 

9 

Das (Human) C 13.149 PZ27_Das_10_0001 n/a 
 

10 

Das (Human) D 30.843 PZ28_Das_1_0001 n/a 
 

1 

Das (Human) D 35.372 PZ28_Das_2_0001 n/a 
 

2 

Das (Human) D 31.461 PZ28_Das_3_0001 n/a 
 

3 

Das (Human) D 31.445 PZ28_Das_4_0001 n/a 
 

4 

Das (Human) D 32.647 PZ28_Das_5_0001 n/a 
 

5 

Das (Human) D 31.702 PZ28_Das_6_0001 n/a 
 

6 

Das (Human) D 31.239 PZ28_Das_7_0001 n/a 
 

7 

Das (Human) D 30.989 PZ28_Das_8_0001 n/a 
 

8 

Das (Human) D 33.151 PZ28_Das_9_0001 n/a 
 

9 

Das (Human) D 28.84 PZ28_Das_10_0001 n/a 
 

10 

RASP A 9.42 
 

S_000014_030 
 

1 

RASP A 13.223 
 

S_000023_1559 
 

2 

RASP A 16.777 
 

S_000001_2849 
 

3 
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RASP A 6.083 
 

S_000001_1308 
 

4 

RASP A 8.580 
 

S_000003_1458 
 

5 

RASP A 10.665 
 

S_000009_077 
 

6 

RASP A 15.639 
 

S_000005_1330 
 

7 

RASP A 19.045 
 

S_000001_707 
 

8 

RASP A 17.059 
 

S_000022_035 
 

9 

RASP A 4.828 
 

S_000001_2963 
 

10 

RASP B 17.382 
 

276S_000054 
 

1 

RASP B 18.271 
 

61S_000062 
 

2 

RASP B 15.612 
 

480S_000009 
 

3 

RASP B 21.219 
 

756S_000041 
 

4 

RASP B 23.21 
 

555S_000013 
 

5 

RASP B 16.352 
 

652S_000058 
 

6 

RASP B 21.594 
 

6S_000060 
 

7 

RASP B 14.062 
 

289S_000053 
 

8 

RASP B 14.974 
 

411S_000024 
 

9 

RASP B 16.193 
 

259S_000063 
 

10 

RASP C 11.141 
 

952S_000047 
 

1 

RASP C 12.767 
 

1104S_000030 
 

2 

RASP C 11.426 
 

1099S_000003 
 

3 

RASP C 11.3 
 

274S_000057 
 

4 

RASP C 12.696 
 

1165S_000014 
 

5 

RASP C 13.03 
 

1120S_000075 
 

6 

RASP C 11.25 
 

331S_000054 
 

7 

RASP C 13.084 
 

1069S_000031 
 

8 

RASP C 10.852 
 

471S_000063 
 

9 

RASP C 9.761 
 

196S_000028 
 

10 

RASP D 29.828 
 

783S_000017 no_cst 1 

RASP D 35.976 
 

921S_000013 no_cst 2 

RASP D 27.702 
 

1572S_000007 no_cst 3 

RASP D 24.815  1679S_000004 no_cst 4 

RASP D 29.020 
 

825S_000039 cst 5 

RASP D 32.963 
 

507S_000099 cst 6 

RASP D 31.364 
 

1194S_000023 cst 7 

RASP D 30.231 
 

155S_000014 no_cst 8 

RASP D 26.681 
 

371S_000061 cst 9 

RASP D 27.768 
 

639S_000029 full_naive_28 10 

RNA3DCNN A 16.550 
 

S_000001_2992 
 

1 

RNA3DCNN A 14.045 
 

S_000006_2657 
 

2 

RNA3DCNN A 16.726 
 

S_000009_181 
 

3 

RNA3DCNN A 16.628 
 

S_000011_452 
 

4 

RNA3DCNN A 9.420 
 

S_000014_030 
 

5 

RNA3DCNN A 10.449 
 

S_000002_084 
 

6 

RNA3DCNN A 7.710 
 

S_000001_2510 
 

7 

RNA3DCNN A 12.112 
 

S_000008_1580 
 

8 

RNA3DCNN A 14.886 
 

S_000005_1029 
 

9 

RNA3DCNN A 19.050 
 

S_000011_643 
 

10 

RNA3DCNN B 16.193 
 

259S_000063 
 

1 

RNA3DCNN B 18.059 
 

328S_000085 
 

2 

RNA3DCNN B 17.112 
 

596S_000019 
 

3 

RNA3DCNN B 18.617 
 

350S_000010 
 

4 

RNA3DCNN B 16.099 
 

56S_000006 
 

5 

RNA3DCNN B 13.861 
 

682S_000011 
 

6 

RNA3DCNN B 18.679 
 

545S_000027 
 

7 

RNA3DCNN B 17.815 
 

717S_000056 
 

8 

RNA3DCNN B 14.056 
 

817S_000079 
 

9 

RNA3DCNN B 18.546 
 

23S_000009 
 

10 

RNA3DCNN C 12.789 
 

1431S_000056 
 

1 

RNA3DCNN C 10.944 
 

658S_000041 
 

2 

RNA3DCNN C 10.497 
 

1219S_000032 
 

3 

RNA3DCNN C 12.042 
 

271S_000062 
 

4 

RNA3DCNN C 13.143 
 

1440S_000008 
 

5 

RNA3DCNN C 10.256 
 

914S_000063 
 

6 
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RNA3DCNN C 10.75 
 

1035S_000030 
 

7 

RNA3DCNN C 11.123 
 

1128S_000074 
 

8 

RNA3DCNN C 11.938 
 

934S_000068 
 

9 

RNA3DCNN C 12.345 
 

191S_000046 
 

10 

RNA3DCNN D 32.843 
 

509S_000021  cst 1 

RNA3DCNN D 24.957 
 

340S_000009  no_cst 2 

RNA3DCNN D 29.020 
 

825S_000039  cst 3 

RNA3DCNN D 27.835 
 

1130S_000013 no_cst 4 

RNA3DCNN D 33.111 
 

539S_000026  no_cst 5 

RNA3DCNN D 32.581 
 

632S_000074  full_naive_28 6 

RNA3DCNN D 32.906 
 

1074S_000002 no_cst 7 

RNA3DCNN D 27.189 
 

1422S_000011 no_cst 8 

RNA3DCNN D 29.828 
 

783S_000017  no_cst 9 

RNA3DCNN D 25.819 
 

1572S_000010 no_cst 10 

Rosetta A 16.643 24_FARFAR2_1_rpr_0001 S_000002_1479 
 

1 

Rosetta A 16.741 24_FARFAR2_2_rpr_0001 S_000008_153 
 

2 

Rosetta A 19.045 24_FARFAR2_3_rpr_0001 S_000001_707 
 

3 

Rosetta A 13.461 24_FARFAR2_4_rpr_0001 S_000007_1249 
 

4 

Rosetta A 18.381 24_FARFAR2_5_rpr_0001 S_000002_2275 
 

5 

Rosetta A 8.886 24_FARFAR2_6_rpr_0001 S_000007_1799 
 

6 

Rosetta A 12.112 24_FARFAR2_7_rpr_0001 S_000008_1580 
 

7 

Rosetta A 12.948 24_FARFAR2_8_rpr_0001 S_000009_1583 
 

8 

Rosetta A 7.636 24_FARFAR2_9_rpr_0001 S_000001_2948 
 

9 

Rosetta A 10.113 24_FARFAR2_10_rpr_0001 S_000001_1304 
 

10 

Rosetta B 14.302 PZ26_FARFAR2_1_0001 623S_000057 
 

1 

Rosetta B 16.832 PZ26_FARFAR2_2_0001 205S_000077 
 

2 

Rosetta B 15.26 PZ26_FARFAR2_3_0001 96S_000070 
 

3 

Rosetta B 17.084 PZ26_FARFAR2_4_0001 111S_000002 
 

4 

Rosetta B 14.888 PZ26_FARFAR2_5_0001 267S_000043 
 

5 

Rosetta B 16.277 PZ26_FARFAR2_6_0001 772S_000058 
 

6 

Rosetta B 17.57 PZ26_FARFAR2_7_0001 264S_000069 
 

7 

Rosetta B 15.015 PZ26_FARFAR2_8_0001 789S_000021 
 

8 

Rosetta B 19.795 PZ26_FARFAR2_9_0001 218S_000064 
 

9 

Rosetta B 15.631 PZ26_FARFAR2_10_0001 634S_000002 
 

10 

Rosetta C 10.788 PZ27_FARFAR2_1_0001 917S_000001 
 

1 

Rosetta C 10.046 PZ27_FARFAR2_2_0001 699S_000081 
 

2 

Rosetta C 12.219 PZ27_FARFAR2_3_0001 262S_000075 
 

3 

Rosetta C 12.12 PZ27_FARFAR2_4_0001 451S_000060 
 

4 

Rosetta C 14.725 PZ27_FARFAR2_5_0001 177S_000089 
 

5 

Rosetta C 10.308 PZ27_FARFAR2_6_0001 588S_000029 
 

6 

Rosetta C 12.042 PZ27_FARFAR2_7_0001 271S_000062 
 

7 

Rosetta C 10.63 PZ27_FARFAR2_8_0001 264S_000055 
 

8 

Rosetta C 11.742 PZ27_FARFAR2_9_0001 302S_000065 
 

9 

Rosetta C 16.525 PZ27_FARFAR2_10_0001 414S_000035 
 

10 

Rosetta D 29.828 PZ28_FARFAR2_1_0001 783S_000017 nocst 1 

Rosetta D 30.241 PZ28_FARFAR2_2_0001 701S_000025 cst 2 

Rosetta D 22.141 PZ28_FARFAR2_3_0001 10S_000005 nocst 3 

Rosetta D 33.932 PZ28_FARFAR2_4_0001 1831S_000008 nocst 4 

Rosetta D 35.164 PZ28_FARFAR2_5_0001 1412S_000001 nocst 5 

Rosetta D 35.372 PZ28_FARFAR2_6_0001 478S_000033 cst 6 

Rosetta D 34.574 PZ28_FARFAR2_7_0001 776S_000057 cst 7 

Rosetta D 28.84 PZ28_FARFAR2_8_0001 650S_000062 full_naive_28 8 

Rosetta D 34.954 PZ28_FARFAR2_9_0001 867S_000075 full_naive_28 9 

Rosetta D 29.97 PZ28_FARFAR2_10_0001 424S_000067 full_naive_28 10 

 

Table S5.  

Comparison of the models selected by ARES and other scoring functions for the 4 RNAs shown 

in Figure 3 (RNA A: the Adenovirus VA-I RNA, PDB code 6OL3; RNA B: the Geobacillus 

kaustophilus T-box discriminator–tRNAGly, PDB code 6PMO; RNA C: the Bacillus subtilis T-
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box–tRNAGly, PDB code 6POM; and RNA D: the Nocardia farcinic T-box–tRNAIle, PDB code 

6UFM). For each RNA, each method ranks the same set of structural models, all generated by 

the FARFAR2 sampling procedure. For each scoring function, we list the 10 best-ranked 

structural models for each RNA, as the allow RNA Puzzles competition allows submission of ten 

models per method (12). We report the official submissions (ARES, Das (Human), and Rosetta) 

to the RNA Puzzles competition, as well as the structural models selected by the other scoring 

functions listed in Table S3. The official submissions have their public submission identifier 

included with them. For RNA D, three different subsets were analyzed, as documented in Table 

S1. The human experts in the Das lab also considered additional candidate structural models 

from simulations that featured manual buildup of RNA modules rather than purely relying on the 

automated FARFAR2 protocol; these additional models have no associated tag. All submitted 

models for the blind challenges may be found at https://www.rnapuzzles.org. 
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