iScience, Volume 26

Supplemental information

Eliminating host-guest incompatibility

via enzyme mining enables the high-temperature

production of N-acetylglucosamine

Yutong Wu, Jiongqin Liu, Xiao Han, Xuanlin Meng, Mengke Li, Jing Wang, Hongsong Xue, Yuhan Yang, Ping Xu, and Fei Tao

Supplemental Information Supplementary Figures

Figure S1. Analysis of the constructed plasmids by restriction enzyme digestion, related to Figure 3.

(A) M, marker; 1-3 analysis of pKVMΔ*gamA*; 4-6 analysis of pKVMΔ*nagAB*

(B) M, marker; 1-3 analysis of pKVMΔ*nagP1*; 4-6 analysis of pKVMΔ*nagP2*

Figure S2. Codon optimization and promoter screening, related to Figure 3.

- (A) Shake flask fermentation of ScBNGS1 and ScopBNGS1 at 37 °C and 50 °C.
- (B) Different promoter screening at 37°C.

Figure S3. Multiple alignment of ScGNA1 with *Tt*GNA1, *Ct*GNA1, *Mt*GNA1, and *Nf*GNA1, related to Figure 2, Figure 3 and Figure 4.

Figure S4. Purification of *Tt*GNA1, *Ct*GNA1, *Mt*GNA1, and *Nt*GNA1, related to Figure 4.
(A) SDS-PAGE of purified *Nt*GNA1. Lane M, marker; lane 1, cell disruption solution of *Nt*GNA1; lane 2, precipitation of induced cell lysate; lane 3, supernatant of induced cell lysate; lane 4, Elute *Nt*GNA1 with 50mM imidazole; lane 5, Elute *Nt*GNA1 with 200mM imidazole.
(B) SDS-PAGE of purified *Ct*GNA1. Lane M, marker; lane 1, cell disruption solution of *Ct*GNA1; lane 2, precipitation of induced cell lysate; lane 3, supernatant of induced cell lysate; lane 4, Elute *Ct*GNA1 with 50mM imidazole; lane 5, Elute *Ct*GNA1 with 200mM imidazole.
(C) SDS-PAGE of purified *Mt*GNA1. Lane M, marker; lane 1, cell disruption solution of *Mt*GNA1; lane 2, precipitation of induced cell lysate; lane 3, supernatant of induced cell lysate; lane 4, Elute *Ct*GNA1 with 50mM imidazole; lane 5, Elute *Ct*GNA1 with 200mM imidazole.
(C) SDS-PAGE of purified *Mt*GNA1. Lane M, marker; lane 1, cell disruption solution of *Mt*GNA1; lane 2, precipitation of induced cell lysate; lane 3, supernatant of induced cell lysate; lane 4, Elute *Ct*GNA1 with 50mM imidazole; lane 5, Elute *Mt*GNA1 with 200mM imidazole.
(D) Elute *Tt*GNA1 with 200mM imidazole; lane 6, cell disruption solution of *Tt*GNA1; lane 7, precipitation of induced cell lysate; lane 8, supernatant of induced cell lysate; lane 4, Elute *Tt*GNA1 with 50mM imidazole; lane 5, Elute *Tt*GNA1 with 200mM imidazole.

Figure S5. Analysis of size exclusion chromatography on Superdex 200 (ÄTKA purifier) of *Ct*GNA1, *Nt*GNA1, *Mt*GNA1, and *Tt*GNA1, related to Figure 4 and Figure 5.

Each of the elution volume of *Ct*GNA1, *Nt*GNA1, *Mt*GNA1, and *Tt*GNA1 is 13.7 mL, 14 mL, 13.7 mL and 13.6 mL, respectively. The equations for the molecular masses of the standard proteins were used versus their elution volume values: y = -0.31427x + 1.89014, x = lg Mr, y = Kav (Ve-Vo)/(Vc-Vo).

Figure S6. Activity assay of ScGNA1, related to Figure 4.

(A) SDS-PAGE of purified ScGNA1. Lane M, marker; lane 1, cell disruption solution of ScGNA1; lane 2, precipitation of induced cell lysate; lane 3, supernatant of induced cell lysate; lane 4, Elute ScGNA1 with 50mM imidazole; lane 5, Elute ScGNA1 with 200mM imidazole.
(B) Effects of temperature on the activities of ScGNA1.

(C) Effects of pH on activities of ScGNA1. Square, citric acid-sodium citrate; Triangle,

NaH₂PO₄-Na₂HPO₄; Rhombus, Tris-HCl; Star, NaHCO₃-Na₂CO₃.

(D) Thermal stability of ScGNA1 at 37°C, 50°C, and 60°C.

Triplicate experiments were carried out for physiological measurements, and error bars represent standard deviation.

Figure S7. Protein thermostability tests for *Ct*GNA1, *Mt*GNA1, *Tt*GNA1, *Nf*GNA1, and *Sc*GNA1 using nano differential scanning calorimeter (Nano DSC, the TA instruments, USA), related to Figure 4.

Figure S8. Protein stability prediction of *Tt*GNA1, *Mt*GNA1, *Nf*GNA1, *Ct*GNA1, and *Sc*GNA1 based on FoldX, related to Figure 5.

Figure S9. Calculated the number of hydrogen bonds bound to the products CoA and GlcNAc-6P for *Ct*GNA1, related to Figure 5.

Figure S10. Calculated the number of hydrogen bonds bound to the products CoA and GlcNAc-6P for *Mt*GNA1, related to Figure 5.

Figure S11. Calculated the number of hydrogen bonds bound to the products CoA and GlcNAc-6P for *Tt*GNA1, related to Figure 5.

Figure S12. Calculated the number of hydrogen bonds bound to the products CoA and GlcNAc-6P for *Nf*GNA1, related to Figure 5.

Figure S13. Characterization of P_{als} and P_{glms} promoters in *B.licheniformis* MW3, related to Figure 5.

The strength of the promoters was characterized using *Sf*GFP as a reporter. N, negative control (promoter-less vector pHY300PLK). The fluorescence intensities were measured when the bacteria were cultured for 12h and 24h, respectively. The shake-flask fermentation medium was used for the experiment.

(A) Growth curve of shake-flask fermentation for CtBNGS3 and CtBNGS4.

- (B) Growth curve of shake-flask fermentation for *Mt*BNGS3 and *Mt*BNGS4.
- (C) Growth curve of shake-flask fermentation for *Nf*BNGS3 and *Nf*BNGS4.
- (D) Growth curve of shake-flask fermentation for *Tt*BNGS3 and *Tt*BNGS4.

Figure S16. HPLC-MS detection of GlcNAc in purified sample for *Nf*BNGS4, related to Figure 7.

Figure S17. ¹HMR detection of GIcNAc in purified sample for *Nf*BNGS4, related to Figure 7.

Figure S18. Production of GlcNAc in fed-batch fermentation in a 50-L bioreactor at 42 $^{\circ}$ C by *Tt*BNGS4, related to Figure 7.

Figure S19. Production of GlcNAc in fed-batch fermentation in a 50-L bioreactor at 50 $^{\circ}$ C by *Tt*BNGS3, related to Figure 7.

Figure S20. Production of GlcNAc in fed-batch fermentation in a 50-L bioreactor at 50 $^{\circ}$ C, related to Figure 7.

(A) Fed-batch fermentation of *Ct*BNGS4 in a 50-L bioreactor at 50 $^{\circ}$ C. OD₆₀₀, potical density at 600 nm.

(B) Fed-batch fermentation of *Mt*BNGS4 in a 50-L bioreactor at 50 °C. OD₆₀₀, potical density at 600 nm.

(C) Fed-batch fermentation of *Nf*BNGS4 in a 50-L bioreactor at 50 $^{\circ}$ C. OD₆₀₀, potical density at 600 nm.

(D) Fed-batch fermentation of *Ct*BNGS3 in a 50-L bioreactor at 50 °C. OD₆₀₀, potical density at 600 nm.

(E) Fed-batch fermentation of *Mt*BNGS3 in a 50-L bioreactor at 50 °C. OD₆₀₀, potical density at 600 nm.

(F) Fed-batch fermentation of *Nf*BNGS3 in a 50-L bioreactor at 50 °C. OD₆₀₀, potical density at 600 nm.

Figure S21. Production of GlcNAc in fed-batch fermentation in a 50-L bioreactor at 45 $^{\circ}$ C by *Tt*BNGS4, related to Figure 7.

Figure S22. Production of GlcNAc in fed-batch fermentation in a 50-L bioreactor at 47 $^{\circ}$ C by *Tt*BNGS4, related to Figure 7.

Figure S23. Transcriptome analysis comparison with BNGS4 and *Nf*BNGS4 in key metabolic pathway, related to Figure 8.

Figure S24. Transcriptome analysis comparison with *Tt*BNGS4 and *Nt*BNGS4 in key metabolic pathway, related to Figure 8.

Figure S25. Shake-flask fermentation, related to Figure 7.

(A) Shake-flask fermentation of *Ct*BNGS1, *Ct*BNGS2, *Ct*BNGS3, and *Ct*BNGS4 at 37°C, 42°C, and 50°C, respectively. Triplicate experiments were carried out for physiological measurements, and error bars represent standard deviation. *p<0.05, **p<0.01, ***p<0.001 as determined by t test.

(B) Shake-flask fermentation of *Mt*BNGS1, *Mt*BNGS2, *Mt*BNGS3, and *Mt*BNGS4 at 37°C, 42°C, and 50°C, respectively. Triplicate experiments were carried out for physiological measurements, and error bars represent standard deviation. *p<0.05, **p<0.01, ***p<0.001 as determined by t test.

(C) Shake-flask fermentation of *Nf*BNGS1, *Nf*BNGS2, *Nf*BNGS3, and *Nf*BNGS4 at 37°C, 42°C, and 50°C, respectively. Triplicate experiments were carried out for physiological measurements, and error bars represent standard deviation. *p<0.05, **p<0.01, ***p<0.001 as determined by t test.

(D) Shake-flask fermentation of *Tt*BNGS1, *Tt*BNGS2, *Tt*BNGS3, and *Tt*BNGS4 at 37°C, 42°C, and 50°C, respectively. Triplicate experiments were carried out for physiological measurements, and error bars represent standard deviation. *p<0.05, **p<0.01, ***p<0.001 as determined by t test.

Supplementary Tables

Number	Genome Acc. No.	Score	E-Value	Protein ID and Annotation
1	Talth1p4.representatives	308	2.16E-35	Talth1p4_004467
2	Dacth1p7.accepted	305	1.07E-34	Dacth1p7_004956
3	Calth2p4.representatives	303	1.26E-34	Calth2p4_002930
4	Thela2p4.representatives	302	1.73E-34	Thela2p4_001470
5	Paeby1p7.accepted	298	5.80E-34	Paeby1p7_013401
6	Theau2p4.representatives	296	2.33E-33	Theau2p4_007854
7	Talth1p4.representatives	289	3.68E-32	Talth1p4_001395
8	Thela2p4.representatives	287	6.43E-32	Thela2p4_003400
9	Rhipu1p4.representatives	284	8.01E-32	Rhipu1p4_009376
10	Paeby1p7.accepted	288	8.23E-32	Paeby1p7_002255
11	Acrth2p7.accepted	283	9.43E-32	Acrth2p7_012607
12	Thest2p7.accepted	282	1.53E-31	Thest2p7_018758
13	Corth2p4.representatives	282	1.67E-31	Corth2p4_004224
14	Myrth2p4.representatives	278	5.62E-31	Myrth2p4_006746
15	Spoth2p4.representatives	278	6.06E-31	Spoth2p4_009953
16	Scyth2p4.representatives	277	8.16E-31	Scyth2p4_002266
17	Chath2p7.accepted	277	1.08E-30	Chath2p7_007107
18	Thite2p4.representatives	275	1.90E-30	Thite2p4_002933
19	Thiau2p7.accepted	274	2.40E-30	Thiau2p7_011322
20	Humhy2p7.accepted	263	1.18E-28	Humhy2p7_018757
21	Calth2p4.representatives	242	1.45E-25	Calth2p4_007804
22	Acrth2p7.accepted	239	5.00E-25	Acrth2p7_011569
23	CBS620.91p7.accepted	234	5.06E-25	CBS620.91p7_001600
24	Rhipu1p4.representatives	210	1.05E-20	Rhipu1p4_001988
25	Calth2p4.representatives	96	0.000257906	Calth2p4_004126
26	Humhy2p7.accepted	95	0.000458471	Humhy2p7_011674
27	Rhipu1p4.representatives	91	0.00128448	Rhipu1p4_002247
28	Chath2p7.accepted	88	0.00321645	Chath2p7_017277
29	Corth2p4.representatives	86	0.00374988	Corth2p4_002251
30	CBS620.91p7.accepted	85	0.00878263	CBS620.91p7_000313
31	Myrth2p4.representatives	83	0.00968691	Myrth2p4_005675

Table S1 Screened GNA1 candidate thermophilic enzymes based on thermophilic fungidatabase, related to Figure 2.

Note: Number 1, 2, 8, 10, 11, 14, 16, and 17 have been screened.

Number	GNA1 enzyme from	Tm Index	Aliphatic Index
1	Kluyveromyces lactis	2.3148	112.3404
2	Phycomyces blakesleeanus	1.9162	111.6667
3	Aphanomyces astaci	2.4129	108.2877
4	Kuraishia capsulata	1.8453	107.0395
5	Cryptococcus gattii CA1280	1.8672	107.0186
6	Panicum hallii	1.7310	106.8987
7	Anaeromyces robustus	1.8783	105.7143
8	Hymenolepis nana	2.0458	103.4737
9	Nadsonia fulvescens	2.7142	103.3533
10	Aureobasidium pullulans	1.9133	102.7517
11	Magnaporthiopsis poae	2.0930	102.1637
12	Oncopeltus fasciatus	2.4285	101.8782
13	Echinococcus multilocularis	2.1024	101.7978
14	Lachancea meyersii	2.0759	100.3822
15	Saccharomyces cerevisiae	1.6119	94.3396

Table S2 Tm index and aliphatic index of GNA1 candidate thermophilic enzymes based on Uniprot database, related to Figure 2.

Note: Number 1, 2, 3, 5, 6, 8, 9, and 11 have been screened.

The TI (Tm Index) method is provided as a free software platform composed of a dipeptide Tm (melting temperature) weight value table and a web-based interface (Online Tm Predictor, see also <u>http://tm.life.nthu.edu.tw/)</u>. The higher the TI value, the more stable the enzyme is. The aliphatic index shows the thermal stability of the enzyme sequences and larger index confirmed the enzyme for higher stability.

Enzyme	GlcN-6P	Ac-CoA	GlcN-6P	Ac-CoA	GlcN-6P	Ac-CoA
	K _m (mM)	Km	<i>k</i> _{cat}	<i>k</i> _{cat}	k _{cat} /K _m	k _{cat} /K _m
		(mM)	(s ⁻¹)	(s ⁻¹)	(s ⁻¹ mM ⁻¹)	(s ⁻¹ mM ⁻¹)
<i>Tt</i> GNA1	0.45	0.49	840.40	792.53	1867.56	1671.41
<i>Nf</i> GNA1	1.67	2.11	538.61	504.27	322.52	238.99
CtGNA1	0.26	0.36	472.53	568.90	1817.43	1580.29
MtGNA1	0.35	0.83	617.71	633.94	1764.88	763.78
ScGNA1	1.08	1.76	181.39	279.59	167.95	158.86

Table S3 Enzyme kinetic parameters of *Tt*GNA1, *Mt*GNA1, *Nf*GNA1, and *Ct*GNA1, related to Figure 4 and STAR Methods.

	Numbe of	β-branched residue	β-branched residue content
Enzyme	helice	content in helices (%)	in the whole sequence (%)
<i>Tt</i> GNA1	8	15.3	17.75
<i>Nf</i> GNA1	7	19.3	22.16
<i>Mt</i> GNA1	7	11.8	21.35
CtGNA1	7	14.7	16.85
ScGNA1	6	17.9	23.90

Table S4 Putative stabilizing factors of *Tt*GNA1, *Mt*GNA1, *Nf*GNA1, *Sc*GNA1, and *Ct*GNA1, related to Figure 5 and STAR Methods.

Table S5 Flexibility indices of *Tt*GNA1, *Mt*GNA1, *Nf*GNA1, and *Ct*GNA1, related to Figure 5 and STAR Methods.

Enzyme	F
<i>Tt</i> GNA1	0.9703
NfGNA1	0.9839
MtGNA1	0.9866
CtGNA1	0.9862

Table S6 The previous reported strains for GlcNAc production with glucose as the sole carbon source, related to Discussion.

Strains	Fermentation temperature (°C)	GIcNAc titers (g/L)	Reference
Escherichia coli 7107-607	37	110	[1]
Saccharomyces cerevisiae 2627MY	30	3.114	[2]
Bacillus subtilis FMIP34	37	87.5	[3]
Corynebacterium glutamicum CGGN4mdhM7-GNA1-Cgglm S-RamAMA	30	117.1 ± 1.9	[4]
Bacillus licheniformis NfBNGS4	42	119.3	This study
Bacillus licheniformis TtBNGS4	47	86.4	This study
Bacillus licheniformis TtBNGS4	From 42 to 50 with temperature programming	83	This study

Name	Characteristics	Source	
P. liphoniformia MM/0	Mutant strains of <i>B. licheniformis</i> ATCC14580	Laboratory	
B. IICHENITORMIS MIVV3	$(\Delta hsdR1, \Delta hsdR2)$	stock	
	B. licheniformis MW3 derivate,	This man	
BNGST	MW3∆nagP1∆nagP2∆gamA∆nagA∆nagB	I NIS WORK	
0-01	BNGS1 derivate, harboring	This was also	
SCRINGS	pHY300PLK-P _{als} -Scgna1	I NIS WORK	
0DNO04	BNGS1 derivate, harboring	This man	
SCOPBNGS1	pHY300PLK-P _{als} -Scopgna1	I NIS WORK	
	BNGS1 derivate, harboring	T I 1	
BNGS1-P43-ScopGNA1	pHY300PLK-P ₄₃ -Scopgna1	I his work	
	BNGS1 derivate, harboring	-	
BNGS1-P _{aprE} -ScopGNA1	pHY300PLK-P _{aprE} -Scopgna1	I his work	
	BNGS1 derivate, harboring		
BNGS1-P _{st} -ScopGNA1	pHY300PLK-P _{st} -Scopgna1	I his work	
	BNGS1 derivate, harboring		
BNGS1-P _{bl9} -ScopGNA1	pHY300PLK-P _{bl9} -Scopgna1	This work	
	BNGS1 derivate, harboring		
TtBNGS1	pHY300PLK-P _{als} -Ttgna1	This work	
	BNGS1 derivate, harboring		
MtBNGS1	pHY300PLK-P _{als} -Mtgna1	This work	
	BNGS1 derivate, harboring	This work	
CtBNGS1	pHY300PLK-P _{als} -Ctgna1		
	BNGS1 derivate, harboring		
NfBNGS1	pHY300PLK-P _{als} -Nfgna1	This work	
	BNGS1 derivate, harboring		
K/BNGS1	pHY300PLK-P _{als} -Klgna1	This work	
	BNGS1 derivate, harboring		
PbBNGS1	pHY300PLK-P _{als} -Pbgna1	This work	
	BNGS1 derivate, harboring		
AaBNGS1	pHY300PLK-P _{als} -Aagna1	This work	
	BNGS1 derivate, harboring		
CgBNGS1	pHY300PLK-P _{als} -Cggna1	This work	
	BNGS1 derivate, harboring		
PhBNGS1	pHY300PLK-P _{als} -Phgna1	This work	
	BNGS1 derivate, harboring		
HnBNGS1	pHY300PLK-P _{als} -Hngna1	This work	
	BNGS1 derivate, harboring		
MpBNGS1	pHY300PLK-Pais-Mpgna1	This work	
	BNGS1 derivate, harboring		
LfBNGS1	pHY300PLK-P _{als} -Lfgna1	This work	
RfBNGS1	BNGS1 derivate, harboring	This work	

Table S7 Strains used in this study, related to STAR Methods.

	pHY300PLK-P _{als} -Rfgna1	
0500004	BNGS1 derivate, harboring	This man
CTBNGS1	pHY300PLK-P _{als} -Cfgna1	I NIS WORK
	BNGS1 derivate, harboring	
FnBNGS1	pHY300PLK-P _{als} -Fngna1	I his work
TIDNOOA	BNGS1 derivate, harboring	
/dBNGS1	pHY300PLK-P _{als} - <i>Tdgna1</i>	I his work
TIDNICO4	BNGS1 derivate, harboring	
//BNGS1	pHY300PLK-P _{als} -Tlgna1	I his work
PERMONA	BNGS1 derivate, harboring	T 1.1
RDBNGS1	pHY300PLK-P _{als} -Rbgna1	I his work
4/00/004	BNGS1 derivate, harboring	T 1.1
ATBINGS1	pHY300PLK-P _{als} -Atgna1	I NIS WORK
	BNGS1 derivate, harboring	This was also
MIBINGST	pHY300PLK-P _{als} - <i>Mfgna1</i>	I NIS WORK
	B. licheniformis MW3 derivate,	
BNGS2	MW3ΔnagP1ΔnagP2ΔgamAΔnagAΔnagB::P _{als} -	This work
	BlgImS	
Coord DNC CO	BNGS2 derivate, harboring	This work
SCOPENGSZ	pHY300PLK-P _{als} -Scopgna1	
TIDNOSO	BNGS2 derivate, harboring	This work
TBNG52	pHY300PLK-P _{als} - <i>Ttgna1</i>	
	BNGS2 derivate, harboring	Thiowork
MIDING32	pHY300PLK-P _{als} - <i>Mtgna1</i>	I NIS WORK
	BNGS2 derivate, harboring	This work
CIBING52	pHY300PLK-P _{als} -Ctgna1	
	BNGS2 derivate, harboring	This work
IVIDING32	pHY300PLK-P _{als} -Nfgna1	
	B.licheniformis MW3 derivate,	
BNGS3	MW3∆nagP1∆nagP2∆gamA∆nagA∆nagB∆als	This work
	S∆alsD::P _{als} -BlgImS	
Seen BMC S2	BNGS1 derivate, harboring	This work
SCOPEINGSS	pHY300PLK-P _{als} -Scopgna1	
	BNGS3 derivate, harboring	This work
/ DNGSS	pHY300PLK-P _{als} - <i>Ttgna1</i>	
	BNGS3 derivate, harboring	This work
WILDING 33	pHY300PLK-P _{als} - <i>Mtgna1</i>	THIS WOLK
	BNGS3 derivate, harboring	This work
CIDINGSS	pHY300PLK-P _{als} -Ctgna1	
	BNGS3 derivate, harboring	Thiowork
	pHY300PLK-P _{als} -Nfgna1	
	BNGS3 derivate,	
<i>Tt</i> BNGS4	MW3 Δ nagP1 Δ nagP2 Δ gamA Δ nagA Δ nagB Δ als	This work
	S∆alsD::P _{als} -BlgImS::P _{als} -Ttgna1	

	BNGS3 derivate,	
<i>Mt</i> BNGS4	MW3 Δ nagP1 Δ nagP2 Δ gamA Δ nagA Δ nagB Δ als	This work
	S∆alsD::P _{als} -BlgImS::P _{als} -Mtgna1	
	BNGS3 derivate,	
CtBNGS4	MW3 Δ nagP1 Δ nagP2 Δ gamA Δ nagA Δ nagB Δ als	This work
	S∆alsD::P _{als} -BlgImS::P _{als} -Ctgna1	
	BNGS3 derivate,	
<i>Nf</i> BNGS4	MW3 Δ nagP1 Δ nagP2 Δ gamA Δ nagA Δ nagB Δ als	This work
	S∆alsD::P _{als} -BlgImS::P _{als} -Nfgna1	
E coli PL 21 (DE2)	Host for gene expression and cloning the gna1	Laboratory
	gene	stock
E coli \$17.1	Conjugative strain able to host λ - <i>pir</i> -dependent	Laboratory
E. CON STT-1	plasmids	stock
E. coli	E coli Pl 21(DE2) harboring pETDuct Mtana1	This study
BL21(pETDuet- <i>Mtgna1</i>)	E. con BEZ (DES) harboning per Duet-Mighan	
E. coli	E coli Pl 21(DE2) harboring pETDuct Nfgp21	
BL21(pETDuet- <i>Nfgna1</i>)	E. con BEZ I(DES) harboning per Duet-Wighan	This study
E. coli	E coli Pl 21(DE2) harboring pETDuct Ctara1	This study
BL21(pETDuet- <i>Ctgna1</i>)	E. con BEZ I(DES) harborning per Duet-Cignar	This study
E. coli	E acti PL 21(DE2) harboring pETDuct Trans1	This study
BL21(pETDuet- <i>Ttgna1</i>)	E. CON BEZT(DES) harborning per Duet- righan	This study
E. coli	E. coli BL21(DE3) harboring	This study
BL21(pETDuet-Scopgna1)	pETDuet- <i>Scopgna1</i>	

Name	Characteristics	Source
pHY300PLK	<i>E.coli-B.licheniformis</i> shuttle vector, <i>Amp^r</i> , <i>Tet^r</i>	Laboratory
		stock
pKVM1	Gene knockout and insertion vector, <i>Ery</i> ^r ,	Laboratory
	Amp ^r	stock
pETDuet-1	<i>PT7</i> , overexpression vector, <i>Amp^r</i>	Laboratory
		stock
pETDuet- <i>Mtgna1</i>	pETDuet-1 contained the <i>Mtgna1</i> gene, <i>Amp^r</i>	This study
pETDuet- <i>Nfgna1</i>	pETDuet-1 contained the <i>Nfgna1</i> gene, <i>Amp^r</i>	This study
pETDuet- <i>Ctgna1</i>	pETDuet-1 contained the Ctgna1 gene, Amp ^r	This study
pETDuet- <i>Ttgna1</i>	pETDuet-1 contained the <i>Ttgna1</i> gene, <i>Amp</i> ^r	This study
nETDuct Scongno1	pETDuet-1 contained the Scopgna1 gene,	
per Duet-Scopgnar	Amp ^r	This study
pHY300PLK-Pals-Scopgna1	pHY300PLK contained P _{als} -Scopgna1,	This study
	Amp ^r ,Tet ^r	
pHY300PLK-P ₄₃ -Scopgna1	pHY300PLK contained P ₄₃ -Scopgna1,	This study
	Amp ^r ,Tet ^r	
pHY300PLK-P _{aprE} -Scopgna	pHY300PLK contained P _{aprE} -Scopgna1,	This study
1	Amp ^r ,Tet ^r	
pHY300PLK-P _{st} -Scopgna1	pHY300PLK contained P _{st} -Scopgna1,	This study
	Amp ^r ,Tet ^r	
pHY300PLK-Pb/9-Scopgna1	pHY300PLK contained P _{bl9} -Scopgna1,	This study
	Amp ^r ,Tet ^r	
pHY300PLK-Pals-Scgna1	pHY300PLK contained Pals-Scgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} - <i>Ttgna1</i>	pHY300PLK contained P _{als} -Ttgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Ctgna1	pHY300PLK contained P _{als} -Ctgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Mtgna1	pHY300PLK contained P _{als} -Mtgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Nfgna1	pHY300PLK contained Pals-Nfgna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Klgna1	pHY300PLK contained Pals-Klgna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Pbgna1	pHY300PLK contained Pals-Pbgna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Aagna1	pHY300PLK contained Pals-Aagna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Cggna1	pHY300PLK contained Pals-Cggna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Phgna1	pHY300PLK contained Pals-Phgna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Hngna1	pHY300PLK contained Pals-Hngna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Mpgna1	pHY300PLK contained Pals-Mpgna1, Ampr, Tetr	This study
pHY300PLK-P _{als} -Lfgna1	pHY300PLK contained P _{als} -Lfgna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Rfgna1	pHY300PLK contained Pals-Rfgna1, Amp ^r , Tet ^r	This study
pHY300PLK-Pals-Cfgna1	pHY300PLK contained Pals-Cfgna1, Ampr, Tetr	This study
pHY300PLK-P _{als} -Fngna1	pHY300PLK contained Pals-Fngna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Tdgna1	pHY300PLK contained Pals-Tdgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Tlgna1	pHY300PLK contained P _{als} -Tlgna1, Amp ^r , Tet ^r	This study

Table S8 Plasmids used in this study, related to STAR Methods.

pHY300PLK-P _{als} -Rbgna1	pHY300PLK contained Pals-Rbgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Atgna1	pHY300PLK contained Pals-Atgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Mfgna1	pHY300PLK contained P _{als} -Mfgna1, Amp ^r , Tet ^r	This study
pHY300PLK-P _{als} -Klgna1	pHY300PLK contained P _{als} -Klgna1, Amp ^r ,Tet ^r	This study
pHY300PLK-P _{als} -Pbgna1	pHY300PLK contained P _{als} -Pbgna1, Amp ^r ,Tet ^r	This study
pHY300PLK-P _{als} -Aagna1	pHY300PLK contained Pals-Aagna1, Amp ^r , Tet ^r	This study
pKVM∆ <i>nagP1</i>	Vector for deletion of <i>nagP1</i> gene in <i>B</i> .	This study
	licheniformis MW3, Ery ^r , Amp ^r	
pKVM∆ <i>nagP</i> 2	Vector for deletion of <i>nagP2</i> gene in <i>B</i> .	This study
	licheniformis MW3, Ery ^r , Amp ^r	
pKVM∆ <i>nagAB</i>	Vector for deletion of <i>nagA</i> and <i>nagB</i> genes in	This study
	B. licheniformis MW3, Ery ^r , Amp ^r	
pKVM∆ <i>gamA</i>	Vector for deletion of gamA gene in B.	This study
	licheniformis MW3, Ery ^r , Amp ^r	
pKVM-P <i>als-glmS</i>	Vector for overexpression of <i>glmS</i> gene in <i>B</i> .	This study
	licheniformis MW3, Ery ^r , Amp ^r	
pKVM∆ <i>alsSD</i>	Vector for deletion of <i>alsS</i> and <i>alsD</i> gene in <i>B</i> .	This study
	licheniformis MW3, Ery ^r , Amp ^r	

Abbreviations: *Ery*^{*r*}, erythromycin resistance; *Amp*^{*r*}, ampicillin resistance; *Tet*^{*r*}, tetracycline resistance.

Primer	Sequence 5'-3'
nagP-U-F	GGTACCCGGGAGCTCATGAATGAGGAGGATCACACAGTC
nagP-U-R	GAAGGGGCTTATCTTAGTTAAAACCCCTTTCGATGATATT
nagP-D-F	AAAGGGGTTTTAACTAAGATAAGCCCCTTCTGAGGAAG
nagP-D-R	GCGTCGGGCGATATCGAGGCGGACGAATACTTTGAC
GamP-U-F	GGTACCCGGGAGCTCTAGGGTAAAACCGTATGCCGC
GamP-U-R	AAGCAACTTCAGTTTTCCGGCATTCTCCTTATGTCAA
GamP-D-F	AAGGAGAATGCCGGAAAACTGAAGTTGCTTTTGAGGAATC
GamP-D-R	GCGTCGGGCGATATCGGAAATTTCTCTGCCAGCTGC
GamA-U-F	GGTACCCGGGAGCTCGGTCAAGAGGGAGGGTTCACTT
GamA-U-R	TGTCAGTCATTCAATGTTTTTCTCCTTTCCACAAAATAAA
GamA-D-F	GGAAAGGAGAAAAACATTGAATGACTGACAAAATCGGTTA
GamA-D-R	GCGTCGGGCGATATCTCATATCGGGGATCGGCTT
nagAB-U-F	GGTACCCGGGAGCTCCCGCACGGTCAGCTTA
nagAB-U-R	GGGAATCTTTTTGATACAACTCTAGTTGTCTAGACCAAT
nagAB-D-F	ACAACTAGAGTTGTATCAAAAAAGATTCCCACATT
nagAB-D-R	GCGTCGGGCGATATCCCTCTTCATATCAATGACGAA
alsSD-U-F	GGTACCCGGGAGCTCAATTCGCTTGGCATTCCG
alsSD-U-R	GGAGGAGTGAGGGCTATGAAAAAGCCCTCTTTGAAAAG
alsSD-D-F	AGAGGGCTTTTTCATAGCCCTCACTCCTCCATTTTC
alsSD-D-R	GCGTCGGGCGATATCTGGGGATAAATCCGGCTTT
<i>Bl</i> gImS-U-F	GGTACCCGGGAGCTCCAGAAGACTGAAGAACGAGACA
<i>Bl</i> gImS-U-R	AATAGGCGTCACCTTAATTTTCTTCCTCCTAAAGTCG
P _{als} -glmS-F	AGGAGGAAGAAAATTAAGGTGACGCCTATTTCACT
P _{als} -glmS-R	TACAATACCACACATAGCCCTCACTCCTCCATT
<i>Bl</i> gImS-D-F	GGAGGAGTGAGGGCTATGTGTGGTATTGTAGGTTATATTG
<i>Bl</i> gImS-D-R	GCGTCGGGCGATATCTAATGCAATCGCATAAGAGC
pKVM-GamP-UP-F	CCTCGCGTCGGGCGATATCGGATCCTAGGGTAAAACCGTAT GCCGC
P _{als} -GamP-UP-R	AATAGGCGTCACCTTTCCGGCATTCTCCTTATGTCAA
Mt-GamP-UP-F	AACAGCAGCCAGTAAAAACTGAAGTTGCTTTTGAGGAATC
Ct-GamP-UP-F	AACAGCACGCAGTAAAAACTGAAGTTGCTTTTGAGGAATC
Nf-GamP-UP-F	AAACTGGCGTTTTAAAAACTGAAGTTGCTTTTGAGGAATC
Tt-GamP-UP-F	TATTATCATAAATAAAAACTGAAGTTGCTTTTGAGGAATC
pKVM-GamP-Down-R	CCATGGTACCCGGGAGCTCGAATTCGGAAATTTCTCTGCCA GCTGC
GamP-Up-P _{als} -F	AAGGAGAATGCCGGAAAGGTGACGCCTATTTCACTTTC
GamP-Down-Mt-R	AAGCAACTTCAGTTTTTACTGGCTGCTGTTGCTTTTC
GamP-Down-Nf-R	AAGCAACTTCAGTTTTTAAAACGCCAGTTTCATCTGC
GamP-Down-Ct-R	AAGCAACTTCAGTTTTTACTGCGTGCTGTTGCTTTT
GamP-Down-Tt-R	AAGCAACTTCAGTTTTTATTATGATAATAATGCGCCATTT

Table S9 Primers used in this study, related to STAR Methods.

References:

 Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA, Rosson RA. 2005. Metabolic engineering of *Escherichia coli* for industrial production of glucosamine and *N*-acetylglucosamine. Metab. Eng. 7, 201–214.
 Lee, S.W., Lee, B.Y., and Oh, M.K. (2018). Combination of three methods to reduce Glucose metabolic rate for improving *N*-acetylglucosamine production in *Saccharomyces cerevisiae*. J. Agric. Food Chem. *66*, 13191–13198.

3. Niu T, Lv X, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L. (2021). The elucidation of phosphosugar stress response in *Bacillus subtilis* guides strain engineering for high *N*-acetylglucosamine production. Biotechnol. Bioeng. *118*, 383–396.

4. Deng, C., Lv, X., Li, J., Zhang, H., Liu, Y., Du, G., Amaro, R.L., and Liu, L. (2021). Synergistic improvement of *N*-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metab. Eng. *67*, 330–346.