1	Supplemental Data		
2			
3	Kruppel-like factor 2 contributes to blood-spinal cord barrier		
4	integrity and functional recovery from spinal cord injury by		
5	augmenting autophagic flux		
6			
7	Zili He ^{1,2#} , Jiqing Du ^{2#} , Yu Zhang ² , Yitie Xu ² , Qian Huang ² , Qingwei Zhou ² , Min		
8	Wu ² , Yao Li ¹ , Xie Zhang ³ , Hongyu Zhang ² , Yuepiao Cai ^{1,2} , Keyong Ye ² , Xiangyang		
9	Wang ¹ , Yingze Zhang ^{1,4} , Qi Han ⁵ , Jian Xiao ^{1,2}		
10			
11	1 Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain		
12	Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and		
13	Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035,		
14	China.		
15	2 Department of orthopaedics, Affiliated Pingyang Hospital and School of		
16	Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.		
17	3 Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital,		
18	Ningbo, 315040, China		
19	4. Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical		
20	University, Shijiazhuang, 050051 China		
21	5 Department of Anatomy and Physiology, Shanghai Jiao Tong University School of		

22 Medicine, Shanghai, 200025, China.

These authors contributed equally to this work. 24 Correspondence should be addressed to Jian Xiao: xfxj2000@126.com, Qi Han: 25 qihan8@shsmu.edu.cn, and Yingze Zhang: yzling liu@163.com 26 27 **Supplemental Figure legends** 28 29 Figure S1 Disruption of autophagy exacerbates endothelial apoptosis level. 30 (A) Cell viability in bEnd.3 cells exposed to OGD for 0, 3, 6, 9 and 12 h. n = 4. (B) 31 Effect of OGD (9 h) on protein expression of LC3 and p62 from bEnd.3 cells pretreated 32 in the absence or presence of 3-MA. n = 4 sample. (C) Effect of OGD (9 h) on protein 33 34 expression of apoptosis markers (Bcl-2, Bax and Cleaved caspase 3) from bEnd.3 cells pretreated in the absence or presence of 3-MA. n = 3 sample. (D-G) Representative 35 immunofluorescence images and quantification of LC3 (E), p62 (F), and Caspase 3 (C) 36 in bEnd.3 cells. n = 3 sample. Shown are mean values \pm SEM; ns stands for not 37 significant, * P < 0.05, ** P < 0.01. 38 39

40 Figure S2 Disruption of autophagy exacerbates ZO-1 degradation after SCI.

(A) Western blotting and quantification of autophagy markers (LC3 and p62) in spinal
cord tissue prepared from SCI (3dpi) and SCI + 3-MA group. n = 6 mice in each group.
(B-C) Representative immunofluorescence images and quantification of LC3 (B) and
P62 (C) in endothelial cells (marked by CD31) in indicated groups at day 3 after injury.

n = 5 mice in each group. Shown are mean values ± SEM; ns stands for not significant,
* P < 0.05, ** P < 0.01.

47

48 Figure S3 The expression of KLF2 in bEnd.3 cells following OGD.

49 (A) Western blotting and quantification of KLF2 in bEnd.3 cells after OGD treatment 50 for different periods. n = 4 sample. (B) Representative immunofluorescence images and 51 quantification of KLF2 in bEnd.3 cells. n = 3. Shown are mean values \pm SEM; ns stands 52 for not significant, * P < 0.05, ** P < 0.01.

53

54 Figure S4 The overexpression and knockdown efficiency of cell transfection.

bEnd.3 cells were respectively transfected with lentivirus-Klf2 or lentivirus-Klf2 shRNA to overexpress or knockdown KLF2 expression. (A-B) Western blotting and quantification of KLF2 in bEnd.3 respectively transfected with lentivirus-Klf2 (A) or lentivirus-Klf2 shRNA (B). (C-D) Western blotting and quantification of p62 expression in bEnd.3 respectively transfected with lentivirus-Klf2 (C) or lentivirus-Klf2 shRNA (D). Shown are mean values \pm SEM; ns stands for not significant, * P < 0.05, ** P < 0.01.

62

Figure S5 OGD-induced cell apoptosis is alleviated by KLF2 overexpression in bEnd.3 cells.

65 (A) Western blotting and quantification of KLF2 in bEnd.3 cells respectively 66 transfected with LV-Con or LV-Klf2, and pretreated with OGD treatment. n = 3 sample.

67	(B) Effect of OGD (9 h) on protein expression of apoptosis markers (Bcl-2, Bax and
68	Cleaved caspase 3) from bEnd.3 cells respectively transfected with LV-Con or LV-Klf2.
69	n = 4 sample. (C) Effect of OGD (9 h) on protein expression of TJs markers (ZO-1,
70	OCC and claudin-5) from bEnd.3 cells respectively transfected with LV-Con or LV-
71	Klf2, and pretreated in the absence or presence of CQ. $n = 4$ sample. (D) Representative
72	immunofluorescence images and quantification of Caspase 3 in bEnd.3 cells. $n = 3$
73	sample. Shown are mean values \pm SEM; ns stands for not significant, * P < 0.05, ** P
74	< 0.01.

76 Figure S6 Schematic of experimental timeline and Lentivirus injection.

(A)Experimental protocol. We transfected mice with lentiviral vectors (LV-Klf2 or shRNA-Klf2) via intrathecal injection 5 days prior to SCI to overexpress or knockdown KLF2. (B) The expressions of LC3II and p62 in mice respectively transfected with LV-Con or LV-Klf2. n = 5 mice in each group. (C-D) The Western blot analysis showed that the expressions of KLF2 were overexpressed (C) or knock downed (D) in the spinal cord at day 3 after injury. n = 3 mice in each group. Shown are mean values \pm SEM; ns stands for not significant, * P < 0.05, ** P < 0.01.

84

Figure S7 TFEB regulated KLF2 mediated ALP in in bEnd.3 cells exposed to OGD.

bEnd.3 cells were treated with Ad-shTFEB for 24 h and then with LV-KLF2, and then
exposed to OGD for 9 h; (A) Western blot and quantification of TFEB in nuclear

89	subfractions of OGD-treated bEnd.3 cells. $n = 4$ sample. (B) Western blot and
90	quantification of autophagy lysosome pathway markers (LC3, p62 and LAMP2) in
91	bEnd.3 cells respectively transfected with Ad-shTFEB and LV-Klf2 after OGD
92	treatment (9 h). $n = 4$ samples. (C-D) Expression of mRNA encoding TFEB (C) and
93	protein expression of TFEB (D) in bEnd.3 cells transfected with LV-Klf2. n = 4 samples.
94	(E) Relative mRNA level of TFEB in bEnd.3 cells transfected with shRNA-Klf2. $n = 4$
95	samples. (F) Representative immunofluorescence images and quantification of TFEB
96	in bEnd.3 cells transfected with LV-Klf2. n = 3 sample. Shown are mean values \pm
97	SEM; ns stands for not significant, * $P < 0.05$, ** $P < 0.01$.

99 Figure S8 KLF2 ameliorates BSCB disruption and motor function impairment in 100 SCI.

(A) Western blot and quantification of TJs markers (ZO-1, OCC and claudin-5) in spinal 101 cord tissue from Sham, SCI, SCI+LV-Con, SCI+LV-Klf2, and SCI+LV-Klf2+CQ, 102 group at day 3 after injury. n = 5 mice in each group. (B-C) Representative MEPs and 103 amplitude analysis of mice at day 28 after SCI. n = 5 mice in each group. (D) BMS 104 score analysis in each group at the indicated time points. n = 7 mice in each group. (E) 105 Representative foot printing analysis of mice at day 28 after injury. (F) Quantification 106 of stride lengths of hind footprints of mice. n = 5 mice in each group. Shown are mean 107 values \pm SEM; ns stands for not significant, * P < 0.05, ** P < 0.01. 108

109

110 Figure S9 Proposed model of how KLF2 contributes to BSCB integrity in SCI.

- 111 SCI induced the ALP dysfunction in endothelial cells disturbs redistribution of
- 112 membranous TJ proteins and clearance of delocalized TJ proteins which impairs the
- 113 integrity and permeability of BSCB. Meanwhile, endothelial KLF2 was suppressed
- after SCI, upregulated of which enhances autophagy levels and lysosomal function via
- regulating TFEB expression to suppress redistribution of membranous TJ proteins and
- 116 to further reduce cytotoxicity, attenuating BSCB disruption.

117 Figure S1

Figure S2

121 FigureS3

Figure S6

Table S1

Antibodies	Cat. No.	Company	Concentration for WB	Concentration for IF
KLF2	DF13602	Affinity (Cincinnati, OH, USA)	1:1000	1:100
CD31	sc-376764	Santa Cruz Biotechnology (CA, USA)	/	1:50
claudin 5	343214	Zen bioscience (Chengdu, China)	1:1000	/
OCC	13409-1-AP	Proteintech Group (Chicago, IL, USA)	1:1000	1:200
ZO-1	AF5145	Affinity (Cincinnati, OH, USA)	1:1000	1:200
LC3	14600-1-AP	Proteintech Group (Chicago, IL, USA)	1:1000	1:200
P62/SQSTM1	18420-1-AP	Proteintech Group (Chicago, IL, USA)	1:1000	/
Beclin 1	11306-1-AP	Proteintech Group (Chicago, IL, USA)	1:1000	/
CTSD	380946	zen-bioscience (Chengdu, China)	1:1000	1:200
LAMP1	sc-20011	Santa Cruz Biotechnology (CA, USA)	/	1:100
LAMP2	27823-1-AP	Proteintech Group (Chicago, IL, USA)	1:1000	1:100
Caspase 3	19677-1-AP	Proteintech Group (Chicago, IL, USA)	1:1000	1:200
Bcl2	26593-1-AP	Proteintech Group (Chicago, IL, USA)	1:1000	/
BAX	50599-2-Ig	Proteintech Group (Chicago, IL, USA)	1:1000	/
TFEB	PA5-96632	Thermo Scientific (Madison, WI, USA)	1:1000	1:200
ATP1A1	GB11400	Servicebio (Wuhan,China)	1:500	/
Histone 3	384572	zen-bioscience (Chengdu, China)	1:1000	/
GAPDH	380626	zen-bioscience (Chengdu, China)	1:5000	/

138Table S1. The detail information of primary antibodies.

Table S2

	1	
Primers	Forward primer	Reverse primer
Klf1	TCTGAGGAGACGCAGGATTTG	ACAGGTCACGTCCCTCTCATC
Klf2	GAGCCTATCTTGCCGTCCTTT	CACGTTGTTTAGGTCCTCATCC
Klf3	GATGAAGCCCAACAAATATGGGG	TCCACCTGTATCCCGTGAGTG
Klf4	AGGAACTCTCTCACATGAAGCG	GGTCGTTGAACTCCTCGGTC
Klf5	CAGGCCACCTACTTTCCCC	GAATCGCCAGTTTGGAAGCAA
Klf6	GTTTCTGCTCGGACTCCTGAT	TTCCTGGAAGATGCTACACATTG
Klf7	AGTGGACATTTTGCTCTCTCG	GTTAATGAGGTCACTGCGTTGA
Klf8	CTGGAGAGTGATTTCAACATGCC	GGAGGACGGATTGGAGCTT
K1f9	GCCGCCTACATGGACTTCG	GGTCACCGTGTTCCTTGGT
Klf10	ATGCTCAACTTCGGCGCTT	CGCTTCCACCGCTTCAAAG
Klf11	CCCCACTCAAGAGCAACGAG	CCAAGTTAGTGACGAGTAAGCC
Klf12	GTCAAAACCGAGCTTGTGGAA	GGGCTCCCCTTTCACATTATTT
Klf13	CCTGGCCTCAGACAAAGGG	ATTTCCCGTAAACTTTCTCGCA
Klf14	CTCCGTGTGCCTCAACTAGC	CAGGCGCATCCAGGATAGC
Klf15	CAGAGAGCGTCAAGGTCGC	TTCGCACAAACTTTGAGGGCA
Klf16	AGCATCCTGGCCGATCTGA	GTGCGAAGACTTGTAATAGGCT
Klf17	AATAAGGAACAGGCTATGCACC	GTGGCTGATGAAATCCGCTG
Map1lc3b	TTATAGAGCGATACAAGGGGGAG	CGCCGTCTGATTATCTTGATGAG
Sqstm1/p62	GAACTCGCTATAAGTGCAGTGT	AGAGAAGCTATCAGAGAGGTGG
TFEB	ACAAGGCACCATCCTCA	CCAGCTCGGCCATATTCA
Gapdh	AGGTCGGTGTGAACGGATTTG	GGGGTCGTTGATGGCAACA

141 Table S2. The detail information of primers.