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Appendix A

A.1 Model specification for imputations

The specific formulation used in our examplemodels theCD4 trajectory in terms of 4 parameters: an

intercept β0, pre-treatment slope β1, an instantaneous effect ofART at the time of initiation, captured

in terms of a jump of size β2, and a post-treatment slope β4. Each of these temporal components is

allowed to vary by individual, giving rise to subject-specific random effects bi = (b0i, b1i, b2i, b3i)
>.

The model further includes main effects of baseline covariates, plus an interaction between baseline

covariates and the pre- and post-treatment slopes. The specific formulation is

mi(t) = (β0 + b0i) + (β1 + b1i)t + (β2 + b2i)N A
i (t) + (β3 + b3i)(t − Ai)+

+ Li(0)
{
ψ0 + ψ1t + ψ2N A

i (t) + ψ3(t − Ai)+
}
, (1)
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where a+ = max(0, a) is the positive part of a, and the ψ parameters represent coefficients for the

main effect of Li(0) and its interaction with the trajectory terms. Hence the time trajectory differs

by covariate profile, and within covariate profile further varies by individual, thus providing a rich

structure for modeling true CD4 count. Components of Li(0) include the following: age at baseline

(modeled with cubic spline), CDC symptom class (5-level categorical variable with levels mild

(A), moderate (B), severe (C), asymptomatic (N) and missing); gender (1=male, 0=female); and

CD4 cell count category (5 level categorical variable with categories 0-199, 200-349, 350-499,

over 500, and missing). Time varying covariates include treatment initiation N A(t). Parameters

for the fitted model appear in Table 1. Residual-versus-fitted plots (Figure 1) and examination

of individual-specific fitted curves are used to assess fit of the CD4 submodel (see Figure 2 for a

sample of 9 individuals).

The survival submodel specification is given in equation (11) in the main text. Baseline

covariates include age at baseline (fitted using cubic spline), gender, CD4 categories as listed above

and CDC class as listed above. Time varying covariates include treatment initiation N A(t) and

current CD4 count m̂(t). The fitted model appears in Table 3; the shape of the relationship between

mortality and m(t) appears in Figure 3, indicating a strong negative and nonlinear relationship

(higher CD4 implies lower mortality).

We tested the proportional hazards assumption for each covariate using Schoenfeld residuals;

test results appear in Table 4. There is no evidence that any of the covariates violate the proportional

hazards assumpton.
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A.2 Imputation algorithm

For those whose follow up is censored prior to t∗, we first impute a death indicator at t∗; for those

whose imputed status is ‘alive’, we then impute a CD4 count. For those who are in follow-up at

t∗ but do not have an observed CD4 proximal to t∗, we impute a CD4 count at t∗. The specific

imputation strategy is as follows

1. For those still in follow up at t∗ but missing a proximal CD4 count, impute CD4 at time t∗

by drawing X̃ ∼ N(m̂i(t∗), σ̂2(t∗)), where m̂i(t∗) is the individual-specific prediction of true

CD4 count.

2. For those whose follow up is censored at Ci < t∗,

(a) Calculate ŜT
i (t
∗ | T > Ci), the estimated probability of survival at time t∗ conditional on

surviving to time Ci. Referring to equation (11) in the main text, note that

ŜT
i (t) = exp

[
−

∫ t

0
exp

{
g1(m̂i(s); γ̂1) + g2(Li(0), N A

i (s); γ̂2)
}

dΛ̂T
0 (s)

]
,

where Λ̂T
0 (s) is the estimated cumulative baseline hazard function for mortality. Hence

ŜT
i (t) can be estimated directly from the fitted hazard model, and ŜT

i (t
∗ | T > Ci) =

ŜT
i (t
∗)/ŜT

i (Ci).

(b) Draw a binary death indicator D̃i ∼ Bernoulli(1 − ŜT
i (t | T > Ci)).

(c) If D̃i = 1 then set X̃i = 0; else draw a missing CD4 count Ỹ as in step 1 above.

3. Return X̃i.
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A.3 Variance calculations

Let M denote the number of imputations for each missing observation, leading to M completed

datasets. For each completed dataset, bootstrap resampling is used to compute the point estimator

for the target parameters and its within-imputation variance. Let S denote the number of bootstrap

samples on each of the M completed datasets, and for s = 1, . . . , S and m = 1, . . . , M , let

θ̂
(s,m)
q j , j = 1, 2, 3, denote the point estimate of θq j derived from bootstrap sample s drawn from

imputed dataset m. For imputed dataset m, the average of the point estimates across bootstrap

samples is θ̂(m)q j = S−1 ∑S
s=1 θ̂

(s,m)
q j ; hence the within-imputation variance estimator of Var(θ̂(m)) is

V̂ (m) = (S − 1)−1 ∑S
s=1

(
θ̂
(s,m)
q j − θ̂

(m)
q j

)2
, and the estimate of within-imputation variance is

W =
1
M

M∑
m=1

V̂ (m).

The between-imputation variance estimator is

B =
1

M − 1

M∑
m=1

(
θ̂
(m)
q j − θ̂q j

)2
,

where θ̂q j = M−1 ∑M
m=1 θ̂

(m)
q j is the mean over all imputation-specific estimates. Hence the estimator

of total variance is V̂ar(θ̂q j) = W + (1 + 1/M)B.

To compute confidence intervals for point estimates, we assumed the (bootstrap) sampling

distributions were well-approximated by a normal distribution, which was verified using q-q plots.

Confidence intervals for mortality rates were based on a logit transformation of the sampling

distribution.
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Appendix B

B.1 Sensitivity analysis for weight truncation

To assess the impact of weight truncation on the estimation of the causal effects ofDTRs, we conduct

a sensitivity analysis describing estimated differences in mortality rate and median of Xq between

dynamic regimes q = ∞ and q = 500 for t∗ = 1 year and t∗ = 2 years. We truncate the stabilized

regime weights at the top and bottom 5%, 2.5% and 0% (no truncation). The results, shown in

Table 1, suggest the point estimates and the confidence intervals for treatment effect on mortality

were unchanged with different weighting schemes. Point estimates and variation associated with

treatment effect on the composite outcome increased with less truncation; the confidence intervals

indicated greater variability but no change in substantive conclusion about treatment effect. For the

denominator weight model, we tested the proportional hazards assumption for each term included

in the model and found no violations of the assumption. We summarize the distribution of the

estimated weights for DTRs q = ∞ and q = 500 in Table 2.
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Table 1: Sensitivity analysis depicting estimated differences in mortality rate and median of Xq
between dynamic regimes q = ∞ and q = 500 for t∗ = 1 year and t∗ = 2 years. Comparison
includes weight IPTW truncation at top and bottom 5%, top and bottom 2.5%, and no truncation.
The parameter θq1 = P(Xq = 0) = FXq (0) is the mortality rate, and θq2 = F−1

Xq
(12 ) is the median of

Xq. The 95% confidence intervals are shown below the point estimates.

5% 2.5% no truncation
t∗ = 1
θ̂q1 −.008 −.008 −.008

(−.015,−.001) (−.014,−.001) (−.014,−.001)
θ̂q2 41 50 75

(12, 70) (14, 86) (16, 134)
t∗ = 2
θ̂q1 −.013 −.014 −.013

(−.023,−.004) (−.023,−.005) (−.022,−.004)
θ̂q2 51 56 81

(14, 87) (15, 98) (11, 150)

Table 2: Distribution of inverse probability of treatment weights (IPTW) for dynamic treatment
regimes q = 500 and q = ∞ at time points t = 1 and t = 2 years.

min 2.5% 5% median 95% 97.5% max
t∗ = 1

q = ∞ 0.86 3.57 5.46 18.01 66.10 83.20 112.00
q = 500 0.46 1.10 2.62 11.13 20.60 31.90 77.21

t∗ = 2
q = ∞ 0.86 4.03 5.86 22.12 68.10 85.32 112.00
q = 500 0.68 1.80 3.04 16.14 26.60 33.50 85.12
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Appendix C

C.1 Supplemental tables and figures

Table 3: Fitted CD4 submodel: Fixed effect estimates. See equation (1) for full model specification.

Number of Observations: 10036
Number of Groups: 1962

Value Std.Error DF t-value p-value
(Intercept) 19.792310 0.5440822 8043 36.37743 0.0000
ns(age_c, df = 4)1 -0.826791 0.5297732 1948 -1.56065 0.1188
ns(age_c, df = 4)2 -1.313378 0.5219090 1948 -2.51649 0.0119
ns(age_c, df = 4)3 -4.221976 1.0584546 1948 -3.98881 0.0001
ns(age_c, df = 4)4 -1.298521 0.5451897 1948 -2.38178 0.0173
classA -0.358940 0.4022471 1948 -0.89234 0.3723
classB -0.281527 0.6411768 1948 -0.43908 0.6607
classC -0.973655 0.6348106 1948 -1.53377 0.1252
classN 1.101933 0.4123147 1948 2.67255 0.0076
male -0.696516 0.2411600 1948 -2.88819 0.0039
cd4.0 -9.822384 0.3967882 1948 -24.75473 0.0000
cd4.200 -1.266265 0.4349427 1948 -2.91134 0.0036
cd4.350 2.396883 0.4608261 1948 5.20127 0.0000
cd4.500 9.185741 0.4224343 1948 21.74478 0.0000

N^A(t) 3.498966 0.3951127 8043 8.85561 0.0000
N^A(t):classA 0.098775 0.4454290 8043 0.22175 0.8245
N^A(t):classB -0.589170 0.6250478 8043 -0.94260 0.3459
N^A(t):classC 0.293096 0.6847882 8043 0.42801 0.6687
N^A(t):classN -0.876555 0.5074726 8043 -1.72730 0.0842
N^A(t):male 0.505273 0.2750455 8043 1.83705 0.0662
N^A(t):cd4.0 4.769437 0.4305617 8043 11.07724 0.0000
N^A(t):cd4.200 2.250686 0.4743306 8043 4.74497 0.0000
N^A(t):cd4.350 -0.746502 0.5376364 8043 -1.38849 0.1650
N^A(t):cd4.500 -2.363437 0.5140559 8043 -4.59763 0.0000
N^A(t) : time to ARV -0.001267 0.0003672 8043 -3.45096 0.0006

preArtMonths (t) -0.054122 0.0206962 8043 -2.61508 0.0089
classA:preArtMonths 0.001707 0.0251862 8043 0.06778 0.9460
classB:preArtMonths 0.021122 0.0452437 8043 0.46685 0.6406
classC:preArtMonths 0.068495 0.0824450 8043 0.83079 0.4061
classN:preArtMonths 0.008884 0.0245975 8043 0.36116 0.7180
male:preArtMonths 0.030871 0.0174449 8043 1.76965 0.0768
cd4.0:preArtMonths 0.124723 0.0471944 8043 2.64274 0.0082
cd4.200:preArtMonths -0.038744 0.0324292 8043 -1.19472 0.2322
cd4.350:preArtMonths -0.016200 0.0273300 8043 -0.59277 0.5534
cd4.500:preArtMonths -0.097350 0.0230936 8043 -4.21545 0.0000

postArtMonths (t-A)_+ 0.067137 0.0246488 8043 2.72374 0.0065
classA:postArtMonths -0.006954 0.0307434 8043 -0.22619 0.8211
classB:postArtMonths -0.039469 0.0517607 8043 -0.76252 0.4458
classC:postArtMonths -0.067821 0.0871196 8043 -0.77848 0.4363
classN:postArtMonths -0.031397 0.0343065 8043 -0.91518 0.3601
male:postArtMonths -0.071645 0.0211673 8043 -3.38470 0.0007
cd4.0:postArtMonths -0.090715 0.0494893 8043 -1.83301 0.0668
cd4.200:postArtMonths 0.017519 0.0372189 8043 0.47070 0.6379
cd4.350:postArtMonths 0.048307 0.0358837 8043 1.34620 0.1783
cd4.500:postArtMonths 0.104203 0.0324787 8043 3.20834 0.0013
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Table 4: Fitted CD4 submodel: Random effects variance estimates and distribution of residuals.

Random effects:
Formula: ~preArtMonths + postArtMonths | ptidno
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 3.91359199 (Intr) prArtM
preArtMonths 0.09076454 0.386
postArtMonths 0.16232370 -0.275 -0.454
Residual 3.96196571

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-4.710810881 -0.506312643 -0.004719634 0.484378098 6.595537128
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Table 5: Fitted mortality model.

n= 156368, number of events= 124

coef exp(coef) se(coef) z Pr(>|z|)
ns(predicted.cd4, df = 4)1 -5.529860 0.003967 0.735769 -7.516 5.66e-14 ***
ns(predicted.cd4, df = 4)2 -4.577166 0.010284 1.052191 -4.350 1.36e-05 ***
ns(predicted.cd4, df = 4)3 -6.900041 0.001008 1.959493 -3.521 0.000429 ***
ns(predicted.cd4, df = 4)4 -1.715574 0.179861 2.560207 -0.670 0.502799

male 0.009160 1.009202 0.183325 0.050 0.960150

ns(age_c, df = 3)1 0.850156 2.340011 0.377932 2.249 0.024481 *
ns(age_c, df = 3)2 -0.335923 0.714678 0.834747 -0.402 0.687372
ns(age_c, df = 3)3 -0.273305 0.760861 0.381530 -0.716 0.473782

cd4.0 0.123630 1.131597 0.547881 0.226 0.821473
cd4.200 0.900486 2.460800 0.590938 1.524 0.127552
cd4.350 0.689812 1.993340 0.744415 0.927 0.354109
cd4.500 -0.965751 0.380697 1.135172 -0.851 0.394906
classA 0.275909 1.317728 0.271891 1.015 0.310211
classB 0.182826 1.200605 0.396747 0.461 0.644934
classC 0.414840 1.514128 0.374118 1.109 0.267496
classN -0.280110 0.755701 0.431519 -0.649 0.516258

postArtMonths (t-A)_+ -0.036337 0.964315 0.010400 -3.494 0.000476 ***

N^A(t) 1.147999 3.151881 0.523526 2.193 0.028320 *
N^A(t):cd4.0 -0.077731 0.925214 0.601829 -0.129 0.897233
N^A(t):cd4.200 -0.587494 0.555718 0.697165 -0.843 0.399402
N^A(t):cd4.350 -0.737121 0.478489 0.918659 -0.802 0.422328
N^A(t):cd4.500 0.986362 2.681461 1.197227 0.824 0.410012
---
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Table 6: Proportional hazards test on covariates for mortality submodel.

rho chisq p
male 0.07305 6.79e-01 0.410

ns(age_c, df = 3)1 -0.09634 1.09e+00 0.297
ns(age_c, df = 3)2 -0.08321 8.62e-01 0.353
ns(age_c, df = 3)3 -0.05758 3.17e-01 0.573

cd4.0 -0.12566 1.62e+00 0.202
cd4.200 0.00635 4.86e-03 0.944
cd4.350 -0.02277 6.34e-02 0.801
cd4.500 0.03056 1.11e-01 0.739
classA 0.09080 1.06e+00 0.303
classB 0.10337 1.33e+00 0.248
classC -0.13256 2.20e+00 0.138
classN 0.10103 1.31e+00 0.252

ns(predicted.cd4, df = 4)1 -0.15634 2.25e+00 0.133
ns(predicted.cd4, df = 4)2 -0.12531 1.31e+00 0.252
ns(predicted.cd4, df = 4)3 -0.05161 2.45e-01 0.621
ns(predicted.cd4, df = 4)4 0.06332 3.11e-01 0.577

postArtMonths 0.05998 3.66e-01 0.545

N^A(t) -0.00216 6.11e-04 0.980
N^A(t):cd4.0 0.04550 2.25e-01 0.635
N^A(t):cd4.200 -0.06772 5.54e-01 0.457
N^A(t):cd4.350 -0.09623 1.12e+00 0.290
N^A(t):cd4.500 -0.02389 7.02e-02 0.791

GLOBAL NA 2.35e+01 0.375
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Table 7: Proportional hazards test on covariates for weight model.

rho chisq p
as.factor(male)1 -0.024698 7.76e-01 0.37846
cdcclass_bA -0.016814 3.64e-01 0.54604
cdcclass_bB -0.010932 1.55e-01 0.69383
cdcclass_bC -0.024645 2.28e+00 0.13105
cdcclass_bN -0.028996 2.31e+00 0.12854
ns(age_b_c, df = 3)1 -0.043891 2.47e+00 0.11630
ns(age_b_c, df = 3)2 0.000578 4.33e-04 0.98340
ns(age_b_c, df = 3)3 -0.028656 1.06e+00 0.30257
ns(cd4mr, df = 2)1 -0.016403 1.39e-01 0.70927
ns(cd4mr, df = 2)2 -0.026378 8.96e-01 0.34385
ns(wazmr, df = 3)1 0.041298 1.52e+00 0.21744
ns(wazmr, df = 3)2 0.052773 2.30e+00 0.12943
ns(wazmr, df = 3)3 0.012629 1.52e-01 0.69683
ns(hazmr, df = 3)1 -0.046355 2.74e+00 0.09774
ns(hazmr, df = 3)2 -0.011046 1.40e-01 0.70797
ns(hazmr, df = 3)3 0.004891 2.83e-02 0.86651
GLOBAL NA 1.89e+01 0.27388
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To empirically check why results from the weighted and unweighted analyses differ, we compare

the distributions of baseline covariates (mean (SD) or count(%)) between ‘immediate initiation’

and ‘never treat’, shown in the table below. Significant differences are observed in the distributions

of CD4, WAZ and HAZ, between the two groups of patients, and ignoring covariate imbalance

(unweighted analysis) would lead to biased conclusion.

Table 8: Comparing baseline covariates between ‘immediate initiation’ and ‘never treat’.

Immediate initiation Never treat p value
n = 885 n = 616

CD4 249.54 (285.01) 512.42 (328.65) <.001
WAZ −2.73 (1.80) −2.25 (1.65) <.001
HAZ −2.16 (1.42) −1.85 (1.52) .001
Age 12.26 (1.42) 12.20 (1.42) .452
CDC class .009
mild 89 (10.1%) 67 (10.9%)
moderate 35 ( 4.0%) 15 ( 2.4%)
severe 50 ( 5.6%) 18 ( 2.9%)
asymptomatic 77 ( 8.7%) 76 (12.3%)

Male 414 (46.8%) 246 (39.9%) .010
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Figure 1: Residual-versus-fitted plot for CD4 submodel, with lowess curve.
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Figure 2: Fitted lines from imputation model for CD4 and ART initiation status during follow up
for the 9 randomly selected individuals in Figure 1 from the main text. Empty circles indicate
no ART and filled circles represent on ART. Two gray lines denote one year and two years post
diagnosis. Purple line indicates end of follow up.
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Figure 3: Effect of fitted CD4 m̂(t) on hazard of death at t in mortality submodel.
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