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A1. Modeling and simulation workflow  Model development  
 

Image Segmentation 
 

Target outcome Volumetric reconstruction of the tissues of interest, specifically the definition of 
the tissue boundaries, as binary image volumes (.nii; NIfTI)8 and raw (without smoothing) 
triangulated surface representations (.stl)29  in the same coordinate system as imaging data. 
Tissues include bones  femur, tibia, fibula, patella; cartilage  femoral, tibial (medial & lateral), 
patellar; menisci  medial & lateral, ligaments  anterior/posterior cruciate, medial/lateral 
collateral, patellar; tendons  quadriceps. 

Software requirements 3D Slicer. 3D Slicer1 is a free, open source software package for 
visualization and image analysis (free and open source, BSD style, licensing, see 
http://www.slicer.org). The latest version at the time (Slicer 4.8) was used to access more tools 
and features. 

Input Set(s) of MRI from Open Knee(s) in NIfTI format (https://nifti.nimh.nih.gov/)8 (all in the 
same coordinate system): 

1. General Purpose MRI (3D T1-weighted without fat suppression, isotropic, 0.5 mm 
resolution)  

2. Cartilage MRI (3D T1-weighted with fat suppression, 0.35 mm sagittal plane resolution, 
0.7 mm out of plane resolution)  

3. Connective tissue MRI (proton density, turbo spin echo in sagittal, axial, and coronal 
planes, 0.35 mm in plane and 2.8 mm out of plane resolution)  

Segmentation algorithms The segmentation approach was primarily manual, requiring the 
modeler to use common labeling tools, such as,  brush, pencil, etc. to paint or fill in the tissue 
region of interest in image volume. Depending on the tissue, multiple image volumes were used 
to confirm tissue boundaries or assist the tissue volume generation. Several 3D Slicer tools were 
also used during the segmentation process to assist gross segmentation before manual touch up. 
These are described in the following.  

1. GrowCut Segmentation 

From 3D Slicer documentation1: 
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automata. The algorithm works by using a set of user input scribbles for foreground and 
background. For N-class segmentation, the algorithm requires a set of scribbles 

 

In this workflow, GrowCut was used primarily for gross segmentation of large tissue volumes. 

2. Label Map Smoothing 

From 3D Slicer documentation1: 

-
aliasing algorithm followed by a Gaussian smoothing algorithm. The output is a smoothed 

 

In the smoothing parameters outlined below, Sigma (Gaussian smoothing parameter) was chosen 
based on image resolution. For example, for cartilage MRI with resolution = 0.35 x 0.35 x 0.7 mm, 
sigma was set to 0.7. It should be noted that label map smoothing was used to assist 
segmentation as an intermediate step and should not be confused with preparation and 
smoothing of raw geometry for meshing (see section on Geometry Generation). 

3. Joint Smoothing 

From 3D Slicer documentation1: 

er smoothly, like jigsaw puzzle pieces. 
 

It should be noted that joint smoothing was used to assist segmentation as an intermediate step 
and should not be confused with preparation and smoothing of raw geometry for meshing (see 
section on Geometry Generation). 

 
Tissue-Specific Segmentation Procedures Below are the guidelines for segmentation procedures 
based on tissue types. It is important to use the specified input MRI, and locate the boundary as 
described for each tissue. However, the segmentation procedures described are only 
suggestions, and one may choose to highlight the anatomy using whichever tool they find most 
effective and efficient for their manual workflow. Once all tissues were segmented, the label 
maps were saved as NIfTI files (.nii)8 and converted to raw triangulated surfaces (.stl29, in units 
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mm) (without any further smoothing procedures). Slicer provides output options to 
accommodate these formats. 

Tissue/Object Input MRI Boundary 
Definition* 

GrowCut 
Segmentation# 

Manual 
Segmentation 

Label Map 
Smoothing# 

Joint 
Smoothing# 

Registration 
Markers$ 

femoral (x3) 

tibial (x3) 

patellar (x3) 

General purpose 
MRI 

Markers 
appeared 
bright in the 
MRI  the 
outer edge 
of the bright 
region 
defines the 
boundary. 

yes yes 

(fill in screw 
holes/ 
bubbles) 

  

Bones  

femur 

tibia 

fibula 

patella 

Cartilage MRI 

 

Cortical 
bone 
appeared 
black in MRI 

 the outer 
edge of 
black region 
defines the 
bone 
surface.  

yes  yes 

sigma=0.7 

 

Cartilage 
femoral 

tibial (medial) 

tibial (lateral) 

patellar 

Cartilage MRI Use bone 
boundary to 
help define 
cartilage 
boundary at 
bone 
interface. 
Cartilage  
appeared 
bright white 

 the outer 
edge defines 
articulating 
surface. 

  yes 

sigma=0.7 

yes 

(with 
bones) 

Menisci Cartilage MRI Use cartilage 
boundary to 

 yes yes yes 
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Tissue/Object Input MRI Boundary 
Definition* 

GrowCut 
Segmentation# 

Manual 
Segmentation 

Label Map 
Smoothing# 

Joint 
Smoothing# 

medial 

lateral 

help define 
meniscus 
boundary. 
Meniscus  
appeared 
darker. 

sigma=0.7 (with 
cartilage) 

Ligaments  

Tendons 

ACL 

PCL 

patellar 
ligament  

quadriceps 
tendon 

Connective 
tissue MRI 

(for boundary) 

 

General purpose 
MRI 

(for resolution) 

Use bone 
boundary to 
help define 
connective 
tissue 
boundary at 
insertion 
and origin 
sites. 
Ligaments 
and tendons 
appeared 
dark. 

yes 

Phase 1: 

using sagittal 
connective 
tissue MRI 

yes 

Phase 2: 

using general 
purpose MRI, 
overlay 
labelmap 
from Phase 1 
(as 
foreground 
layer) and 
trace 
boundary& 

 yes 

(with 
bones) 

 

Ligaments 

LCL 

MCL 

General purpose 
MRI 

(for boundary) 

 

Connective 
tissue MRI 

(for 
confirmation) 

Use bone 
boundary to 
help define 
ligaments in 
coronal 
plane. 
Ligaments 
appeared 
dark. 

 yes yes  

sigma=0.5 

 

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament. 
MCL: medial collateral ligament. 
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#Always check the image slices manually after using GrowCut Segmentation or Label Map and 
Joint Smoothing, and perform touch ups as needed to better define the boundaries.  

$While segmentation of reference markers are not needed to obtain an initial model, they are 
included in the workflow with the anticipation of their utility in upcoming modeling and 
simulation stages. 

&Alternatively, one can display the connective tissue MRIs and the general purpose OR cartilage 
MRI in different windows. When linked, Slicer uses interpolation for coupled viewing of the image 
sets that are already spatially aligned. In return, one can do the segmentation on interpolated 
connective tissue MRIs using the general purpose OR cartilage MRI as the master volume for 
segmentation. This allows high resolution segmentation volume from images with lower 
resolution directly. 

 

Geometry Generation  
 

Target outcome Geometric reconstruction of the tissues of interest as smooth and watertight 
triangulated surface representations (.stl)29 obtained from and in the same coordinate system as 
raw geometry; ready for volumetric meshing. Tissues include bones  femur, tibia, fibula, patella; 
cartilage  femoral, tibial (medial & lateral), patellar; menisci  medial & lateral, ligaments  
anterior/posterior cruciate, medial/lateral collateral, patellar; tendons  quadriceps. 

Software requirements MeshLab. MeshLab7 is an open source, portable, and extensible system 
for processing and editing of unstructured 3D triangular meshes (free and open source GPL 
license, see http://www.meshlab.net/). The latest version of MeshLab (MeshLab 2016.12) was 
used. 

Input Raw triangulated surface representations of tissues of interest (without filtering and 
smoothing) in .stl29 format in image coordinate system. 

Surface processing procedures A 5-step procedure (LVTIT, see below for descriptions) was used 
to process raw triangulated surface meshes. The process included staged smoothing approaches 
interleaved with surface reconstruction and resampling. The procedures aimed to generate 
uniform and watertight surface meshes that were smooth, volume-preserving and visually 
maintaining the geometrical shape of the tissues. 
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Smoothing Algorithms This section provides brief descriptions of the MeshLab7 algorithms that 
were used during processing of triangulated surface meshes. 

1. Laplacian Smoothing [L] 

For each vertex in the mesh, a new position is chosen based on average position with nearest 
vertex (as described in built-in documentation in MeshLab7

is the number of times the process is repeated.  

2. Surface Reconstruction: VCG [V] 

From built-in documentation in MeshLab7: 

lgorithm that have been used for a long time inside the ISTI-
Visual Computer Lab. It is mostly a variant of the Curless at al. e.g. a volumetric approach 
with some original weighting schemes, a different expansion rule, and another approach 
to hole filling  

be informed in relation to original image resolution from which raw 
surfaces are obtained; e.g., for cartilage images with a resolution of 0.35 x 0.35 x 0.7 mm, use a 
world unit of 0.35, 0.5, or 0.7 mm. 

3. Taubin Smoothing [T] 

From built-in documentation in MeshLab7: 

-
iteration. Based on Gabriel Taubin, A signal processing approach to fair surface design, 
Sig  

4. Iso Parameterization [I] 

Stage 1: Iso Parameterization 

From built-in documentation in MeshLab7: 

-manifold triangular mesh. An 
adaptively chosen abstract domain of the parameterization is built. For more details see: 
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Pietroni, Tarini, and Cignoni, 'Almost isometric mesh parameterization through abstract 
 

Stage 2: Iso Parameterization Remeshing 

From built-in documentation in MeshLab7: 

recursively subdivided. For more details see Pietroni, Tarini, and Cignoni, 'Almost 
isometric mesh parameterization through abstract domains' IEEE Transaction of 

 

s, aka. density of the surface mesh. 

Tissue specific processing parameters The table below specifies the parameters used in the 
surface mesh processing for each tissue for the surface meshes that were used in the generation 
of provided models. These values were considered a starting point and the process was 

-
MeshLab defaults were used. The outcome of surface mesh processing needed to be checked 
(visually and when possible, quantitatively) to ensure that there was no significant loss of 
geometric features or volumes. If necessary, surface repairing was performed, i.e. using other 
MeshLab7 tools, to ensure a manifold and watertight surface; sometimes faces needed to be re-
oriented such that surface normals all pointed outward. The final surface representation of the 
tissue was  (.stl29, in units mm).  It should be noted that these parameters were developed using 
one specimen and needed some specimen specific adjustments for the remaining specimens. 
Due to manual application of these parameters, some decisions made by the modelers may not 
be documented (several modelers with varying experience were involved in this process). File 
names typically consisted of some sequence of the smoothing step to provide an indication of 
which steps were used for a given surface, however exact details of parameters were not 
documented as the decisions were made based on visual inspections of how the surfaces looked 
after each step and whether any changes were required to create water tight meshes. Oks003 
surface meshes were created using the same parameters as the additional surface meshes 
provided later in the document.  
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 1. 
Laplacian 
Smoothing 

(Smoothing 
Steps) 

2. VCG Surface 
Reconstruction 

(Voxel Size, 
mm) 

3. Taubin 
Smoothing 

(Lambda, mu) 

4. Iso 
Parameterization 

(Sampling Rate)* 

5. Taubin 
Smoothing 

(Lambda, 
mu) 

Registration 
Markers 

- - - - - 

Femur, Tibia 20 0.7 0.5,-0.53 10 0.5,-0.53 

Patella 20 0.5 0.5,-0.53 7 0.5,-0.53 

Fibula 20 0.5 0.5,-0.53 5 0.5,-0.53 

Femoral Cartilage 20 0.35 0.5,-0.53 10 0.5,-0.53 

Tibial Cartilage 20 0.35 0.5,-0.53 10 0.5,-0.53 

Patellar Cartilage 20 0.35 0.5,-0.53 10 0.5,-0.53 

Menisci  20 - - 10 0.5,-0.53 

ACL,PCL 4 0.35 0.5,-0.53 5 0.5,-0.53 

Patellar Ligament 20 0.35 0.5,-0.53 10 0.5,-0.53 

Quadriceps 
Tendon 

20 0.35 0.5,-0.53 10 0.5,-0.53 

MCL 4 0.35 - 7 0.5,-0.53 

LCL 2 0.35 - 5 0.5,-0.53 

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament. 
MCL: medial collateral ligament. 
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Additional surface geometries

To facilitate mesh convergence studies, additional multiple surfaces for each component were 
generated. Care was taken to use the following parameters consistently. An effort was made to 
document any deviations.  However, it should be noted that the stochastic nature of software 
used may give different results when using the same parameters. For specimen oks003, 
additional surface meshes were created from the smoothed surface meshes created for the 
model.  

 

 1. 
Laplacian 

Smoothing 

(Smoothing 
Steps) 

2. VCG Surface 
Reconstruction 

(Voxel Size, 
mm) 

3. Taubin 
Smoothing 

(Lambda, mu) 

4. Iso 
Parameterization 

(Sampling Rate)* 

5. Taubin 
Smoothing 

(Lambda, 
mu) 

Registration 
Markers 

- - - - - 

Femur, Tibia 20 0.7 0.5,-0.53 10 0.5,-0.53 

Patella 20 0.5 0.5,-0.53 7 0.5,-0.53 

Fibula 20 0.5 0.5,-0.53 5 0.5,-0.53 

Femoral Cartilage 15 0.28 0.5,-0.53 8,10,15,20 0.5,-0.53 

Tibial Cartilage 20 0.35 0.5,-0.53 6,8,10,15 0.5,-0.53 

Patellar Cartilage 20 0.35 0.5,-0.53 6,8,10,15 0.5,-0.53 

Menisci 5 0.3 0.5,-0.53 4,6,8,10 0.5,-0.53 

ACL 2 0.35 0.5,-0.53 4,6,8,10 0.5,-0.53 

PCL 4 0.35 0.5,-0.53 3,4,6,8 0.5,-0.53 

Patellar Ligament 20 0.35 0.5,-0.53 4,6,8,10 0.5,-0.53 

Quadriceps 
Tendon 

20 0.35 0.5,-0.53 4,6,8,10 0.5,-0.53 
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 1. 
Laplacian 

Smoothing 

(Smoothing 
Steps) 

2. VCG Surface 
Reconstruction 

(Voxel Size, 
mm) 

3. Taubin 
Smoothing 

(Lambda, mu) 

4. Iso 
Parameterization 

(Sampling Rate)* 

5. Taubin 
Smoothing 

(Lambda, 
mu) 

MCL 4 0.35 - 5,7,9,11 0.5,-0.53 

LCL 2 0.35 - 3,4,6,8 0.5,-0.53 

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament. 
MCL: medial collateral ligament. TBC-L: Tibia cartilage  lateral. 

Volume Mesh Generation 

Target outcome Mesh definitions (nodes, elements, surfaces; node, element, face sets), 
template constitutive models (rigid  bones; deformable  other tissue). Outputs included 
tetrahedral volume meshes (cartilage, menisci, ligaments, tendon) in binary format (.med)24 with 
node, face, element sets to facilitate model assembly, material property definitions, and 
assignment of tissue interactions. 

Software requirements SALOME. SALOME26 is an open-source software that provides a generic 
platform for pre- (cad, meshing) and post-processing for numerical simulation (free and open 
source LGPL license, see http://www.salome-platform.org/) SALOME26 includes built-in scripting 
functionality using Python32, which was  required to utilize Python scripts for mesh generation 
and annotation, and model assembly. SALOME26 7.8.0 was used to support in-house Python32 
scripts.  

StlToMed.py. In-house Python32 script to generate meshes (surface or volume) and node, 
element, face sets using an XML based input file that points to .stl29 files, e.g., tissue geometries, 

-in Python installation; developed using 
SALOME26 7.8.0, source code available at https://simtk.org/plugins/datashare/?group_id=485# 
(OKS_model)  DOI pending. 

ConnectivityXML.py. Python32 utility script to read an XML file that points to .stl29 files and their 
connectivity for model assembly. Source code available at 

https://simtk.org/plugins/datashare/?group_id=485# (OKS_model)  DOI pending. 
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. 

Input Geometric reconstruction of tissues of interest  smooth and watertight triangulated 
surface representations (.stl)29, all in the same coordinate system, e.g., image coordinate system. 
Also a description of model components and their interactions with each other, essentially a 
model definition tree, as an input file to Python32 scripts. This file included references to all tissue 
components that were part of the model: bones  femur, tibia, fibula, patella; cartilage  femoral, 
tibial (medial & lateral), patellar; menisci  medial & lateral, ligaments  anterior/posterior 
cruciate, medial/lateral collateral, patellar; tendons  quadriceps. Each tissue entry pointed to 
the file location of triangulated surface representation of the tissue boundary. Each tissue was 
referred to 
material definitions and loading and boundary conditions during model assembly. In addition, 
interactions between tissues were   constraints 
or contact, respectively, between opposing regions of tissues. Determination of surfaces, e.g. 
face sets, and/or node sets for these constraints was based on geometric principles relating to 
the pair of meshes based on: 

 Proximity  find all the nodes on part 1 that are within a prescribed distance (related to 
the element size) of any node on part 2.  

 Normals  select faces on part 1 that have normal vectors that point toward the 
barycenter of part 2. This can also be limited by the proximity condition if desired. 

 Contains  one mesh contains the other, select elements that have normal vectors that 
point inward or outward. 

 All  all the surfaces. 

This analysis was automated using the Python32 scripts with SALOME26 during mesh generation 
and annotation. The following table specifies all the tie constraints and contacts surfaces 
between tissues, and which geometrical principles should be used to relate them.  

 FM TB FB PT FC TLC TMC PC MM LM ACL PCL MCL LCL PL QT 

FM     T:p      T:p T:p C:n 

T:p 

C:n 

T:p 

 C:n 

TB      T:p T:p  T:p T:p T:p T:p C:n 

T:p 

 T:p  
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FB              T:p   

PT        T:p       T:p T:p 

FC T:p     C:n C:n C:n C:n C:n      C:a 

TLC  T:p   C:a     C:n       

TMC  T:p   C:a    C:n        

PC    T:p C:n            

MM  T:p   C:n  C:n      T:p    

LM  T:p   C:n C:n           

ACL T:p T:p          C:a     

PCL T:p T:p         C:p      

MCL C:n 

T:p 

C:a 

T:p 

      T:p        

LCL C:n 

T:p 

 T:p              

PL T:p   T:p             

QT C:n   T:p C:n            

FM: femur. TB: tibia. FB: fibula. PT: patella. FC: femoral cartilage. TLC: tibial lateral cartilage. TMC: 
tibial medial cartilage. PC: patellar cartilage. LM: lateral meniscus. MM: medical meniscus. ACL: 
anterior cruciate ligament. PCL: posterior cruciate ligament. MCL: medial collateral ligament. LCL: 
lateral collateral ligament. PL: patellar ligament. QT: quadriceps tendon.  C: Contact. T:Tie. p: 
proximity, n: normals. c: contains. a: all. 

Mesh generation and annotation -in Python32 and the 
previously described connectivity file resulted  in meshes of the tissue components along with 
node, element and surface definitions and node, element, face sets (for material property 
assignment, tie and contact definitions, and loading and boundary assignment). The script was 
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automated, resulting in mesh files (in .med24 format and in units of the input files) for each tissue 
component. The script starts with generating triangular surface meshes (for rigid objects  bones) 
and tetrahedral (four node) volume meshes (for elastic objects  other tissues) using geometric 
reconstructions of the tissue (.stl)29. Surface mesh discretization for rigid objects is identical to 
that of the input .stl29 file. Surface discretization of elastic objects is identical to that of the input 
.stl29 26 interface to NETGEN 3D mesh19 generator with 
the following settings (see SALOME NETGEN documentation for more details25): 

Name Definition Value 

Max Size maximum linear dimensions for mesh cells.  Equal to the maximum linear 
dimension of the input STL29 

Min Size minimum linear dimensions for mesh cells. Equal to the minimum linear 
dimension of the input STL29 

Fineness ranging from Very Coarse to Very Fine allows to set 
the level of meshing detailization. 

Level 4. (If this fails, use Level 
3) 

Optimize the algorithm modifies initially created mesh in 
order to improve quality of elements. Optimization 
process is rather time consuming comparing to 
creation of initial mesh. 

On 

The script automatically generated an element set including all elements within the tissue, which 
was later used to assign material properties. Node and surface regions for tie and contact 
definitions were 

.0 was used to scale the 
approximate characteristic length of the surface mesh to determine the proximity threshold. For 

was not used.  

Meshes of tissues were visually inspected in SALOME26. This inspection facilitated confirmation 
of appropriate definitions of node and surface regions to prescribe tissue connectivity, e.g., 
ligament insertion and origin sites, and contact, e.g. between cartilage. If necessary these sets 
were interactively edited in SALOME26 by adding/removing nodes, faces, etc. from groups.  
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Template Model Generation 

Target outcome Template model for finite element analysis in FEBio11 format (.feb13, XML20 
based text file) including mesh definitions (nodes, elements, surfaces; node, element, face sets), 
template constitutive models (rigid  bones; deformable  other tissue), template interactions 
between tissue (tie constraints, contact), and template loading and boundary conditions (for rigid 
objects); created from geometric reconstruction of tissues. 

Software requirements SALOME. SALOME26 is an open-source software that provides a generic 
platform for pre- (cad, meshing) and post-processing for numerical simulation (free and open 
source LGPL license, see http://www.salome-platform.org/). SALOME26 includes built-in scripting 
functionality using Python32, which was required to utilize Python scripts for mesh generation 
and annotation, and model assembly. SALOME 7.8.026 was used to support in-house Python32 
scripts.  

MedToFebio.py. In-house script to generate a template FEBio13 model using XML20 based 
26 built-in 

Python installation; developed using SALOME 7.8.026, supports FEBio13 file format version 2.5, 
source code available at https://simtk.org/plugins/datashare/?group_id=485# (OKS_model). 

ConnectivityXML.py. Python utility script to read an XML20 file that points to .stl29 files and their 
connectivity for model assembly. Source code available at 
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model). 

Input tetrahedral volume meshes (cartilage, menisci, ligaments, tendon) in binary format 
(.med)24 with node, face, element sets to facilitate model assembly, material property definitions, 
and assignment of tissue interactions. 

Model Assembly 26 built-in Python32, the previously 
described connectivity file, and mesh files (outcome of mesh generation and annotation step) 
resulted in a template FEBio13 model file (.feb13, version 2.5)  for finite element analysis. The script 
is automated and resulted in the following contents written in the model file: 

 Node definitions  list of the node coordinates for each tissue 

 Element definitions  list of  node connections to define the elements for each tissue 

 Node sets, face sets, element sets, surface definitions  groups of nodes, elements, faces 
labeled to be used in tie and contact pairs 

 Material definitions 
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o For rigid bodies (bones) only a place holder density is assigned (1e-9 tonnes/mm3 
 consistent with spatial units of mm) 

o For elastic bodies (other tissues) a place holder density is assigned as 1e-9 
tonnes/mm3 and a Neo-Hookean material is defined using FEBio material type 
Mooney-Rivlin (uncoupled)12 and setting c1 = 0.1 MPa; c2 = 0 MPa; k = 100 MPa 
(consistent with spatial units of mm) as a place holder. 

 Surface pairs  to define connections (ties) or interactions between the surfaces, specifies 
he following criteria: 

o The surface on a rigid body should be the master surface. 

o The larger of the two surfaces should act as the master surface. 

o If the surfaces are of comparable size, the surface on the stiffer body should act 
as the master surface. 

o If the surfaces are of comparable size and stiffness, the surface with the coarser 
mesh should act as the master surface.  

 Tied interfaces   type contact between deformable surface pairs (penalty = 10) 

 Contact interactions  -to-facet- -facet-on-

= 1, auto_penalty = 1, maxaug = 10) 

 Loading and boundary conditions 

o Assignment of nodes on deformable bodies, e.g. ligament insertion and origin 
sites, to relevant rigid body as boundary conditions to tie the nodes to rigid bodies. 

o Setting of six degrees-of-freedom kinematics (translations and rotations) of all 
rigid bodies to fixed as a place holder. Note that FEBio assigns these boundary 
conditions at the center of mass of the rigid body.13 

 Load Data  define the load curves that were   

 Output requests  
 

 Module   
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 Step and control parameters  selected parameters to set simulation configuration for 
implicit static analysis using quasi-Newton incrementation with output at desired 

 

o time_steps = steps (default for steps is 10) 

o step_size = 1./steps 

o dtmin = 1e-10 

o dtmax = 1./steps 

o max_retries = 20 

o opt_iter = 10 

o aggressiveness = 1 

o optimize_bw = 1 

o plot_level = PLOT_MUST_POINTS 

o analysis = static 

o min_residual = 1e-10 

Many of the FEBio parameters set above are default values. For parameters that are not 
specified, FEBio defaults13 were used. Iterations of these parameters are possible depending on 
convergence of simulations. 

 

Model Customization  

Target outcome Updated model for finite element analysis in FEBio13 format (.feb13, XML20 based 
text file) with modified tissue-specific constitutive models, additional joint stabilizers and 
convenience structures, implementation of in situ strain, implementation of anatomically based 
coordinate system and kinematic chains, modified loading and boundary conditions and, output 
requests to quantify joint kinematics-kinetics and tissue mechanics relevant to simulation of 
passive knee flexion  ; generated from template model file (.feb)13. 

Software requirements FebCustomization_p3.py. In house script to modify template knee joint 
model to match the specifications of model development. Requires an XML20 file containing the 
desired model properties, which includes material properties, and manually chosen anatomical 
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landmarks. To be used with Python32, source code available at 
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model)  DOI pending. 

AnatomicalLandmarks_p3.py. In house script to utilize anatomical landmarks (described in an 
XML file containing the desired model properties) to calculate and add anatomical points and 
definitions to the model. To be used with Python32, source code available 
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model)  DOI pending. 

Input Template (or customized) model in FEBio11 format (.feb)13 and tissue constitutive models 
and parameters relevant to knee mechanics (described below) as a text based input file.  

1. Constitutive Models and Parameters 

Material properties and the constitutive models were adapted from literature as described 
below.  

Bone All bones (femur, tibia, fibula, patella) were assumed to be rigid bodies. Bones have a much 
higher stiffness than the other knee tissues. Rigid body assumption simplifies computation, 
therefore decreasing the computational cost and facilitates definition of joint kinematics and/or 
kinetics as loading and boundary conditions. A density of 1e-9 tonnes/mm3 (identical to water; 
consistent with spatial units of mm). It should be noted that density assignment did not have 
importance on static simulations without the action of gravity. It is provided as a place holder. 

Cartilage Cartilage was modeled as a nearly incompressible Neo-Hookean material defined by 
FEBio13 setting C2 parameter of FEBio material type Mooney-Rivlin (uncoupled)12. This is a fairly 

would be 
adequate and computationally less challenging for joint level simulations while providing an 
opportunity to understand local mechanical environment on and within the cartilage. Cartilage 
constitutive model and coefficients were similar to previous modeling study10, which reported an 

-Hookean material 
coefficients are noted below. 

Density* 
(tonnes/mm3) 

C1 (MPa) C2 (MPa) K (MPa) 

1e-9 2.54 0 100 

All units are consistent with spatial units of mm. 

*Density assignment is a place holder; it did not have importance on static simulations without 
the action of gravity. 
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Ligaments and Tendons Ligaments and tendons were modeled as nearly incompressible, 
transversely isotropic, hyperelastic material with a Mooney-Rivlin ground substance (Neo-
Hookean by setting C2 = 0). This type of representation accommodates tensile dominant behavior 
of the ligaments dictated by their fiber alignment across their longitudinal axis. The parameters 
were identical to a previous modeling study21, which fitted data from literature. These values are 
noted below. 

Ligament Density* 

(tonnes/mm3) 

C1 (MPa) C2 (MPa) K# (MPa) C3 (MPa) C4 C5 (MPa) m 

ACL 1e-9 1.95 0 146.41 0.0139 116.22 535.039 1.046 

PCL 1e-9 3.25 0 243.9 0.1196 87.178 431.063 1.035 

MCL 1e-9 1.44 0 793.65 0.57 48.0 467.1 1.063 

LCL$ 1e-9 1.44 0 793.65 0.57 48.0 467.1 1.063 

PL 1e-9 2.75 0 206.61 0.065 115.89 777.56 1.042 

QT& 1e-9 2.75 0 206.61 0.065 115.89 777.56 1.042 

All units are consistent with spatial units of mm. 

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament. 
MCL: medial collateral ligament. PL: patellar ligament. QT: quadriceps tendon. 

*Density assignment is a place holder; it did not have importance on static simulations without 
the action of gravity. 

#Bulk modulus (K) is calculated as (K = 1/D); D obtained from source literature. 

$LCL properties were assumed to be identical to MCL. 

&QT properties were assumed to be identical to PL. This assumption should not have significance 
as the anticipated use of QT is to transfer loads to patella in a distributed manner. 

Constitutive modeling of the ligaments requires specification of a fiber direction. In FEBio12, 
under 
of all fibers in the material point are along the direction of the vector. For each ligament and 
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tendon this direction was defined as the direction of the longest edge of the oriented bounding 
box of the tissue to approximate the longitudinal alignment of the tissue.  

Meniscus Menisci were modeled as nearly incompressible, transversely isotropic, hyperelastic 
material with a Mooney-Rivlin ground substance (Neo-Hookean by setting C2 = 0). This material 
model is seemingly more complicated than transversely orthothropic linear elastic models in 
literature. Yet, it allowed a convenient way to represent the behavior of meniscus which is largely 
dictated by its circumferential stiffness (based on fiber alignment) with the capacity to sustain 
compressive loading. For convenience, the parameters were identical to those used in a previous 
modeling study of meniscus28 and they are noted below. 

 Density* 

(tonnes/mm3) 

C1 (MPa) C2 (MPa) K# (MPa) C3 (MPa) C4 C5 (MPa) m 

Meniscus 1e-9 4.61 0 92.16 0.1197 150.0 400.0 1.019 

All units were consistent with spatial units of mm. 

*Density assignment is a place holder; it did not have importance on static simulations without 
the action of gravity. 

#Bulk modulus (K) is calculated as (K = 1/D); D obtained from source literature. It should be noted 
that due to differences in dilatational component of constitutive models (used in here and in 
source literature), equivalence of K is an approximation. 

Constitutive modeling of the menisci required specification of fiber direction. In FEBio, fiber 
direction can be specified for each element individually, in the ElementData section13. The 
meniscus fibers were oriented to the oval fitted to the bounding box.  

2. Components for Stabilization 

The following components were not tissues of interest, however they were incorporated in the 
model primarily to stabilize patella and represent the extensor mechanism. Mechanical springs 
and kinematic joints were used to represent these anatomical structures.  

Quadriceps Tendon Attachment The quadriceps tendon was attached to the femur proximally. 
Since the quadriceps muscles are not being modeled, this attachment were represented by a 
spring. The use of a spring instead allowed a weakly constrained movement of the proximal 
quadriceps tendon, while still preventing some separation of patella from the femur during 
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flexion. The spring adds a small force pulling the patella to remain in contact with the femur bone. 
A spring constant of 1 N/mm was chosen, but can be calibrated if needed. The spring attached to 
the imaginary rigid body at the top of the quadriceps tendon on one end, and the femur bone on 
the other. The insertion origin on both rigid bodies was chosen as the origin of the imaginary rigid 
body. 

Patellofemoral Joint Ligaments The medial and lateral patellofemoral ligaments (MPFL, LPFL) 
were modeled as discrete elements and using the force-displacement curve were defined as a 
tension-only linear springs. 

. The insertion points of the patellofemoral ligaments were located as follows: 

 MPFL femoral insertion: 0.5xCD from the distal side of the medial condyle, and 0.4xCD 
from the posterior side or the medial condyle, where CD is the anterior-posterior size of 
the medial condyle(ref) 

 MPFL patellar insertion: superomedial aspect of patella (~ top 1/3)2 

 LPFL femoral insertion: 10.6 mm anterior, and 2.6 mm distal to the lateral epicondyle, 
average width 11.7 mm 

 LPFL patellar insertion: 8 mm from superior pole to upper insertion, insertion width ~ 45% 
of articular surface. 

Coordinates of anatomical locations, e.g, femoral epicondyles and patellar regions, were located 
in the MRI if their identification proved to be difficult to find on the meshes.  

3. Application of In Situ Strain  

Prestrain formulation of FEBio PreStrain Plugin is described in detail in literature18; from this 
literature:  

-free to the prestressed reference 
configuration is represented by Fp, which will be referred to as the prestrain gradient. The 
total elastic deformation gradient Fe is determined by the composited deformation 

 

To scale the in situ stretch as expected when reducing the step size , a load curve was defined for 
each prestrain ligament to set in situ stretch to 1 (no strain) at time = 0. For example, if the desired 
initial stretch value is 1.034, the load curve should be: 
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<loadcurve id="1" type="linear"> 

<point>0,1.0</point> 

<point>1,1.034</point> 

</loadcurve> 

To use this load curve appropriately, the initial stretch defined in the material was changed to 
1.0, e.g. 

<stretch lc="1">1.0</stretch> 

One average initial stretch was defined for all fibers in each ligament as: 

Ligament Initial Stretch 

ACL* 1.016 

PCL# 1.0 

MCL* 1.034 

LCL* 1.027 

PL# 1.0 

QT# 1.0 

1.0 indicates strain free initial state 

*Initial strain was set to average of values reported in the modeling study of Dhaher et al.9, who 
referred to previous knee models21 and experimental data14. 

#Initial strain set to zero due to lack of data, similar to Dhaher et al.9 

In the prestrain constraint, min_iters and max_iters were set to 0, essentially eliminating 
augmentation. Simulations solely rely on penalty based constraints to balance the higher 
possibility of convergence with potentially decreased constraint enforcement.  
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Since the prestrain update rule is chosen to eliminate distortion, the above values would only be 
used as an initial guess for fiber stretch. Due to changes in cross sectional area of the ligament, 
in order to maintain equilibrium, the solver updates the fiber stretches as needed. Due to this 

in previous studies9,21), as the values are likely to change. Thus, one average value was given as 
the initial guess for fiber stretch for all regions in the ligament. After the solver determined the 
updated initial stretch values, they can be compared to the above literature values.  

4. Locating Joint Axes 

Tibiofemoral Joint The Grood and Suntay Joint Coordinate System15 (JCS) was used to define this 
joint. This method requires a definition of a tibial coordinate system (xT,yT,zT), a femoral 
coordinate system (xF,yF,zF), and a floating axis (FTF). The following anatomical landmarks were 
located on the meshes of the femur and tibia: 

 medial tibial spine (intercondylar eminence) 

 lateral tibial spine (intercondylar eminence) 

 approximate center of medial tibial plateau 

 approximate center of lateral tibial plateau 

 most distal point on the posterior surface of the femur, midway between the medial and 
lateral condyles 

 medial femoral condyle (most distal point on posterior surface)  

 lateral femoral condyle (most distal point on posterior surface) 

Tibial Coordinate System: 

Tibial Origin: Mid-point between tibial spines (medial and lateral intercondylar eminences). 

Tibial Mechanical Axis (zT-axis): JCS15 defines this axis as passing through the midpoint between 
the tibial spines proximally, and  the center of the ankle distally. Due to a lack of MRI of the ankle, 
we assumed this axis to pass through the same point proximally (midpoint between spines), and 
extend parallel to the z- direction of the MRI coordinate system (approximately aligned with the 
longitudinal axis of the body). The z-axis is positive in the proximal direction.  

Tibial Anterior Axis (yT-axis): The cross product between the zT-axis, and a line connecting the 
approximate center of each tibial plateau. The y-axis is positive in the anterior direction. 
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Tibial Mediolateral Axis (xT-axis): The cross product between the yT-axis and the zT-axis.  

Femoral Coordinate System:  

Femoral Origin: Most distal point on the distal femur, midway between the medial and lateral 
condyles. 

Femoral Mechanical Axis (zF-axis): JCS15 defines this axis as passing through the center of the 
femoral head proximally, and the most distal point on the posterior surface of the femur distally. 
Due to lack of MRI data of the femoral head, we assumed the axis to pass through the same point 
distally (distal point on posterior surface), and extend parallel to the z-direction of the MRI 
coordinate system (approximately aligned with the longitudinal axis of the body). The zF-axis is 
positive in the proximal direction.  

Femoral Anterior Axis (yF-axis): The cross product between the femoral mechanical axis (zF-axis) 
and a line connecting the femoral condyles. The yF-axis is positive in the anterior direction. 

Flexion Axis (xF-axis): The cross product between the yF-axis and the zF-axis.  

Tibiofemoral Floating Axis: 

The tibiofemoral floating axis (FTF-Axis) is defined as the cross product between the zT-axis and 
the xF-axis at any given joint position.  

Patellofemoral Joint This joint motion is described in a method similar to JCS15, according to Bull 
et al.5 This method requires a definition of a patella coordinate system (xP,yP,zP) , femoral 
coordinate system (same as that described above for the tibiofemoral joint), and a Floating axis 
(FPF ). The following anatomical landmarks were located on the mesh of the patella: 

 medial patella ridge 

 lateral patella ridge 

 midpoint of patella in coronal view 

Patella Coordinate System: 

Patella Origin: Mid-point of medial and lateral ridges of patella. 

Medial-Lateral Axis (xP-axis): The line connecting the medial and lateral ridges of the patella. 
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Superior-Inferior Axis (zP-axis): Perpendicular to xP and through the midpoint of the patella in 
coronal view(ref). 

Anterior-Posterior Axis (yP-axis): The cross product between xP-axis and zP-axis. 

Patellofemoral Floating axis: 

The patellofemoral floating axis ( FPF-axis) is defined as the cross product between the zP-axis and 
the xF-axis.  

Note:. We defined the superior-inferior axis as perpendicular to zp, and in line with the coronal 
image plane (y=0). This would not work if the knee is rotated in the MRI coordinate system. If this 

n to help 
-femoral 

joint constraints are all set free, this should not affect the model, as the joint has 6 degrees of 
freedom. 

Creating Kinematic Joints in FEBio Recent versions of FEBio13 do not allow independent 
prescription of rotational degrees of freedom for a rigid body. For this reason and to facilitate 
loading and boundary conditions relevant to anatomy of the knee, kinematic joint chains were 
defined for tibiofemoral and patellofemoral joints. 

Tibiofemoral Joint: 

Three rigid cylindrical joints13 were added to the constraints section to define tibiofemoral 
were defined: 

 TFTO: located at the origin of the tibial (xT,yT,zT) coordinate system. 

 TFFO: located at the origin of the femoral (xF,yF,zF) coordinate system.  

The cylindrical joints were defined as follows: 

Motion  joint_origin joint_axis body_a body_b 

Flexion-extension Origin of (xF,yF,zF) xF-axis Femur TFFO 

External-internal 
rotation 

Origin of (xT,yT,zT) zT-axis TFTO Tibia 
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Abduction-adduction Intersection of FTF- and 
xF-axes 

FTF-axis TFFO TFTO 

All other parameters in the rigid cylindrical joints were set to FEBio defaults13. Each cylindrical 
joint also had a translational component to describe tibiofemoral joint translations13. 

Patellofemoral Joint: 

Three rigid cylindrical joints13 were added to the  constraints section to define patellofemoral 
were defined: 

 PFPO: located at the origin of the patella (xP,yP,zP) coordinate system.  

 PFFO: located at the origin of the femoral (xF,yF,zF) coordinate system.  

The cylindrical joints were defined as follows: 

Motion  joint_origin joint_axis body_a body_b 

Patellar flexion 
and shift 

Origin of (xF,yF,zF) xF-axis Femur PFFO 

Patellar tilt Origin of (xP,yP,zP) zP-axis PFPO Patella 

Patellar rotation Intersection of FPF- and xF-
axes 

FPF-axis PFFO PFPO 

All other parameters in the rigid cylindrical joints were set to FEBio defaults. Each cylindrical joint 
also had a translational component to describe patellofemoral joint translations13. 

Note: Centers of mass of tibia, patella, femur rigid bodies were moved from world origin to their 
respective coordinate system origins, in order to allow for easier manipulation while debugging 
the model, and for easier calculations in post-processing.  

5. Loading and boundary conditions 

The simulation strategy was to use a one step solution. Load curves defined the in situ strain 
(prestrain) application from time 0 to 1, then hold the prestrain at its final value between time 1 
and 2. The loading (flexion) occurs from time 1 to 2, and the load curve for the flexion is set to be 
zero from time 0 to 1, i.e., fixing the flexion angle during the prestrain step.   
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In Situ Strain Application In situ strains were applied based on previously described specifications 
(see above). Any loading and boundary conditions that are not specified below were set to FEBio 
defaults13.  

 Prestrain: as described in in situ strain application section (see above) 

 Femur: All degrees of freedom (3 translations, 3 rotations) free. 

 Tibia: All degrees of freedom (3 translations, 3 rotations) fixed. 

 Fibula: All degrees of freedom (3 translations, 3 rotations) fixed. 

 Patella: All degrees of freedom (3 translations, 3 rotations) free. 

 Tibiofemoral cylindrical joints: Flexion fixed (at 0º); remaining degrees of freedom (3 
translations, 2 rotations) free. 

 Patellofemoral cylindrical joints: All degrees of freedom (3 translations, 3 rotations) free. 

 Quadriceps tendon slider joint: All degrees of freedom (3 translations, 3 rotations) free. 

Passive Flexion At the start of the passive flexion application, in situ strains should have already 
been applied as prescribed. Our interpretation of passive knee flexion is that the motion of the 
knee is guided by joint contact and connective tissue recruitment. Therefore no external loading 
was applied; the movement of the knee was unconstrained other than prescription of the flexion 
angle up to 90º. Any loading and boundary conditions that are not specified below were set to 
FEBio defaults13.  

 Femur: All degrees of freedom (3 translations, 3 rotations) free. 

 Tibia: All degrees of freedom (3 translations, 3 rotations) fixed. 

 Fibula: All degrees of freedom (3 translations, 3 rotations) fixed. 

 Patella: All degrees of freedom (3 translations, 3 rotations) free. 

 Tibiofemoral cylindrical joints: Flexion prescribed (0º to 90º during simulation step); 
remaining degrees of freedom (3 translations, 2 rotations) free. 

 Patellofemoral cylindrical joints: All degrees of freedom (3 translations, 3 rotations) free. 

 Quadriceps tendon slider joint: All degrees of freedom (1 translation) free. 

6. Simulation output requests 

By default, FEBio13 provides two output files: .xplt, plotfile, a binary file that includes all default 
and requested field variables compatible with PostView22; .log, logfile, a text file that reports the 
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convergence history of the simulation along with convergence metrics including any other 
variables requested for output. In accordance with the overall customization of the model and 
to provide output metrics relevant to simulation case, output of the following metrics were 
requested: 

 Fiber stretch  fiber stretch during simulation in tissues with compatible constitutive 
models (ligaments, tendon, menisci). 

 Generalizable parameters  contact gap, pressure, traction; displacement; reaction 
forces; stress; to be stored in plotfile. 

 Prestrain stretch  actually the total fiber stretch, including the effects of the prestrain 
and deformation; to be stored in plotfile. 
 

 Fiber stretch  fiber stretch due to deformation during simulation in tissues with 
compatible constitutive models; this differentiation is important to understand ligament 
deformations when in situ strain is implemented. 

 Rigid body data  Request outputs kinematics and kinetics of all rigid bodies including 
imaginary rigid bodies used for joint coordinate systems; to be stored in plotfile and 
logfile. Information in logfile can be used to reconstruct joint kinematics. 

 Rigid joints data  Request outputs only kinetics but not kinematics as it is not 
implemented in FEBio11; to be stored in plotfile and logfile. 

13 for more details.   

 

Simulation  
 

Target outcome Solution of fully customized model through finite element analysis using FEBio11; 
generating simulation results as binary and text output files (.xplt and .log, respectively). 

Software requirements: FEBio. FEBio11 is a nonlinear implicit finite element analysis framework 
designed specifically for analysis in biomechanics and biophysics (custom open source license; 
free for academic research use, licensing for commercial use is available, see 
http://www.febio.org). The latest version of FEBio11 (version 2.9 at the time of preparation of 
this document) was used. 

FEBio PreStrain Plugin. PreStrain18 Plugin provides a general framework for representing 
prestrain in a finite element model using a prestrain gradient method. A version compatible with 
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the latest version FEBio was used (at the time of preparation of this document, version 1.0 
supporting FEBio 2.9 has been available). 

Input Fully customized model in FEBio format (.feb13). 

Simulation Process Invoked FEBio13 with the model file as input. For simulations that did not 
convergence, relaxation of convergence tolerances and utilization of alternative solution 
algorithms, contact formulations, etc. were employed (see Appendix A6).  

 

Post-Processing  
 

Target outcome Extraction and summary of knee kinematics and kinetics during passive flexion; 
processed using raw simulation results of fully customized model with FEBio13 (.log file), 
supported by graphs as binary image files.  

Software requirements LogPostProcessing.py. In house script to read model specific FEBio13 log 
file, extract and store joint kinematics-kinetics, and plot joint kinematics-kinetics. To be used with 
Python, source code available at https://simtk.org/plugins/datashare/?group_id=485# 
(OKS_model)  DOI pending.  

Input Solution of fully customized model through finite element analysis using FEBio13; simulation 
results as binary and text output files (.xplt and .log, respectively). 

LogPostProcessing.py reads the log file and extract, store (as .xml16) and plot knee kinematics and 
kinetics during passive flexion (as .png23): 

 Kinematics of tibiofemoral cylindrical joints: 3 rotations, 3 translations total 

 Kinematics of patellofemoral cylindrical joints: 3 rotations, 3 translations total 

 Translation of tibia origin relative to femur origin in femoral coordinate system 

 Translation of patella origin relative to femur origin in femoral coordinate system 

 Constraint moment to maintain the knee joint at prescribed flexion 

Visualization PostView22 was used to take snapshots of the model at different flexion angles, as 
obtained through simulation of passive flexion. PostView22 can also be used to inspect tissue 
stress-strain distributions, export data, images, and animations.  
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A2. Experimental data processing  

 

Registration for Specimen-Specific Calibration  
 

Target outcome Coordinate system transformation matrices between joint testing and imaging 
coordinate systems of bones and experimental anatomical landmarks transformed to model 
coordinate system in XML20 based text files. Full knee model with joint coordinate system defined 
to align with the experimental coordinate system, in FEBio13  
format (.feb, XML20 based text file). 

https://simtk.org/plugins/datashare/?group_id=485# (OKS_model)  DOI pending.  

Input Experimental probed points on registration markers and anatomical landmarks and 
coordinate system transformations (State.cfg); raw registration marker geometries from 
imaging; FEBio13 model file. 

Registration In the State.cfg file, one can find the coordinates of the probed points on registration 
markers (three on femur, three on tibia) and bone landmarks collected during mechanical 
testing6. A sphere was fit to probed points on each registration marker to obtain its center in the 
local bone motion tracking system coordinate system. Similarly, a sphere was fit to raw 
registration marker geometries obtained by segmentation of imaging data to obtain their centers 
in image coordinate system. For each cluster of registration markers on the bone, the 
transformation matrix was calculated between the local bone motion tracking system and image 
coordinate system using singular value decomposition between sphere centers. In following, 
anatomical landmarks on each bone, which are probed during mechanical testing, were 
transformed to image coordinate system to serve as the foundation to redefine model joint 
coordinate systems and cylindrical joint axes. The coordinate systems of tibia and femur were 
updated based on descriptions provided in the experiment documentation16(also see below). 
Patella coordinate system remained the same due to incomplete data on patella registration 
marker assembly.  

Tibia 

T1= Most lateral point on the tibial plateau 

T2= Most medial point on the tibial plateau 
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T3= Distal tibia point (medial malleolus of the tibia: most medial point) 

T4= Distal tibia point (medial malleolus of the tibia: most medial point) 

T5= Distal tibia point (lateral malleolus of the tibia: most lateral point) 

T6= Distal tibia point (lateral malleolus of the tibia: most lateral point) 

tibial origin:  

Tibia z-axis : , where  

Tibia y-axis: , normalized; where  

Tibia x-axis: , normalized 

 
Femur 

F1= Lateral femoral epicondyle 

F2= Medial femoral epicondyle 

F3= Proximal femur point 

F4= Proximal femur point 

F5= Proximal femur point 

F6= Proximal femur point 

Femur origin:  

Femur x_axis:  

Femur y_axis:   

Femur z_axis:  

 
Customized Full Knee Model with Experiment Coordinate Systems Experimental landmarks 
were used to define anatomical joint coordinate system in the model. The tibiofemoral floating 
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axis (FTF-axis) was defined as the cross product between the Tz-axis and the Fx-axis at any given 
joint position. The patellofemoral floating axis ( FPF-axis) was  defined as the cross product 
between the Pz-axis and the Fx-axis. The in house script FebCustomization_p3.py needs to be run 
for this purpose. The model were therefore  aligned with the experiment such that the axes as 
defined in the experiment are the same as the ones defined in the model (For script usage, see 
Appendix A8).  

 

Specimen-Specific Kinematics-Kinetics Data Processing  
 

Target outcome Experimental kinematics-kinetics data transformed, reduced, and presented in 
a form amenable for simulations with the full knee model, as text files (.csv)27  and graphs as 
binary images (.png)23. Representation of experimental kinematics-kinetics were separated for 
passive flexion and for laxity data (as a function of target flexion angle, dominant degree of 
freedom, loading direction in the dominant degree of freedom). 

https://simtk.org/plugins/datashare/?group_id=485# (OKS_model)  DOI pending. 

Input Experimental joint kinematics-kinetics data (.tdms), joint coordinate system offsets 
(State.cfg); coordinate system transformation matrices between joint testing and imaging, and 
experimental anatomical landmarks transformed to model coordinate system (.xml). 

Processing of Passive Flexion Data Experimental passive flexion data file (.tdms) were processed. 
Kinematics data were 3, which provide 
joint kinematics in an anatomical joint coordinate system (defined in the experiment based on 
cylindrical joints)16 relative to a reference state (joint offsets given in State.cfg4). Kinetics data 
were 3, which provide joint kinetics in 
an anatomical tibia coordinate system as applied as loads on tibia16. The Python script extracted, 
processed, and stored the data: 

1. Extracted data such that the data from 0° to maximum flexion was re-sampled at 5° 
increments, averaging data on each channel where flexion angle was within +/- 0.5 °. 

2. Added kinematics offsets (from State.cfg) to kinematics channels to report bone pose and 
orientation in an absolute fashion. 

3. Transformed kinematics data to the convention used in the model, i.e., cylindrical joint 
translations and rotations, accommodating offsets at model reference state when 
reconstructing experiment coordinate systems in the model. 
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4. Transformed kinetics data to the convention used in the model, i.e., joint loading applied 
to femur in model coordinate system, which is registered and aligned to experiment 
coordinate system.  

5. Wrote kinematics and kinetics to a text based file (.csv) both in experiment and model 
conventions; plot and store as graphics files (.png). 

Thresholds for cropping and resampling of data may change depending on data quality, e.g., 
noise and errors that may become apparent during analysis. The content of experimental 
kinematics-kinetics data files are in right knee abstraction, which were managed during any 
coordinate system transformation. 

Processing of Laxity Data Kinematics-kinetics data for laxity were split into files based on flexion 
angle (0º, 30º, 60º, 90º), dominant loading axis (anterior-posterior translation, internal-external 
rotation, varus-valgus), and direction of loading axis (positive, negative). Kinematics data were 

3, which provide joint kinematics in an 
anatomical joint coordinate system (defined in the experiment based on cylindrical joints)16 
relative to a reference state (joint offsets given in State.cfg4). Kinetics data were extracted from 

3, which provide joint kinetics in an anatomical tibia 
coordinate system as applied as loads on tibia16. A Python script was developed for extraction, 
processing, and storage of laxity data: 

 Extracted data by finding the indices of the data points (from Kinetics.JCS.Desired) where 
the force was held constant for all loading cases at all degrees of flexion where laxity data 
was collected (0 º, 30 º, 60 º, 90 º), taking the index of the final data point for each flat 
section of the data and ext

 

 Added kinematics offsets (from State.cfg) to kinematics channels to report bone pose and 
orientation in an absolute fashion. 

 Transformed kinematics data to the convention used in the model, i.e., cylindrical joint 
translations and rotations, accommodating offsets at model reference state when 
reconstructing experiment coordinate systems in the model. 

 Transformed kinetics data to the convention used in the model, i.e., joint loading applied 
to femur in model coordinate system, which is registered and aligned to experiment 
coordinate system.  

 Wrote kinematics and kinetics to a text based file (.csv) both in experiment and model 
conventions; plot and store as graphics files (.png). 
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Thresholds for cropping and resampling of data may change depending on data quality, e.g., 
noise and errors that may become apparent during analysis. The content of experimental 
kinematics-kinetics data files are in right knee abstraction, which were managed during any 
coordinate system transformation. 

A3. Model customization for application of kinematics-kinetics (with or 
without experimental data) 
 

Target Outcome Customized full knee models in FEBio13 format (.feb, XML20 based text file) 
prepared for all simulation cases, and all experimental loading conditions. Models include 
converged meshes, confirmed material properties and calibrated in situ ligament strains, and for 
reproduction of experiments, loading and boundary conditions of joint testing registered and 
transformed to model coordinate system.  

Software requirements experiment_to_model.py: In house Python script to update models 
with target kinetics-kinematics. Script available in, 
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model)  DOI pending. 

Input Template FEBio model file of the full knee (.feb13) and model properties (.xml20) files for 
with converged meshes, confirmed material properties, experiment coordinate systems, and 
calibrated in situ ligament strains; kinematics-kinetics data (experimental or simulated target) 
(.csv27). 

Customization for Experiment or simulated Loading Cases Python script updates knee model in 
FEBio13 to replicate experimental or simulated conditions. Experimental kinetics were applied as 
external femur loads, and experiment flexion angle was prescribed to the extension-flexion joint. 
Tibia was fixed; femur and patella were free to move and all loads and boundary conditions were 
applied in one step. From time 0 to 1, in situ strain were applied while keeping flexion at 0°. From 
time 1 to 2, the loads and boundary conditions at the start of experiment were prescribed, i.e., 
the flexion angle was set and the loads in the remaining degrees of freedom were applied on 
femur. From time 2 to 3, the loads and boundary conditions of the experimental trial were 
applied until the end point of the experiment. Load curves for each degree of freedom 
(particularly the dominant loading) were defined based on experiment data points and 
simulation output were requested at each experiment point. The kinematics-kinetics trajectories 
of experiment were split to facilitate prescription of loading scenarios in simulations.  
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A4. Model calibration procedure  
 

Mesh Convergence  
 

Target Outcome Geometric reconstruction of tissues of interest as smooth and watertight 
triangulated surface representations (.stl)29 and finite element meshes (.med)24 with several 
mesh densities including converged mesh densities. Compartmental models of tissues of interest 
in FEBio13 format (.feb, XML20 based text file) for mesh convergence simulations. Simulation 
results as binary and text output files (.xplt and .log, respectively)13 and as summary of mesh 
convergence analysis including target convergence metric as a function of mesh density (XML20 
based text file). Full knee model with converged meshes in FEBio13 format (.feb, XML20 based text 
file). Tissues for which mesh convergence were conducted include cartilage  femoral, tibial 
(medial & lateral), patellar; menisci  medial & lateral, ligaments  anterior/posterior cruciate, 
medial/lateral collateral, patellar; tendons  quadriceps. 

Input Raw triangulated surface representations of tissues of interest (without filtering and 
smoothing) in .stl29 format in image coordinate system. 

Geometry Generation Procedures For each tissue of interest, several geometries were created at 
different mesh densities. Smoothing procedures were performed as described in model   
development A1. The Iso Parameterization Remeshing phase was repeated several times, to 
obtain the mesh densities specified below.  

 Iso Parameterization Sampling Rates 

Femoral Cartilage 8,10,15,20 

Tibial Cartilage 6,8,10,15 

Patellar Cartilage 6,8,10,15 

Menisci 4,6,8,10 

ACL 4,6,8,10 

PCL 3,4,6,8 

Patellar Ligament 4,6,8,10 

Quadriceps Tendon 4,6,8,10 
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 Iso Parameterization Sampling Rates 

MCL 5,7,9,11 

LCL 3,4,6,8 

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament. 
MCL: medial collateral ligament. 

Mesh Generation Procedures For each tissue geometry that was generated above, a mesh was 
created in Salome26. A new MED24 file was generated where all node/element/face groups, which 
were already created for original tissue mesh, were transferred to the new MED24 file. This was 
done in a scripted fashion, using in house Python32 script transfer_med_groups.py by treating the 
groups as a binary field and applying that binary field to the new mesh to find the correspondence 
of nodes and elements in the new mesh. This correspondence was used to select nodes and 
elements to generate groups with the new node and element sets. A quality assurance check was 
completed here to ensure that all node/element/face groups are as expected. For example, a 
check was done for all ligament insertion origins that the insertion area covers the entire width 
of the ligament where it connects to the bone.  

Model Generation Procedures Each of the tissues of interest was tested by creating a model with 
the boundary conditions outlined in the table below. The models were created for each mesh 
density, such that 4 models exist for each tissue, with the only difference being the density of the 
mesh of the tissue of interest. Model generation was performed according to the model 
development A1 (using in home scripts MedToFebio.py, FebCustomization_p3.py), and boundary 
conditions were updated manually in the FEBio model input files for each model.  

Tissue of 
Interest 

Included Parts Boundary Conditions* Simulation 
Outputs 

Femoral 
Cartilage 

FMC, FMB, TBC-L, TBC-M Compression of the FMC between the 
FMB (rigid) and the TBC-L, TBC-M 
modeled as rigid bodies. TBC fixed, 
FMB displaced 2 mm in -z direction. 

Z-reaction force 
in FMB (primary) 

Contact pressure 
(secondary) 

Tibial 
Cartilage 

1. FMB, TBC-L, TBB 

2. FMB, TBC-M, TBB 

Compression of the Tibial Cartilage 
between the TBB (rigid) and the FMC 
modeled as a rigid body. TBB fixed, 

Z-reaction force 
in FMC (primary) 
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Tissue of 
Interest 

Included Parts Boundary Conditions* Simulation 
Outputs 

FMC displaced 1 mm in the -z direction
for TBC-L and 0.2 mm for TBC-M.  

Contact pressure 
(secondary) 

Patellar 
Cartilage 

PTC, PTB, FMC Compression of the PTC between the 
PTB (rigid) and the FMC modeled as a 
rigid body. FMC fixed, PTB displaced 
1mm in the y direction. 

Y-reaction force 
in PTB (primary) 

Contact pressure 
(secondary) 

Menisci 1. MNS-M, FMC, TBC-M, 
TBB 

2. MNS-L, FMC, TBC-L, 
TBB 

Compression of the MNS between the 
FMC and TBC, both modeled as rigid 
bodies. 

TBC fixed, FMC displaced 1 mm in the 
-z direction. Test applied to MNS-M, 
MNS-L separately. 

Z-reaction force 
in FMC (primary) 

Contact pressure 
(secondary) 

Fiber stretch 
(secondary) 

ACL ACL, FMB, TBB Tension test. TBB fixed, FMB displaced 
3 mm in the z direction. 

FMB reaction 
force (primary) 

Fiber stretch 
(secondary) 

PCL PCL, FMB, TBB Tension test. TBB fixed, FMB displaced 
3 mm in the z direction. 

FMB reaction 
force (primary) 

Fiber stretch 
(secondary) 

Patellar 
Ligament 

P TL, PTB, TBB Tension test. TBB fixed, PTB displaced 
4 mm in the z direction. 

Z-reaction force 
in PTB (primary) 

Fiber stretch 
(secondary) 
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Tissue of 
Interest 

Included Parts Boundary Conditions* Simulation 
Outputs 

Quadriceps 
Tendon 

QAT, PTB, QSO (rigid 
body connected to QAT) 

Tension test. QSO fixed, PTB displaced 
4 mm in the z direction. 

Z-reaction force 
in PTB (primary) 

Fiber stretch 
(secondary) 

MCL MCL, TBB, FMB Tension test. TBB fixed, FMB displaced 
4 mm in the z direction 

Z-reaction force 
in FMB (primary) 

Fiber stretch 
(secondary) 

LCL LCL, TBB, FBB Tension test. FBB fixed, FMB displaced 
4 mm in the z direction  

Z-reaction force 
in FMB (primary) 

Fiber stretch 
(secondary) 

FMB: femur bone. TBB: tibia bone. FBB: fibula bone. PTB: patella bone. FMC: femoral cartilage. 
TBC-L: tibial lateral cartilage. TBC-M: tibial medial cartilage. PTC: patellar cartilage. MNS-L: lateral 
meniscus. MNS-M: medical meniscus. ACL: anterior cruciate ligament. PCL: posterior cruciate 
ligament. MCL: medial collateral ligament. LCL: lateral collateral ligament. PTL: patellar ligament. 
QAT: quadriceps tendon. QSO: quadriceps origin. 

*Displacement levels were chosen to induce approximately 10% nominal strain on target tissue. 

 

Mesh Convergence Procedures Each of the models created above was run in FEBio, beginning with 
the coarsest mesh density. The simulation was repeated, each time with a finer mesh. The 
primary measured outputs were compared with those of the previous simulation, and when 
there was less than 5% difference (7.6% for medial tibial cartilage), convergence was assumed. 
The mesh density at which the output converged was then used in the final model. If no 
convergence is found within the specified mesh densities, finer/coarser mesh densities were 
created to continue testing until convergence was found.  
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Template Full Knee Model with Converged Meshes The in house scripts MedToFebio.py, and 
FebCustomization_p3.py were run including all of the selected knee tissues with converged mesh 
densities.  

 

Confirmation of Material Properties 
 

Target Outcome Compartmental models of tissues of interest in FEBio13 format (.feb, XML20 
based text file) for simulations to confirm and modify material properties using converged 
meshes. Simulation results as binary and text output files (.xplt and .log, respectively)13 and as 
summary of calibration process including target metric, model predictions as a function of 
material property and fit error (XML20 based text file). Full knee model with confirmed and 
modified material properties in FEBio13 format (.feb, XML20 based text file). Tissues for which 
material properties were confirmed include cartilage  femoral, tibial (medial & lateral), patellar; 
menisci  medial & lateral, ligaments  anterior/posterior cruciate, medial/lateral collateral, 
patellar; tendons  quadriceps. 

Input FEBio model file of the full knee with converged meshes, including all the tie/contact 
surfaces. 

Compartmental Modeling of Structural Tissue Behavior In order to confirm and modify material 
properties, structural tissue response or gross material behavior were compared with literature. 
If, the tissue behavior fell outside the range of expected behavior, the material properties were 
adjusted until the mechanical response of the tissue is considered within the reported normal 
range. This process essentially confirmed each tissue material property used for model 
development with a second information resource. Details of the simulations (and/or analyses) 
performed are provided below. An in house script ModelReduction_rigid3.py, was used to reduce 
the full knee model to include only the desired components for each of the test simulation cases. 
An in house script StiffnessFromLog.py was used to determine linear stiffness from model results.  

Ligaments and Tendons 

Tissue to 
Calibrate 

Included Parts Boundary Conditions* Simulation 
Outputs 

Expected 
Behavior 

ACL ACL, FMB, TBB Tension: TBB fixed, FMB 
displaced 3 mm in the 
fiber direction of the ACL. 

FMB reaction 
force-
displacement 
curve 

Linear stiffness = 
242±28 N/mm14 
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Tissue to 
Calibrate 

Included Parts Boundary Conditions* Simulation 
Outputs 

Expected 
Behavior 

PCL PCL, FMB, TBB Tension: TBB fixed, FMB 
displaced 5 mm in the 
fiber direction of the PCL. 

FMB reaction 
force-
displacement 
curve 

Linear stiffness = 
258±62 N/mm15 

Patellar 
Ligament 

PTL, PTB, TBB Tension: TBB fixed, PTB 
displaced 5 mm in the 
fiber direction of the PTL. 

PTB reaction 
force-
displacement 
curve 

Linear modulus = 
337.8.±67.7 
MPa17 

Quadriceps 
Tendon 

QAT, PTB, QSO Tension: QSO fixed, PTB 
displaced 5 mm in the 
fiber direction of the QAT.

PTB reaction 
force-
displacement 
curve 

Linear modulus = 
255.3±64.1 
MPa17 

MCL TBB, MCL, FMB Tension: TBB fixed, FMB 
displaced 5 mm in the 
fiber direction of the MCL.

FMB reaction 
force-
displacement 
curve 

Linear stiffness = 
63±14 N/mm16 

LCL FBB, FMB, LCL Tension: FBB fixed, FMB 
displaced 5 mm in the 
fiber direction of the LCL 

FMB reaction 
force-
displacement 
curve 

Linear stiffness = 
59±12 N/mm16 

FMB: femur bone. TBB: tibia bone. FBB: fibula bone. PTB: patella bone. ACL: anterior cruciate 
ligament. PCL: posterior cruciate ligament. MCL: medial collateral ligament. LCL: lateral collateral 
ligament. PTL: patellar ligament. QAT: quadriceps tendon. QSO: quadriceps origin. 

*Displacement levels were chosen to induce approximately 10% nominal strain on target tissue. 
No prestrain was applied.  

For the tension test simulations in the fiber direction, a load curve was defined from 0 to X, where 
X is the desired total displacement. Then, in the boundary section the prescribed displacement 
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was specified in the fiber direction. For example, given a fiber direction of [-0.101,-0.511,0.854] 
a unit displacement (X=1) : 

<rigid_body mat="4"> 

<prescribed bc="x" lc="3">-0.101</prescribed> 

<prescribed bc="y" lc="3">-0.511</prescribed> 

<prescribed bc="z" lc="3">0.854</prescribed> 

<fixed bc="Rx"/> 

<fixed bc="Ry"/> 

<fixed bc="Rz"/> 

</rigid_body> 

Python script StiffnessFromLog.py was used to extract rigid body reaction force  displacement 
data from simulation output (.log). In following, force-displacement response of the tissue along 
its fiber direction was calculated. Linear stiffness of the tissue (k) was calculated by fitting a line 

(E) was calculated as (k x Lo / Ao), where Lo and Ao are the reference ligament length and cross 
sectional area, respectively. The reference length was calculated as the distance between the 
centers of the insertion and origin. The cross sectional area was calculated as the average cross 
sectional area between the insertion and origin. If the simulated tissue properties (k and/or E) 
fall outside two standard deviations of the expected behavior, the fiber modulus (C5) was scaled 
to bring the tissue response within the expected range.  

Cartilage 

Since we assume cartilage properties to be consistent for all cartilage tissues, we performed one 
indentation test to confirm if cartilage structural response is within what is reported in literature. 
For this purpose, we used indentation stiffness of lateral tibial cartilage, which was reported as 
20.38±5.32 N/mm30. A model was generated to reproduce the experiment conditions30. The 
model included the tibia bone (TBB), lateral tibial cartilage (TBC-L), and a 1mm diameter indenter 
as a rigid body, which was in frictionless contact with the cartilage. The indenter was placed 
above the cartilage near the meniscus, as described in the study, and a load of 0.5 N was applied 
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to force the indenter against the tibial cartilage. StiffnessFromLog.py was used to extract indenter 
force and displacement data from simulation results (.log) and the linear stiffness was calculated 
using the linear region (upper third) of the force-displacement curve. Material properties of 
cartilage (C1) were scaled as needed to get the range within two standard deviations of the 
reported stiffness value. Bulk modulus parameter (K) scaled accordingly. 

Meniscus 

Depending on the location of the sample (anterior, central, posterior) and the thickness of it, 
circumferential tensile modulus of medial meniscus was reported as 43.4±26.8 MPa to 
141.2±56.7 MPa17. The fiber modulus (C5) of meniscus was scaled to match within two standard 
deviations of the reported modulus. 

Customized Full Knee Model with Confirmed Material Properties 

The in house script FebCustomization_p3.py needs to be run including all of the selected knee 
tissues with updated material properties. 

 

Calibration of In Situ Ligament Strains  
 

Target Outcome Full knee models with converged meshes, confirmed material properties, joint 
coordinate system defined to align with the experimental coordinate system, and loading and 
boundary conditions of experiments selected for calibration in FEBio13  format (.feb, XML20 based 
text file). Simulation results as binary and text output files (.xplt and .log, respectively) and as 
summary of calibration process including target metric, model predictions as a function of in situ 
ligament strains and fit error (XML based text file). Full knee model with calibrated in situ 
ligament strains in FEBio format (.feb, XML based text file). Tissues for which in situ ligament 
strains were calibrated include ligaments  anterior/posterior cruciate, medial/lateral collateral. 

Input Template FEBio model file of the full knee (.feb 1) and model properties (.xml20) files  with 
converged meshes, confirmed material properties, and experiment coordinate systems; 
processed specimen-specific kinematics-kinetics data (.csv27). 

Models experiment_to_model.py, was used to generate models representative of the loading and 
boundary conditions of selected laxity tests to calibrate in situ strains. Only joint laxity data at 0° 
flexion was used to modify in situ strains for anterior cruciate ligament (ACL), posterior cruciate 
ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL). The 
decision to use only these data was made to save on computational cost and time. All other 
loading scenarios include flexion of the joint prior to performing laxity testing, which can be 
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costly, and often, convergence issues may arise. This way, the calibration could be performed 
quickly, and the models were unlikely to have any convergence issues. 

Template model (.feb) and model properties (.xml) reflective of converged meshes, confirmed 
material properties, and experiment coordinate systems were the basis for customization of 
models for calibration. Modifications to the customization script and/or additional scripts were 
necessary to implement the loading scenarios Overall, application of loading and boundary 
conditions and output requests was similar to those described in A1 with exceptions noted in 
here. Tibia was fixed; femur and patella were free to move and all loads and boundary conditions 
were applied in one step. From time 0 to 1, in situ strain was applied while keeping flexion at 0°. 
From time 1 to 2, the loads and boundary conditions at the start of experiment were prescribed, 
i.e., the flexion angle was set and the loads in the remaining degrees of freedom were applied on 
femur to reflect the loading state of the joint at the start of testing. This step accounted for any 
offsets in bone configuration between imaging and the experiment and it should be done after 
the prestrain step as we do not want the in situ strain calibration to be dependent on the 
orientation of the knee in different experiment trials. From time 2 to 3, the loads and boundary 
conditions of the experiment were prescribed, i.e., the flexion angle was constant and the loads 
in the remaining degrees of freedom were applied on femur. Load curves for each degree of 
freedom (particularly the dominant loading) were defined based on experiment data points and 
simulation output were requested at each experiment point. A total of 4 models were generated: 

Model Name Flexion (°) Loading from Experiment To Calibrate 

F00_AT_C 0 Anterior laxity ACL 

F00_PT_C 0 Posterior laxity PCL 

F00_VL_C 0 Valgus laxity MCL 

F00_VR_C 0 Varus laxity LCL 

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. MCL: medial collateral 
ligament. LCL: lateral collateral ligament. 

Calibration Procedure An iterative procedure was used to identify optimal in situ ligament strains 
in anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament 
(MCL), and lateral collateral ligament (LCL): 
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1. Use F00_AT_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find 
ACL in situ strain by minimizing the difference between model predicted and 
experimental anterior translation and force. 

2. Use F00_PT_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find 
PCL in situ strain by minimizing the difference between model predicted and experimental 
posterior translation and force. 

3. Use F00_VL_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find 
MCL in situ strain by minimizing the difference between model predicted and 
experimental valgus rotation and moment. 

4. Use F00_VR_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find 
LCL in situ strain by minimizing the difference between model predicted and experimental 
varus rotation and moment. 

5. Repeat steps 1-4 until convergence of in situ strains, i.e., stop when absolute change in 
calculated in situ strain is less than 0.001. 

The Python script InSituOptimization.py was developed to update the in situ strain of the target 
ligament in the model, to read the simulation results (displacement and load in dominant degree 
of freedom), to implement a scalar (one-dimensional) optimization that minimized the sum of 
the squared differences between model predicted and experimental loading response in the 
dominant degree of freedom, and to write optimization results in a text file (.xml). It should be 
noted that these calculations were performed with readily aligned kinematics-kinetics 
conventions of the model and experiment, i.e., following registration, kinematics-kinetics data 
processing, and accounting for experimental local coordinate systems offsets. 
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A5. Edge lengths calculated for all meshes used in the models 
 

For each of the mesh component in each model, average edge length (mm), standard 
deviation(mm), number of nodes and number of elements ( tetrahedral or triangular) were 
calculated.  

Specimen Oks001 Oks002 Oks003 Oks004 Oks006 Oks007 Oks008 Oks009 
ACl  0.87, 

0.24, 
4025, 
15152 

0.66, 
0.13, 
6284, 
28526 

0.57,0.
13, 
15792, 
72552 
 

0.48, 
0.09, 
11726, 
54489  

0.42, 
0.08, 
15354, 
76547 

0.50, 
0.10, 
13189, 
63071 

0.53, 
0.10, 
12186, 
57440 

0.49, 0.09, 
14018, 
68169 

Pcl 1.11, 
0.25, 
3389, 
14055 

0.72, 
0.13, 
7455, 
35647 
 

0.76,0.
19, 
3714, 
14379 
 

0.63, 
0.15, 
10769, 
48710 

0.62, 
0.15, 
10729, 
48357 

0.69, 
0.17, 
10283, 
45649 

0.70, 
0.16, 
11253, 
51560 

0.71, 0.19, 
11793, 
59303 

Lcl 0.61, 
0.20, 
2873, 
9010 

0.56, 
0.18, 
3360, 
11055 

0.62,0.
20, 
2960, 
9773 

0.56, 
0.12, 
3408, 
13306 

0.40, 
0.08, 
8049, 
32389,  

0.52, 
0.12, 
8187, 
34157 

0.45, 
0.09, 
8630, 
35687 

0.43, 0.08, 
9581, 41306 

Mcl 0.84, 
0.29, 
8839, 
31366 

0.72, 
0.30, 
4661, 
14465 

0.55,0.
16, 
15693, 
62712 

0.42, 
0.09, 
19010, 
83192 

0.28, 
0.07, 
58517, 
232256 

0.42, 
0.09, 
19322, 
81795 

0.53, 
0.10, 
28897, 
137254 

0.36, 0.09, 
18335, 
74539 

Mns-m 0.55, 
0.13, 
29608, 
135176 

0.30, 
0.05, 
94066, 
477653 

0.67,0.
15, 
11706, 
51009 

0.58, 
0.12, 
13599, 
60458 

0.28, 
0.05, 
99589, 
512314 

0.33, 
0.06, 
93452, 
475512 

0.42, 
0.09, 
63431, 
310827 

0.36, 0.07, 
55857, 
273901 

Mns-l 0.57, 
0.17, 
20222, 
90511 

0.35, 
0.08, 
69661, 
337649 

0.71, 
0.18, 
10901, 
44953 

0.28, 
0.06, 
58394, 
277929 

0.34, 
0.07, 
72444, 
356524 

0.34, 
0.07, 
79725, 
400518 

0.41, 
0.10, 
51494, 
238358 

0.33, 0.07, 
74632, 
368347 

Fmc 1.14, 
0.36, 
27908, 
103027  

1.10,  
0.47, 
19722, 
62819 
 

1.034,0
.45, 
24870, 
87072 

0.64, 
0.24,626
35,22017
9 

0.99, 
0.36, 
25165, 
85120 

1.13, 
0.36, 
23148, 
84098 

1.19, 
0.42, 
21670,73
673 

1.12, 0.42, 
25612, 
86456 

Ptc 0.62, 
0.12, 
33063, 
157775 

0.42, 
0.12, 
48109, 
225560 

0.62,0.
12, 
26121, 
121105 

0.47, 
0.10, 
39329, 
179404 

0.48, 
0.14, 
33656, 
136808 

0.56, 
0.12, 
42881, 
198903 

0.58, 
0.14, 
48539,22
0942 

0.55, 0.13, 
43103, 
193241 

Tbc-m 0.75, 
0.16, 

0.42, 0.57,0.
13, 

0.41, 
0.12, 

0.39, 
0.10, 

0.52, 
0.15, 

0.58, 
0.17, 

0.45, 0.12, 
43536, 
191271 
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16193,
70116 

0.12, 
36242, 
148206 

18060, 
75627 
 

35360, 
145241 

48114, 
214978 

29169, 
119930 

30035, 
119206 

Tbc-l 0.69, 
0.15, 
22878, 
106371 

0.47, 
0.12, 
35137, 
155235 

0.42,0.
08, 
40669, 
200079 

0.36, 
0.10, 
34350, 
137229 

0.42, 
0.09, 
48458, 
229876 

0.47, 
0.12, 
39497, 
173275 

0.57, 
0.16, 
39778, 
168556 

0.48, 0.12, 
47239, 
211345 

Qat 0.90, 
0.24, 
12860, 
55421 

0.57, 
0.12, 
82238,4
22315 

1.10,0.
21, 
14963, 
69410 

0.91, 
0.18, 
17462, 
82857  

0.55, 
0.10, 
72400, 
363834 

0.55, 
0.12, 
71417, 
360181 

0.50, 
0.10, 
115125, 
615494 

0.41, 0.06, 
55870, 
266284 

ptl 1.06, 
0.25, 
11464, 
48975 

0.52, 
0.13, 
54739, 
257643 

1.07, 
0.30 
9280, 
35616 

0.62, 
0.12, 
28998, 
136496 

0.53, 
0.14, 
51502, 
238304 

0.58, 
0.16, 
62126, 
320541 

0.68, 
0.22, 
50954, 
255236 

0.48, 0.08, 
55166, 
259878 

fmb 0.64, 
0.13, 
76178,
15232 

0.95, 
0.11, 
24302,4
8600 

20171, 
40338,  

1.02, 
0.16, 
20414,  
40824 

1.14, 
0.18, 
17255, 
34506 

1.09 
0.18, 
21872, 
43740 

1.33, 
0.21, 
17012, 
34020 

1.14, 0.18, 
21629, 
43254 

tbb .98, 
.10,213
86, 
42768 

0.85, 
0.10, 
24059, 
48114 

0.85, 
0.10, 
20900, 
41796 

0.87, 
0.15, 
20171, 
40338 

0.76, 
0.10, 
24059, 
48114 

1.01, 
0.16, 
18956, 
37908 

1.08, 
0.19, 
17741, 
35478 

0.95, 0.15, 
21629,4325
4 

ptb 0.62, 
0.07, 
10802,
21600 

0.61, 
0.10, 
9290, 
18576 

0.74, 
0.09, 
8642, 
17280 

0.60, 
0.08, 
9614, 
19224 

0.60, 
0.10, 
9722, 
19440 

0.68, 
0.10, 
9722, 
19440 

0.75, 
0.12, 
9614, 
19224 

0.48, 0.07, 
21872, 
43740 

fbb 1.06, 
.12, 
4802, 
9600 

0.87, 
0.10, 
4802, 
9600 

0.90, 
0.12, 
3794, 
7584 

0.37, 
0.06, 
20170, 
40338 

0.39, 
0.06, 
20900, 
41796 

0.45, 
0.07, 
17012, 
34020 

0.47, 
0.08, 
21872, 
43740 

0.44, 
0.07,21143,
42282 

 

A6. Model specific measures for convergence  
 

Once the models were customized, some model specific adjustments had to be made for full 
convergence. Models were run in FeBio 2.9. If run in other versions, due to inherent software 
behavior, other measures might be needed to achieve convergence.  

oks001  Stiffness for springs between medial meniscus and MCL was reduced from 1000 N/mm 
to 300 N/mm for full convergence. 

oks002, oks004, oks008   Stiffness for springs between medial meniscus and MCL was reduced 
from 1000 N/mm to 3 N/mm for full convergence.   
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oks006  Adjusted ties for MCL-femur. Stiffness for springs between medial meniscus and MCL 
was reduced from 1000 N/mm to 3 N/mm, MCL prestrain reduced to 0.025 and, LCL prestrain 
reduced to 0.02. 

oks007  Stiffness for springs between medial meniscus and MCL was reduced from 1000 N/mm 
to 3 N/mm and MCL prestrain updated to 0.025 for full convergence. 

oks009  Stiffness for springs between medial meniscus and MCL was reduced from 1000 N/mm 
to 3 N/mm, updated MCL- Femur ties for full convergence. 

Note  check FeBio_custom.feb model file for inactive contact definitions for each model.  

 

A7. Database folder structure  
Various model related data are organized in subfolders under folder with the specimen name.  

oks00x 

   segmentation 

   geometry 

      densities 

   template model 

      FeBio 

      MED 

   final model 

      processed results 

src 

doc 
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A8. Python scripts and usage 
 

1. StltoMed.py, MedtoFebio.py, ConnectivityXML.py 

Python scripts to convert surface geometries to volume meshes and using them create 
template Febio models. Platform requirement and usage is as follows, 

Linux 

 Need Salome 7.8 to run StlToMed.py and MedToFebio.py (both written in Python 2.7) 

Windows  

 Need Salome 8.3 (to run MedToFebio.py, older versions do not work) 
 However, if Salome 8.3 is used to correct ties and contacts in MED files then the 

exported version is MED 3.3.1 which will not be compatible with Salome 7.8 (required 
for Linux).  

 In that case either use Salome 7.8 or Salome 9.2 to correct MED files and save in MED 
version 3.2.  

 To run StlToMed.py and MedToFebio.py from Salome 8.3, 

Usage -  
1. Open command prompt 
2. Navigate to Salome directory, 
3. Type: >run_salome.bat -t --pinter path\StlToMed.py OR path\MedToFebio.py args:path\ 
Connectivity.xml 
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Both

 In connectivity.xml file all .stl locations have to be pointed to the directory they are 
located in.  

MedToFebio.py 

 MED files have to be in version 3.2.  
 Does not work well on Windows.  

Note: Use Febio version 2.9 as it handles contacts better  

OS preference for other software components in the pipeline: 

 Segmentation/geometry generation (Slicer, Meshlab): Windows/Linux 
 StltoMed.py (Salome): Linux 
 Fix contacts and ties(Salome): Linux, Windows (have to export MED files in v3.2) 
 MedtoFebio.py (Salome): Linux, Windows  
 Pick Landmarks (Meshlab): Windows/ Linux 
 Customization: Windows/Linux  
 Febio: Windows/Linux (edit geometry file location in Febio_custom.feb) 

 

2. FebCustomization_p3.py, Anatomical_Landmarks_p3.py 
 
 Python scripts to customize template FeBio model file for material properties, loading and 

boundary conditions etc.  
 When running customization for the registered models, the registered landmarks have been 

hard coded into a function in AnatomicalLandmarks_p3.py.  In DoCalculations(), comment 
line 1256, and uncomment line 1259 (before running the customization script). Instead of 
calculating the joint axes from the manually chosen landmarks, it uses the experimentally 
probed landmarks, registered to the model coordinate system.   

 If there are any changes in registration of the knees, the hard coded landmarks should be 
updated in the respective function as needed. 

 

3. Register_probed_points.py 
 
 This function performs the registration for open knees.  To run open knees registration, go 

the main function at the end of the file, change the local directories for the state file and the 
directory containing the .stl registration markers. Run the open_knee_registration() function.  

 Resulting transformation matrix, transformed anatomical landmarks will be printed to the 
screen. Resulting transformation matrix, transformed anatomical landmarks will be added to 
an xml file with registration result  and saved in the current working directory. 
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4. tdms_processing_oks.py 
 

 Python script used to process the tdms files from open knees data. Saves the data as a png 
graphs and csv files.  plot_groups function can be used to save the csv, png files in 
intermediate steps (raw, partially processed, etc). 

 
5. experiment_to_model.py 
 
 This script was designed to take processed experimental data (kinematics in JCS with model 

offsets already removed, kinetics as forces/moments applied to the femur defined in the tibia 
coordinate system), and the model that results from running the customization script, and, 
create a model that applies to experimental conditions to the model by first converting the 
kinetics data into the image coordinate system, and then applying those kinetics as external 
forces to the femur.  

 Kinematics load curves were also added, so that the kinematics can be easily applied to the 
cylindrical joint by setting the translation/rotation of the joint to follow the load curve.  The 
make_model function will do this for one model. NOTE - it will change the existing febio_file 
if name is not given make_model(modelprops_file, febio_file, kinetics_csv, kinematics_csv, 
name=none) To run it for several files at the same time, read_from_xml(exp_to_mod_xml) 
function should be used.  

 

6. InSituOptimization.py 
 
 This script was designed to perform calibration of the ACL, PCL , LCL, MCL in situ strains.  The 

input for this function is an xml file that points to the models used in the calibration, and the 
,  

       https://simtk.org/plugins/datashare/?group_id=485# (OKS_model)  DOI pending.  
 Under the Files section: provide the path to the model properties file. The model properties 

file should include the added anatomical landmarks from running the customization script, as 
the joint axes which are added are used to process the model kinematics. 

 Under the Options section: rms_error type can be defined as "loading" or "all".  loading = 
minimize rms error in the loading direction only (ex for ACL find in situ strain to only minimize 
mismatch on anterior translation axis) all= minimize rms error on all 6 dof (ax for ACL in situ 
strain to minimize mismatch on all translation and rotation axes). opt type can be defined as 
"single" or "multi" . single = single variable optimization, optimize in situ strain for one 
ligament at a time. multi = multi variable optimization, optimize in situs train for all ligament 
simultaneously (this will take much longer) 

 Under the Ligaments section: for each of the ligaments, provide the febio file (created using 
experiment_to_model.py). For example, for the ACL, this would be a model generated to 
mimic the 0 degree flexion anterior loading test. (doesn't need to be 0 degrees, we just 
decided 0 because the models run the fastest) provide the experiment kinematics file - needs 
to match with whatever file was used for the febio file. For example, if ACL 0 degree anterior 
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laxity, then this should be the kinematics file for that trial in situ strain is the initial guess for 
in situ strain. This shouldn't matter in theory - eventually it should find the solution.  

 However, if the optimization has already run and a small change is made and need to run it 
again to be sure it doesn't affect results, etc. a known solution can be put as the initial guess 
to save a lot of computation time.   

 The order in which these ligaments appear in the xml file is the order in which they will be 
optimized.  Running this script will create summary files named Optimization<num>.txt, 
where num is the counter for which round of optimization it is on.  

 The script will continue to loop on all the ligaments until convergence is achieved. Essentially 
create febio models for each laxity test (using experiment_to_model.py) and put them each 
in their own folder. Then create the InSituOpt.xml file pointing to each of these files, and 
other relevant files. Then run from the terminal as: 
python InSituOptimization.py /path/to/InSituOpt.xml febioCommand 
 
febioCommand is the path to the febio execulatble, on linux it can be found in   
'/FEBio2.8.2/bin/febio2.lnx64' 
 
If always running from the same computer, the febio command can be hard coded into the   
run_from_xml(). Leave out the febioCommand when running from the terminal.  

 
 
7. LogPostProcessing.py 
 
 Python script creates a folder of images and csv files with model results. Can be run using 

Exp_to_Mod.xml with the run_all_in_file() function. 
 
 
8. model_prediction_errors.py 

 
 To run after LogPostProcessing.py. Compares the kinematics between the model results and 

the experiment kinematics. Creates images, and files storing the rms error between them. 
Can be run using Exp_to_Mod.xml with the from_xml() function. see main function at end of 
script for examples of use. 

 
9. transfer_med_groups.py 

 
 Transfers nodes and element sets from one mesh to another for a given component by 

treating the groups as a binary field and applying that binary field to the new mesh to find 
the correspondence of nodes and elements in the new mesh. This correspondence is used to 
select nodes and elements to generate groups with the new node and element sets. 
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10. StiffnessFromLog.py 
 
 Python script extracts rigid body reaction force  displacement data from simulation output 

(.log). 
 

11. ModelReduction_rigids3.py 
 

 Removes all contacts and ties for the specified component that needs to be removed and 
converts it into a rigid body.  

 
 

12. edge_lengths.py  
 

 Python script to calculate average edge lengths, standard deviations, minimum and 
maximum edge lengths for a given volume mesh (.med).  

 
 
 
Note: Full path of Geometry.feb file has to be provided in the FeBio_custom.feb file if using Febio 
2.9 in Windows. If using Linux, there is no need to supply the whole path as long as the files are 
in the same folder.  
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