
Open Knee(s): A free and open source library of specimen-specific models and related
digital assets for finite element analysis of the knee joint

Appendix

Snehal Chokhandre, Ariel Schwartz, Ellen Klonowski, Benjamin Landis, Ahmet Erdemir

Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland,
OH, United States.

1

Table of contents
A1. Modeling and simulation workflow Model development ... 2

Image Segmentation ... 2

Geometry Generation ... 6

Volume Mesh Generation ... 11

Template Model Generation .. 15

Model Customization .. 17

Simulation ... 28

Post-Processing ... 29

A2. Experimental data processing .. 30

Registration for Specimen-Specific Calibration .. 30

Specimen-Specific Kinematics-Kinetics Data Processing .. 32

A3. Model customization for application of kinematics-kinetics (with or without experimental data) 34

A4. Model calibration procedure .. 35

Mesh Convergence ... 35

Confirmation of Material Properties .. 39

Calibration of In Situ Ligament Strains .. 42

A5. Edge lengths calculated for all meshes used in the models .. 45

A6. Model specific measures for convergence ... 46

A7. Database folder structure ... 47

A8. Python scripts and usage .. 48

References .. 52

2

A1. Modeling and simulation workflow Model development

Image Segmentation

Target outcome Volumetric reconstruction of the tissues of interest, specifically the definition of
the tissue boundaries, as binary image volumes (.nii; NIfTI)8 and raw (without smoothing)
triangulated surface representations (.stl)29 in the same coordinate system as imaging data.
Tissues include bones femur, tibia, fibula, patella; cartilage femoral, tibial (medial & lateral),
patellar; menisci medial & lateral, ligaments anterior/posterior cruciate, medial/lateral
collateral, patellar; tendons quadriceps.

Software requirements 3D Slicer. 3D Slicer1 is a free, open source software package for
visualization and image analysis (free and open source, BSD style, licensing, see
http://www.slicer.org). The latest version at the time (Slicer 4.8) was used to access more tools
and features.

Input Set(s) of MRI from Open Knee(s) in NIfTI format (https://nifti.nimh.nih.gov/)8 (all in the
same coordinate system):

1. General Purpose MRI (3D T1-weighted without fat suppression, isotropic, 0.5 mm
resolution)

2. Cartilage MRI (3D T1-weighted with fat suppression, 0.35 mm sagittal plane resolution,
0.7 mm out of plane resolution)

3. Connective tissue MRI (proton density, turbo spin echo in sagittal, axial, and coronal
planes, 0.35 mm in plane and 2.8 mm out of plane resolution)

Segmentation algorithms The segmentation approach was primarily manual, requiring the
modeler to use common labeling tools, such as, brush, pencil, etc. to paint or fill in the tissue
region of interest in image volume. Depending on the tissue, multiple image volumes were used
to confirm tissue boundaries or assist the tissue volume generation. Several 3D Slicer tools were
also used during the segmentation process to assist gross segmentation before manual touch up.
These are described in the following.

1. GrowCut Segmentation

From 3D Slicer documentation1:

3

automata. The algorithm works by using a set of user input scribbles for foreground and
background. For N-class segmentation, the algorithm requires a set of scribbles

In this workflow, GrowCut was used primarily for gross segmentation of large tissue volumes.

2. Label Map Smoothing

From 3D Slicer documentation1:

-
aliasing algorithm followed by a Gaussian smoothing algorithm. The output is a smoothed

In the smoothing parameters outlined below, Sigma (Gaussian smoothing parameter) was chosen
based on image resolution. For example, for cartilage MRI with resolution = 0.35 x 0.35 x 0.7 mm,
sigma was set to 0.7. It should be noted that label map smoothing was used to assist
segmentation as an intermediate step and should not be confused with preparation and
smoothing of raw geometry for meshing (see section on Geometry Generation).

3. Joint Smoothing

From 3D Slicer documentation1:

er smoothly, like jigsaw puzzle pieces.

It should be noted that joint smoothing was used to assist segmentation as an intermediate step
and should not be confused with preparation and smoothing of raw geometry for meshing (see
section on Geometry Generation).

Tissue-Specific Segmentation Procedures Below are the guidelines for segmentation procedures
based on tissue types. It is important to use the specified input MRI, and locate the boundary as
described for each tissue. However, the segmentation procedures described are only
suggestions, and one may choose to highlight the anatomy using whichever tool they find most
effective and efficient for their manual workflow. Once all tissues were segmented, the label
maps were saved as NIfTI files (.nii)8 and converted to raw triangulated surfaces (.stl29, in units

4

mm) (without any further smoothing procedures). Slicer provides output options to
accommodate these formats.

Tissue/Object Input MRI Boundary
Definition*

GrowCut
Segmentation#

Manual
Segmentation

Label Map
Smoothing#

Joint
Smoothing#

Registration
Markers$

femoral (x3)

tibial (x3)

patellar (x3)

General purpose
MRI

Markers
appeared
bright in the
MRI the
outer edge
of the bright
region
defines the
boundary.

yes yes

(fill in screw
holes/
bubbles)

Bones

femur

tibia

fibula

patella

Cartilage MRI

Cortical
bone
appeared
black in MRI

 the outer
edge of
black region
defines the
bone
surface.

yes yes

sigma=0.7

Cartilage
femoral

tibial (medial)

tibial (lateral)

patellar

Cartilage MRI Use bone
boundary to
help define
cartilage
boundary at
bone
interface.
Cartilage
appeared
bright white

 the outer
edge defines
articulating
surface.

 yes

sigma=0.7

yes

(with
bones)

Menisci Cartilage MRI Use cartilage
boundary to

 yes yes yes

5

Tissue/Object Input MRI Boundary
Definition*

GrowCut
Segmentation#

Manual
Segmentation

Label Map
Smoothing#

Joint
Smoothing#

medial

lateral

help define
meniscus
boundary.
Meniscus
appeared
darker.

sigma=0.7 (with
cartilage)

Ligaments

Tendons

ACL

PCL

patellar
ligament

quadriceps
tendon

Connective
tissue MRI

(for boundary)

General purpose
MRI

(for resolution)

Use bone
boundary to
help define
connective
tissue
boundary at
insertion
and origin
sites.
Ligaments
and tendons
appeared
dark.

yes

Phase 1:

using sagittal
connective
tissue MRI

yes

Phase 2:

using general
purpose MRI,
overlay
labelmap
from Phase 1
(as
foreground
layer) and
trace
boundary&

 yes

(with
bones)

Ligaments

LCL

MCL

General purpose
MRI

(for boundary)

Connective
tissue MRI

(for
confirmation)

Use bone
boundary to
help define
ligaments in
coronal
plane.
Ligaments
appeared
dark.

 yes yes

sigma=0.5

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament.
MCL: medial collateral ligament.

6

#Always check the image slices manually after using GrowCut Segmentation or Label Map and
Joint Smoothing, and perform touch ups as needed to better define the boundaries.

$While segmentation of reference markers are not needed to obtain an initial model, they are
included in the workflow with the anticipation of their utility in upcoming modeling and
simulation stages.

&Alternatively, one can display the connective tissue MRIs and the general purpose OR cartilage
MRI in different windows. When linked, Slicer uses interpolation for coupled viewing of the image
sets that are already spatially aligned. In return, one can do the segmentation on interpolated
connective tissue MRIs using the general purpose OR cartilage MRI as the master volume for
segmentation. This allows high resolution segmentation volume from images with lower
resolution directly.

Geometry Generation

Target outcome Geometric reconstruction of the tissues of interest as smooth and watertight
triangulated surface representations (.stl)29 obtained from and in the same coordinate system as
raw geometry; ready for volumetric meshing. Tissues include bones femur, tibia, fibula, patella;
cartilage femoral, tibial (medial & lateral), patellar; menisci medial & lateral, ligaments
anterior/posterior cruciate, medial/lateral collateral, patellar; tendons quadriceps.

Software requirements MeshLab. MeshLab7 is an open source, portable, and extensible system
for processing and editing of unstructured 3D triangular meshes (free and open source GPL
license, see http://www.meshlab.net/). The latest version of MeshLab (MeshLab 2016.12) was
used.

Input Raw triangulated surface representations of tissues of interest (without filtering and
smoothing) in .stl29 format in image coordinate system.

Surface processing procedures A 5-step procedure (LVTIT, see below for descriptions) was used
to process raw triangulated surface meshes. The process included staged smoothing approaches
interleaved with surface reconstruction and resampling. The procedures aimed to generate
uniform and watertight surface meshes that were smooth, volume-preserving and visually
maintaining the geometrical shape of the tissues.

7

Smoothing Algorithms This section provides brief descriptions of the MeshLab7 algorithms that
were used during processing of triangulated surface meshes.

1. Laplacian Smoothing [L]

For each vertex in the mesh, a new position is chosen based on average position with nearest
vertex (as described in built-in documentation in MeshLab7

is the number of times the process is repeated.

2. Surface Reconstruction: VCG [V]

From built-in documentation in MeshLab7:

lgorithm that have been used for a long time inside the ISTI-
Visual Computer Lab. It is mostly a variant of the Curless at al. e.g. a volumetric approach
with some original weighting schemes, a different expansion rule, and another approach
to hole filling

be informed in relation to original image resolution from which raw
surfaces are obtained; e.g., for cartilage images with a resolution of 0.35 x 0.35 x 0.7 mm, use a
world unit of 0.35, 0.5, or 0.7 mm.

3. Taubin Smoothing [T]

From built-in documentation in MeshLab7:

-
iteration. Based on Gabriel Taubin, A signal processing approach to fair surface design,
Sig

4. Iso Parameterization [I]

Stage 1: Iso Parameterization

From built-in documentation in MeshLab7:

-manifold triangular mesh. An
adaptively chosen abstract domain of the parameterization is built. For more details see:

8

Pietroni, Tarini, and Cignoni, 'Almost isometric mesh parameterization through abstract

Stage 2: Iso Parameterization Remeshing

From built-in documentation in MeshLab7:

recursively subdivided. For more details see Pietroni, Tarini, and Cignoni, 'Almost
isometric mesh parameterization through abstract domains' IEEE Transaction of

s, aka. density of the surface mesh.

Tissue specific processing parameters The table below specifies the parameters used in the
surface mesh processing for each tissue for the surface meshes that were used in the generation
of provided models. These values were considered a starting point and the process was

-
MeshLab defaults were used. The outcome of surface mesh processing needed to be checked
(visually and when possible, quantitatively) to ensure that there was no significant loss of
geometric features or volumes. If necessary, surface repairing was performed, i.e. using other
MeshLab7 tools, to ensure a manifold and watertight surface; sometimes faces needed to be re-
oriented such that surface normals all pointed outward. The final surface representation of the
tissue was (.stl29, in units mm). It should be noted that these parameters were developed using
one specimen and needed some specimen specific adjustments for the remaining specimens.
Due to manual application of these parameters, some decisions made by the modelers may not
be documented (several modelers with varying experience were involved in this process). File
names typically consisted of some sequence of the smoothing step to provide an indication of
which steps were used for a given surface, however exact details of parameters were not
documented as the decisions were made based on visual inspections of how the surfaces looked
after each step and whether any changes were required to create water tight meshes. Oks003
surface meshes were created using the same parameters as the additional surface meshes
provided later in the document.

9

 1.
Laplacian
Smoothing

(Smoothing
Steps)

2. VCG Surface
Reconstruction

(Voxel Size,
mm)

3. Taubin
Smoothing

(Lambda, mu)

4. Iso
Parameterization

(Sampling Rate)*

5. Taubin
Smoothing

(Lambda,
mu)

Registration
Markers

- - - - -

Femur, Tibia 20 0.7 0.5,-0.53 10 0.5,-0.53

Patella 20 0.5 0.5,-0.53 7 0.5,-0.53

Fibula 20 0.5 0.5,-0.53 5 0.5,-0.53

Femoral Cartilage 20 0.35 0.5,-0.53 10 0.5,-0.53

Tibial Cartilage 20 0.35 0.5,-0.53 10 0.5,-0.53

Patellar Cartilage 20 0.35 0.5,-0.53 10 0.5,-0.53

Menisci 20 - - 10 0.5,-0.53

ACL,PCL 4 0.35 0.5,-0.53 5 0.5,-0.53

Patellar Ligament 20 0.35 0.5,-0.53 10 0.5,-0.53

Quadriceps
Tendon

20 0.35 0.5,-0.53 10 0.5,-0.53

MCL 4 0.35 - 7 0.5,-0.53

LCL 2 0.35 - 5 0.5,-0.53

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament.
MCL: medial collateral ligament.

10

Additional surface geometries

To facilitate mesh convergence studies, additional multiple surfaces for each component were
generated. Care was taken to use the following parameters consistently. An effort was made to
document any deviations. However, it should be noted that the stochastic nature of software
used may give different results when using the same parameters. For specimen oks003,
additional surface meshes were created from the smoothed surface meshes created for the
model.

 1.
Laplacian

Smoothing

(Smoothing
Steps)

2. VCG Surface
Reconstruction

(Voxel Size,
mm)

3. Taubin
Smoothing

(Lambda, mu)

4. Iso
Parameterization

(Sampling Rate)*

5. Taubin
Smoothing

(Lambda,
mu)

Registration
Markers

- - - - -

Femur, Tibia 20 0.7 0.5,-0.53 10 0.5,-0.53

Patella 20 0.5 0.5,-0.53 7 0.5,-0.53

Fibula 20 0.5 0.5,-0.53 5 0.5,-0.53

Femoral Cartilage 15 0.28 0.5,-0.53 8,10,15,20 0.5,-0.53

Tibial Cartilage 20 0.35 0.5,-0.53 6,8,10,15 0.5,-0.53

Patellar Cartilage 20 0.35 0.5,-0.53 6,8,10,15 0.5,-0.53

Menisci 5 0.3 0.5,-0.53 4,6,8,10 0.5,-0.53

ACL 2 0.35 0.5,-0.53 4,6,8,10 0.5,-0.53

PCL 4 0.35 0.5,-0.53 3,4,6,8 0.5,-0.53

Patellar Ligament 20 0.35 0.5,-0.53 4,6,8,10 0.5,-0.53

Quadriceps
Tendon

20 0.35 0.5,-0.53 4,6,8,10 0.5,-0.53

11

 1.
Laplacian

Smoothing

(Smoothing
Steps)

2. VCG Surface
Reconstruction

(Voxel Size,
mm)

3. Taubin
Smoothing

(Lambda, mu)

4. Iso
Parameterization

(Sampling Rate)*

5. Taubin
Smoothing

(Lambda,
mu)

MCL 4 0.35 - 5,7,9,11 0.5,-0.53

LCL 2 0.35 - 3,4,6,8 0.5,-0.53

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament.
MCL: medial collateral ligament. TBC-L: Tibia cartilage lateral.

Volume Mesh Generation

Target outcome Mesh definitions (nodes, elements, surfaces; node, element, face sets),
template constitutive models (rigid bones; deformable other tissue). Outputs included
tetrahedral volume meshes (cartilage, menisci, ligaments, tendon) in binary format (.med)24 with
node, face, element sets to facilitate model assembly, material property definitions, and
assignment of tissue interactions.

Software requirements SALOME. SALOME26 is an open-source software that provides a generic
platform for pre- (cad, meshing) and post-processing for numerical simulation (free and open
source LGPL license, see http://www.salome-platform.org/) SALOME26 includes built-in scripting
functionality using Python32, which was required to utilize Python scripts for mesh generation
and annotation, and model assembly. SALOME26 7.8.0 was used to support in-house Python32
scripts.

StlToMed.py. In-house Python32 script to generate meshes (surface or volume) and node,
element, face sets using an XML based input file that points to .stl29 files, e.g., tissue geometries,

-in Python installation; developed using
SALOME26 7.8.0, source code available at https://simtk.org/plugins/datashare/?group_id=485#
(OKS_model) DOI pending.

ConnectivityXML.py. Python32 utility script to read an XML file that points to .stl29 files and their
connectivity for model assembly. Source code available at

https://simtk.org/plugins/datashare/?group_id=485# (OKS_model) DOI pending.

12

.

Input Geometric reconstruction of tissues of interest smooth and watertight triangulated
surface representations (.stl)29, all in the same coordinate system, e.g., image coordinate system.
Also a description of model components and their interactions with each other, essentially a
model definition tree, as an input file to Python32 scripts. This file included references to all tissue
components that were part of the model: bones femur, tibia, fibula, patella; cartilage femoral,
tibial (medial & lateral), patellar; menisci medial & lateral, ligaments anterior/posterior
cruciate, medial/lateral collateral, patellar; tendons quadriceps. Each tissue entry pointed to
the file location of triangulated surface representation of the tissue boundary. Each tissue was
referred to
material definitions and loading and boundary conditions during model assembly. In addition,
interactions between tissues were constraints
or contact, respectively, between opposing regions of tissues. Determination of surfaces, e.g.
face sets, and/or node sets for these constraints was based on geometric principles relating to
the pair of meshes based on:

 Proximity find all the nodes on part 1 that are within a prescribed distance (related to
the element size) of any node on part 2.

 Normals select faces on part 1 that have normal vectors that point toward the
barycenter of part 2. This can also be limited by the proximity condition if desired.

 Contains one mesh contains the other, select elements that have normal vectors that
point inward or outward.

 All all the surfaces.

This analysis was automated using the Python32 scripts with SALOME26 during mesh generation
and annotation. The following table specifies all the tie constraints and contacts surfaces
between tissues, and which geometrical principles should be used to relate them.

 FM TB FB PT FC TLC TMC PC MM LM ACL PCL MCL LCL PL QT

FM T:p T:p T:p C:n

T:p

C:n

T:p

 C:n

TB T:p T:p T:p T:p T:p T:p C:n

T:p

 T:p

13

FB T:p

PT T:p T:p T:p

FC T:p C:n C:n C:n C:n C:n C:a

TLC T:p C:a C:n

TMC T:p C:a C:n

PC T:p C:n

MM T:p C:n C:n T:p

LM T:p C:n C:n

ACL T:p T:p C:a

PCL T:p T:p C:p

MCL C:n

T:p

C:a

T:p

 T:p

LCL C:n

T:p

 T:p

PL T:p T:p

QT C:n T:p C:n

FM: femur. TB: tibia. FB: fibula. PT: patella. FC: femoral cartilage. TLC: tibial lateral cartilage. TMC:
tibial medial cartilage. PC: patellar cartilage. LM: lateral meniscus. MM: medical meniscus. ACL:
anterior cruciate ligament. PCL: posterior cruciate ligament. MCL: medial collateral ligament. LCL:
lateral collateral ligament. PL: patellar ligament. QT: quadriceps tendon. C: Contact. T:Tie. p:
proximity, n: normals. c: contains. a: all.

Mesh generation and annotation -in Python32 and the
previously described connectivity file resulted in meshes of the tissue components along with
node, element and surface definitions and node, element, face sets (for material property
assignment, tie and contact definitions, and loading and boundary assignment). The script was

14

automated, resulting in mesh files (in .med24 format and in units of the input files) for each tissue
component. The script starts with generating triangular surface meshes (for rigid objects bones)
and tetrahedral (four node) volume meshes (for elastic objects other tissues) using geometric
reconstructions of the tissue (.stl)29. Surface mesh discretization for rigid objects is identical to
that of the input .stl29 file. Surface discretization of elastic objects is identical to that of the input
.stl29 26 interface to NETGEN 3D mesh19 generator with
the following settings (see SALOME NETGEN documentation for more details25):

Name Definition Value

Max Size maximum linear dimensions for mesh cells. Equal to the maximum linear
dimension of the input STL29

Min Size minimum linear dimensions for mesh cells. Equal to the minimum linear
dimension of the input STL29

Fineness ranging from Very Coarse to Very Fine allows to set
the level of meshing detailization.

Level 4. (If this fails, use Level
3)

Optimize the algorithm modifies initially created mesh in
order to improve quality of elements. Optimization
process is rather time consuming comparing to
creation of initial mesh.

On

The script automatically generated an element set including all elements within the tissue, which
was later used to assign material properties. Node and surface regions for tie and contact
definitions were

.0 was used to scale the
approximate characteristic length of the surface mesh to determine the proximity threshold. For

was not used.

Meshes of tissues were visually inspected in SALOME26. This inspection facilitated confirmation
of appropriate definitions of node and surface regions to prescribe tissue connectivity, e.g.,
ligament insertion and origin sites, and contact, e.g. between cartilage. If necessary these sets
were interactively edited in SALOME26 by adding/removing nodes, faces, etc. from groups.

15

Template Model Generation

Target outcome Template model for finite element analysis in FEBio11 format (.feb13, XML20
based text file) including mesh definitions (nodes, elements, surfaces; node, element, face sets),
template constitutive models (rigid bones; deformable other tissue), template interactions
between tissue (tie constraints, contact), and template loading and boundary conditions (for rigid
objects); created from geometric reconstruction of tissues.

Software requirements SALOME. SALOME26 is an open-source software that provides a generic
platform for pre- (cad, meshing) and post-processing for numerical simulation (free and open
source LGPL license, see http://www.salome-platform.org/). SALOME26 includes built-in scripting
functionality using Python32, which was required to utilize Python scripts for mesh generation
and annotation, and model assembly. SALOME 7.8.026 was used to support in-house Python32
scripts.

MedToFebio.py. In-house script to generate a template FEBio13 model using XML20 based
26 built-in

Python installation; developed using SALOME 7.8.026, supports FEBio13 file format version 2.5,
source code available at https://simtk.org/plugins/datashare/?group_id=485# (OKS_model).

ConnectivityXML.py. Python utility script to read an XML20 file that points to .stl29 files and their
connectivity for model assembly. Source code available at
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model).

Input tetrahedral volume meshes (cartilage, menisci, ligaments, tendon) in binary format
(.med)24 with node, face, element sets to facilitate model assembly, material property definitions,
and assignment of tissue interactions.

Model Assembly 26 built-in Python32, the previously
described connectivity file, and mesh files (outcome of mesh generation and annotation step)
resulted in a template FEBio13 model file (.feb13, version 2.5) for finite element analysis. The script
is automated and resulted in the following contents written in the model file:

 Node definitions list of the node coordinates for each tissue

 Element definitions list of node connections to define the elements for each tissue

 Node sets, face sets, element sets, surface definitions groups of nodes, elements, faces
labeled to be used in tie and contact pairs

 Material definitions

16

o For rigid bodies (bones) only a place holder density is assigned (1e-9 tonnes/mm3
 consistent with spatial units of mm)

o For elastic bodies (other tissues) a place holder density is assigned as 1e-9
tonnes/mm3 and a Neo-Hookean material is defined using FEBio material type
Mooney-Rivlin (uncoupled)12 and setting c1 = 0.1 MPa; c2 = 0 MPa; k = 100 MPa
(consistent with spatial units of mm) as a place holder.

 Surface pairs to define connections (ties) or interactions between the surfaces, specifies
he following criteria:

o The surface on a rigid body should be the master surface.

o The larger of the two surfaces should act as the master surface.

o If the surfaces are of comparable size, the surface on the stiffer body should act
as the master surface.

o If the surfaces are of comparable size and stiffness, the surface with the coarser
mesh should act as the master surface.

 Tied interfaces type contact between deformable surface pairs (penalty = 10)

 Contact interactions -to-facet- -facet-on-

= 1, auto_penalty = 1, maxaug = 10)

 Loading and boundary conditions

o Assignment of nodes on deformable bodies, e.g. ligament insertion and origin
sites, to relevant rigid body as boundary conditions to tie the nodes to rigid bodies.

o Setting of six degrees-of-freedom kinematics (translations and rotations) of all
rigid bodies to fixed as a place holder. Note that FEBio assigns these boundary
conditions at the center of mass of the rigid body.13

 Load Data define the load curves that were

 Output requests

 Module

17

 Step and control parameters selected parameters to set simulation configuration for
implicit static analysis using quasi-Newton incrementation with output at desired

o time_steps = steps (default for steps is 10)

o step_size = 1./steps

o dtmin = 1e-10

o dtmax = 1./steps

o max_retries = 20

o opt_iter = 10

o aggressiveness = 1

o optimize_bw = 1

o plot_level = PLOT_MUST_POINTS

o analysis = static

o min_residual = 1e-10

Many of the FEBio parameters set above are default values. For parameters that are not
specified, FEBio defaults13 were used. Iterations of these parameters are possible depending on
convergence of simulations.

Model Customization

Target outcome Updated model for finite element analysis in FEBio13 format (.feb13, XML20 based
text file) with modified tissue-specific constitutive models, additional joint stabilizers and
convenience structures, implementation of in situ strain, implementation of anatomically based
coordinate system and kinematic chains, modified loading and boundary conditions and, output
requests to quantify joint kinematics-kinetics and tissue mechanics relevant to simulation of
passive knee flexion ; generated from template model file (.feb)13.

Software requirements FebCustomization_p3.py. In house script to modify template knee joint
model to match the specifications of model development. Requires an XML20 file containing the
desired model properties, which includes material properties, and manually chosen anatomical

18

landmarks. To be used with Python32, source code available at
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model) DOI pending.

AnatomicalLandmarks_p3.py. In house script to utilize anatomical landmarks (described in an
XML file containing the desired model properties) to calculate and add anatomical points and
definitions to the model. To be used with Python32, source code available
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model) DOI pending.

Input Template (or customized) model in FEBio11 format (.feb)13 and tissue constitutive models
and parameters relevant to knee mechanics (described below) as a text based input file.

1. Constitutive Models and Parameters

Material properties and the constitutive models were adapted from literature as described
below.

Bone All bones (femur, tibia, fibula, patella) were assumed to be rigid bodies. Bones have a much
higher stiffness than the other knee tissues. Rigid body assumption simplifies computation,
therefore decreasing the computational cost and facilitates definition of joint kinematics and/or
kinetics as loading and boundary conditions. A density of 1e-9 tonnes/mm3 (identical to water;
consistent with spatial units of mm). It should be noted that density assignment did not have
importance on static simulations without the action of gravity. It is provided as a place holder.

Cartilage Cartilage was modeled as a nearly incompressible Neo-Hookean material defined by
FEBio13 setting C2 parameter of FEBio material type Mooney-Rivlin (uncoupled)12. This is a fairly

would be
adequate and computationally less challenging for joint level simulations while providing an
opportunity to understand local mechanical environment on and within the cartilage. Cartilage
constitutive model and coefficients were similar to previous modeling study10, which reported an

-Hookean material
coefficients are noted below.

Density*
(tonnes/mm3)

C1 (MPa) C2 (MPa) K (MPa)

1e-9 2.54 0 100

All units are consistent with spatial units of mm.

*Density assignment is a place holder; it did not have importance on static simulations without
the action of gravity.

19

Ligaments and Tendons Ligaments and tendons were modeled as nearly incompressible,
transversely isotropic, hyperelastic material with a Mooney-Rivlin ground substance (Neo-
Hookean by setting C2 = 0). This type of representation accommodates tensile dominant behavior
of the ligaments dictated by their fiber alignment across their longitudinal axis. The parameters
were identical to a previous modeling study21, which fitted data from literature. These values are
noted below.

Ligament Density*

(tonnes/mm3)

C1 (MPa) C2 (MPa) K# (MPa) C3 (MPa) C4 C5 (MPa) m

ACL 1e-9 1.95 0 146.41 0.0139 116.22 535.039 1.046

PCL 1e-9 3.25 0 243.9 0.1196 87.178 431.063 1.035

MCL 1e-9 1.44 0 793.65 0.57 48.0 467.1 1.063

LCL$ 1e-9 1.44 0 793.65 0.57 48.0 467.1 1.063

PL 1e-9 2.75 0 206.61 0.065 115.89 777.56 1.042

QT& 1e-9 2.75 0 206.61 0.065 115.89 777.56 1.042

All units are consistent with spatial units of mm.

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament.
MCL: medial collateral ligament. PL: patellar ligament. QT: quadriceps tendon.

*Density assignment is a place holder; it did not have importance on static simulations without
the action of gravity.

#Bulk modulus (K) is calculated as (K = 1/D); D obtained from source literature.

$LCL properties were assumed to be identical to MCL.

&QT properties were assumed to be identical to PL. This assumption should not have significance
as the anticipated use of QT is to transfer loads to patella in a distributed manner.

Constitutive modeling of the ligaments requires specification of a fiber direction. In FEBio12,
under
of all fibers in the material point are along the direction of the vector. For each ligament and

20

tendon this direction was defined as the direction of the longest edge of the oriented bounding
box of the tissue to approximate the longitudinal alignment of the tissue.

Meniscus Menisci were modeled as nearly incompressible, transversely isotropic, hyperelastic
material with a Mooney-Rivlin ground substance (Neo-Hookean by setting C2 = 0). This material
model is seemingly more complicated than transversely orthothropic linear elastic models in
literature. Yet, it allowed a convenient way to represent the behavior of meniscus which is largely
dictated by its circumferential stiffness (based on fiber alignment) with the capacity to sustain
compressive loading. For convenience, the parameters were identical to those used in a previous
modeling study of meniscus28 and they are noted below.

 Density*

(tonnes/mm3)

C1 (MPa) C2 (MPa) K# (MPa) C3 (MPa) C4 C5 (MPa) m

Meniscus 1e-9 4.61 0 92.16 0.1197 150.0 400.0 1.019

All units were consistent with spatial units of mm.

*Density assignment is a place holder; it did not have importance on static simulations without
the action of gravity.

#Bulk modulus (K) is calculated as (K = 1/D); D obtained from source literature. It should be noted
that due to differences in dilatational component of constitutive models (used in here and in
source literature), equivalence of K is an approximation.

Constitutive modeling of the menisci required specification of fiber direction. In FEBio, fiber
direction can be specified for each element individually, in the ElementData section13. The
meniscus fibers were oriented to the oval fitted to the bounding box.

2. Components for Stabilization

The following components were not tissues of interest, however they were incorporated in the
model primarily to stabilize patella and represent the extensor mechanism. Mechanical springs
and kinematic joints were used to represent these anatomical structures.

Quadriceps Tendon Attachment The quadriceps tendon was attached to the femur proximally.
Since the quadriceps muscles are not being modeled, this attachment were represented by a
spring. The use of a spring instead allowed a weakly constrained movement of the proximal
quadriceps tendon, while still preventing some separation of patella from the femur during

21

flexion. The spring adds a small force pulling the patella to remain in contact with the femur bone.
A spring constant of 1 N/mm was chosen, but can be calibrated if needed. The spring attached to
the imaginary rigid body at the top of the quadriceps tendon on one end, and the femur bone on
the other. The insertion origin on both rigid bodies was chosen as the origin of the imaginary rigid
body.

Patellofemoral Joint Ligaments The medial and lateral patellofemoral ligaments (MPFL, LPFL)
were modeled as discrete elements and using the force-displacement curve were defined as a
tension-only linear springs.

. The insertion points of the patellofemoral ligaments were located as follows:

 MPFL femoral insertion: 0.5xCD from the distal side of the medial condyle, and 0.4xCD
from the posterior side or the medial condyle, where CD is the anterior-posterior size of
the medial condyle(ref)

 MPFL patellar insertion: superomedial aspect of patella (~ top 1/3)2

 LPFL femoral insertion: 10.6 mm anterior, and 2.6 mm distal to the lateral epicondyle,
average width 11.7 mm

 LPFL patellar insertion: 8 mm from superior pole to upper insertion, insertion width ~ 45%
of articular surface.

Coordinates of anatomical locations, e.g, femoral epicondyles and patellar regions, were located
in the MRI if their identification proved to be difficult to find on the meshes.

3. Application of In Situ Strain

Prestrain formulation of FEBio PreStrain Plugin is described in detail in literature18; from this
literature:

-free to the prestressed reference
configuration is represented by Fp, which will be referred to as the prestrain gradient. The
total elastic deformation gradient Fe is determined by the composited deformation

To scale the in situ stretch as expected when reducing the step size , a load curve was defined for
each prestrain ligament to set in situ stretch to 1 (no strain) at time = 0. For example, if the desired
initial stretch value is 1.034, the load curve should be:

22

<loadcurve id="1" type="linear">

<point>0,1.0</point>

<point>1,1.034</point>

</loadcurve>

To use this load curve appropriately, the initial stretch defined in the material was changed to
1.0, e.g.

<stretch lc="1">1.0</stretch>

One average initial stretch was defined for all fibers in each ligament as:

Ligament Initial Stretch

ACL* 1.016

PCL# 1.0

MCL* 1.034

LCL* 1.027

PL# 1.0

QT# 1.0

1.0 indicates strain free initial state

*Initial strain was set to average of values reported in the modeling study of Dhaher et al.9, who
referred to previous knee models21 and experimental data14.

#Initial strain set to zero due to lack of data, similar to Dhaher et al.9

In the prestrain constraint, min_iters and max_iters were set to 0, essentially eliminating
augmentation. Simulations solely rely on penalty based constraints to balance the higher
possibility of convergence with potentially decreased constraint enforcement.

23

Since the prestrain update rule is chosen to eliminate distortion, the above values would only be
used as an initial guess for fiber stretch. Due to changes in cross sectional area of the ligament,
in order to maintain equilibrium, the solver updates the fiber stretches as needed. Due to this

in previous studies9,21), as the values are likely to change. Thus, one average value was given as
the initial guess for fiber stretch for all regions in the ligament. After the solver determined the
updated initial stretch values, they can be compared to the above literature values.

4. Locating Joint Axes

Tibiofemoral Joint The Grood and Suntay Joint Coordinate System15 (JCS) was used to define this
joint. This method requires a definition of a tibial coordinate system (xT,yT,zT), a femoral
coordinate system (xF,yF,zF), and a floating axis (FTF). The following anatomical landmarks were
located on the meshes of the femur and tibia:

 medial tibial spine (intercondylar eminence)

 lateral tibial spine (intercondylar eminence)

 approximate center of medial tibial plateau

 approximate center of lateral tibial plateau

 most distal point on the posterior surface of the femur, midway between the medial and
lateral condyles

 medial femoral condyle (most distal point on posterior surface)

 lateral femoral condyle (most distal point on posterior surface)

Tibial Coordinate System:

Tibial Origin: Mid-point between tibial spines (medial and lateral intercondylar eminences).

Tibial Mechanical Axis (zT-axis): JCS15 defines this axis as passing through the midpoint between
the tibial spines proximally, and the center of the ankle distally. Due to a lack of MRI of the ankle,
we assumed this axis to pass through the same point proximally (midpoint between spines), and
extend parallel to the z- direction of the MRI coordinate system (approximately aligned with the
longitudinal axis of the body). The z-axis is positive in the proximal direction.

Tibial Anterior Axis (yT-axis): The cross product between the zT-axis, and a line connecting the
approximate center of each tibial plateau. The y-axis is positive in the anterior direction.

24

Tibial Mediolateral Axis (xT-axis): The cross product between the yT-axis and the zT-axis.

Femoral Coordinate System:

Femoral Origin: Most distal point on the distal femur, midway between the medial and lateral
condyles.

Femoral Mechanical Axis (zF-axis): JCS15 defines this axis as passing through the center of the
femoral head proximally, and the most distal point on the posterior surface of the femur distally.
Due to lack of MRI data of the femoral head, we assumed the axis to pass through the same point
distally (distal point on posterior surface), and extend parallel to the z-direction of the MRI
coordinate system (approximately aligned with the longitudinal axis of the body). The zF-axis is
positive in the proximal direction.

Femoral Anterior Axis (yF-axis): The cross product between the femoral mechanical axis (zF-axis)
and a line connecting the femoral condyles. The yF-axis is positive in the anterior direction.

Flexion Axis (xF-axis): The cross product between the yF-axis and the zF-axis.

Tibiofemoral Floating Axis:

The tibiofemoral floating axis (FTF-Axis) is defined as the cross product between the zT-axis and
the xF-axis at any given joint position.

Patellofemoral Joint This joint motion is described in a method similar to JCS15, according to Bull
et al.5 This method requires a definition of a patella coordinate system (xP,yP,zP) , femoral
coordinate system (same as that described above for the tibiofemoral joint), and a Floating axis
(FPF). The following anatomical landmarks were located on the mesh of the patella:

 medial patella ridge

 lateral patella ridge

 midpoint of patella in coronal view

Patella Coordinate System:

Patella Origin: Mid-point of medial and lateral ridges of patella.

Medial-Lateral Axis (xP-axis): The line connecting the medial and lateral ridges of the patella.

25

Superior-Inferior Axis (zP-axis): Perpendicular to xP and through the midpoint of the patella in
coronal view(ref).

Anterior-Posterior Axis (yP-axis): The cross product between xP-axis and zP-axis.

Patellofemoral Floating axis:

The patellofemoral floating axis (FPF-axis) is defined as the cross product between the zP-axis and
the xF-axis.

Note:. We defined the superior-inferior axis as perpendicular to zp, and in line with the coronal
image plane (y=0). This would not work if the knee is rotated in the MRI coordinate system. If this

n to help
-femoral

joint constraints are all set free, this should not affect the model, as the joint has 6 degrees of
freedom.

Creating Kinematic Joints in FEBio Recent versions of FEBio13 do not allow independent
prescription of rotational degrees of freedom for a rigid body. For this reason and to facilitate
loading and boundary conditions relevant to anatomy of the knee, kinematic joint chains were
defined for tibiofemoral and patellofemoral joints.

Tibiofemoral Joint:

Three rigid cylindrical joints13 were added to the constraints section to define tibiofemoral
were defined:

 TFTO: located at the origin of the tibial (xT,yT,zT) coordinate system.

 TFFO: located at the origin of the femoral (xF,yF,zF) coordinate system.

The cylindrical joints were defined as follows:

Motion joint_origin joint_axis body_a body_b

Flexion-extension Origin of (xF,yF,zF) xF-axis Femur TFFO

External-internal
rotation

Origin of (xT,yT,zT) zT-axis TFTO Tibia

26

Abduction-adduction Intersection of FTF- and
xF-axes

FTF-axis TFFO TFTO

All other parameters in the rigid cylindrical joints were set to FEBio defaults13. Each cylindrical
joint also had a translational component to describe tibiofemoral joint translations13.

Patellofemoral Joint:

Three rigid cylindrical joints13 were added to the constraints section to define patellofemoral
were defined:

 PFPO: located at the origin of the patella (xP,yP,zP) coordinate system.

 PFFO: located at the origin of the femoral (xF,yF,zF) coordinate system.

The cylindrical joints were defined as follows:

Motion joint_origin joint_axis body_a body_b

Patellar flexion
and shift

Origin of (xF,yF,zF) xF-axis Femur PFFO

Patellar tilt Origin of (xP,yP,zP) zP-axis PFPO Patella

Patellar rotation Intersection of FPF- and xF-
axes

FPF-axis PFFO PFPO

All other parameters in the rigid cylindrical joints were set to FEBio defaults. Each cylindrical joint
also had a translational component to describe patellofemoral joint translations13.

Note: Centers of mass of tibia, patella, femur rigid bodies were moved from world origin to their
respective coordinate system origins, in order to allow for easier manipulation while debugging
the model, and for easier calculations in post-processing.

5. Loading and boundary conditions

The simulation strategy was to use a one step solution. Load curves defined the in situ strain
(prestrain) application from time 0 to 1, then hold the prestrain at its final value between time 1
and 2. The loading (flexion) occurs from time 1 to 2, and the load curve for the flexion is set to be
zero from time 0 to 1, i.e., fixing the flexion angle during the prestrain step.

27

In Situ Strain Application In situ strains were applied based on previously described specifications
(see above). Any loading and boundary conditions that are not specified below were set to FEBio
defaults13.

 Prestrain: as described in in situ strain application section (see above)

 Femur: All degrees of freedom (3 translations, 3 rotations) free.

 Tibia: All degrees of freedom (3 translations, 3 rotations) fixed.

 Fibula: All degrees of freedom (3 translations, 3 rotations) fixed.

 Patella: All degrees of freedom (3 translations, 3 rotations) free.

 Tibiofemoral cylindrical joints: Flexion fixed (at 0º); remaining degrees of freedom (3
translations, 2 rotations) free.

 Patellofemoral cylindrical joints: All degrees of freedom (3 translations, 3 rotations) free.

 Quadriceps tendon slider joint: All degrees of freedom (3 translations, 3 rotations) free.

Passive Flexion At the start of the passive flexion application, in situ strains should have already
been applied as prescribed. Our interpretation of passive knee flexion is that the motion of the
knee is guided by joint contact and connective tissue recruitment. Therefore no external loading
was applied; the movement of the knee was unconstrained other than prescription of the flexion
angle up to 90º. Any loading and boundary conditions that are not specified below were set to
FEBio defaults13.

 Femur: All degrees of freedom (3 translations, 3 rotations) free.

 Tibia: All degrees of freedom (3 translations, 3 rotations) fixed.

 Fibula: All degrees of freedom (3 translations, 3 rotations) fixed.

 Patella: All degrees of freedom (3 translations, 3 rotations) free.

 Tibiofemoral cylindrical joints: Flexion prescribed (0º to 90º during simulation step);
remaining degrees of freedom (3 translations, 2 rotations) free.

 Patellofemoral cylindrical joints: All degrees of freedom (3 translations, 3 rotations) free.

 Quadriceps tendon slider joint: All degrees of freedom (1 translation) free.

6. Simulation output requests

By default, FEBio13 provides two output files: .xplt, plotfile, a binary file that includes all default
and requested field variables compatible with PostView22; .log, logfile, a text file that reports the

28

convergence history of the simulation along with convergence metrics including any other
variables requested for output. In accordance with the overall customization of the model and
to provide output metrics relevant to simulation case, output of the following metrics were
requested:

 Fiber stretch fiber stretch during simulation in tissues with compatible constitutive
models (ligaments, tendon, menisci).

 Generalizable parameters contact gap, pressure, traction; displacement; reaction
forces; stress; to be stored in plotfile.

 Prestrain stretch actually the total fiber stretch, including the effects of the prestrain
and deformation; to be stored in plotfile.

 Fiber stretch fiber stretch due to deformation during simulation in tissues with
compatible constitutive models; this differentiation is important to understand ligament
deformations when in situ strain is implemented.

 Rigid body data Request outputs kinematics and kinetics of all rigid bodies including
imaginary rigid bodies used for joint coordinate systems; to be stored in plotfile and
logfile. Information in logfile can be used to reconstruct joint kinematics.

 Rigid joints data Request outputs only kinetics but not kinematics as it is not
implemented in FEBio11; to be stored in plotfile and logfile.

13 for more details.

Simulation

Target outcome Solution of fully customized model through finite element analysis using FEBio11;
generating simulation results as binary and text output files (.xplt and .log, respectively).

Software requirements: FEBio. FEBio11 is a nonlinear implicit finite element analysis framework
designed specifically for analysis in biomechanics and biophysics (custom open source license;
free for academic research use, licensing for commercial use is available, see
http://www.febio.org). The latest version of FEBio11 (version 2.9 at the time of preparation of
this document) was used.

FEBio PreStrain Plugin. PreStrain18 Plugin provides a general framework for representing
prestrain in a finite element model using a prestrain gradient method. A version compatible with

29

the latest version FEBio was used (at the time of preparation of this document, version 1.0
supporting FEBio 2.9 has been available).

Input Fully customized model in FEBio format (.feb13).

Simulation Process Invoked FEBio13 with the model file as input. For simulations that did not
convergence, relaxation of convergence tolerances and utilization of alternative solution
algorithms, contact formulations, etc. were employed (see Appendix A6).

Post-Processing

Target outcome Extraction and summary of knee kinematics and kinetics during passive flexion;
processed using raw simulation results of fully customized model with FEBio13 (.log file),
supported by graphs as binary image files.

Software requirements LogPostProcessing.py. In house script to read model specific FEBio13 log
file, extract and store joint kinematics-kinetics, and plot joint kinematics-kinetics. To be used with
Python, source code available at https://simtk.org/plugins/datashare/?group_id=485#
(OKS_model) DOI pending.

Input Solution of fully customized model through finite element analysis using FEBio13; simulation
results as binary and text output files (.xplt and .log, respectively).

LogPostProcessing.py reads the log file and extract, store (as .xml16) and plot knee kinematics and
kinetics during passive flexion (as .png23):

 Kinematics of tibiofemoral cylindrical joints: 3 rotations, 3 translations total

 Kinematics of patellofemoral cylindrical joints: 3 rotations, 3 translations total

 Translation of tibia origin relative to femur origin in femoral coordinate system

 Translation of patella origin relative to femur origin in femoral coordinate system

 Constraint moment to maintain the knee joint at prescribed flexion

Visualization PostView22 was used to take snapshots of the model at different flexion angles, as
obtained through simulation of passive flexion. PostView22 can also be used to inspect tissue
stress-strain distributions, export data, images, and animations.

30

A2. Experimental data processing

Registration for Specimen-Specific Calibration

Target outcome Coordinate system transformation matrices between joint testing and imaging
coordinate systems of bones and experimental anatomical landmarks transformed to model
coordinate system in XML20 based text files. Full knee model with joint coordinate system defined
to align with the experimental coordinate system, in FEBio13
format (.feb, XML20 based text file).

https://simtk.org/plugins/datashare/?group_id=485# (OKS_model) DOI pending.

Input Experimental probed points on registration markers and anatomical landmarks and
coordinate system transformations (State.cfg); raw registration marker geometries from
imaging; FEBio13 model file.

Registration In the State.cfg file, one can find the coordinates of the probed points on registration
markers (three on femur, three on tibia) and bone landmarks collected during mechanical
testing6. A sphere was fit to probed points on each registration marker to obtain its center in the
local bone motion tracking system coordinate system. Similarly, a sphere was fit to raw
registration marker geometries obtained by segmentation of imaging data to obtain their centers
in image coordinate system. For each cluster of registration markers on the bone, the
transformation matrix was calculated between the local bone motion tracking system and image
coordinate system using singular value decomposition between sphere centers. In following,
anatomical landmarks on each bone, which are probed during mechanical testing, were
transformed to image coordinate system to serve as the foundation to redefine model joint
coordinate systems and cylindrical joint axes. The coordinate systems of tibia and femur were
updated based on descriptions provided in the experiment documentation16(also see below).
Patella coordinate system remained the same due to incomplete data on patella registration
marker assembly.

Tibia

T1= Most lateral point on the tibial plateau

T2= Most medial point on the tibial plateau

31

T3= Distal tibia point (medial malleolus of the tibia: most medial point)

T4= Distal tibia point (medial malleolus of the tibia: most medial point)

T5= Distal tibia point (lateral malleolus of the tibia: most lateral point)

T6= Distal tibia point (lateral malleolus of the tibia: most lateral point)

tibial origin:

Tibia z-axis : , where

Tibia y-axis: , normalized; where

Tibia x-axis: , normalized

Femur

F1= Lateral femoral epicondyle

F2= Medial femoral epicondyle

F3= Proximal femur point

F4= Proximal femur point

F5= Proximal femur point

F6= Proximal femur point

Femur origin:

Femur x_axis:

Femur y_axis:

Femur z_axis:

Customized Full Knee Model with Experiment Coordinate Systems Experimental landmarks
were used to define anatomical joint coordinate system in the model. The tibiofemoral floating

32

axis (FTF-axis) was defined as the cross product between the Tz-axis and the Fx-axis at any given
joint position. The patellofemoral floating axis (FPF-axis) was defined as the cross product
between the Pz-axis and the Fx-axis. The in house script FebCustomization_p3.py needs to be run
for this purpose. The model were therefore aligned with the experiment such that the axes as
defined in the experiment are the same as the ones defined in the model (For script usage, see
Appendix A8).

Specimen-Specific Kinematics-Kinetics Data Processing

Target outcome Experimental kinematics-kinetics data transformed, reduced, and presented in
a form amenable for simulations with the full knee model, as text files (.csv)27 and graphs as
binary images (.png)23. Representation of experimental kinematics-kinetics were separated for
passive flexion and for laxity data (as a function of target flexion angle, dominant degree of
freedom, loading direction in the dominant degree of freedom).

https://simtk.org/plugins/datashare/?group_id=485# (OKS_model) DOI pending.

Input Experimental joint kinematics-kinetics data (.tdms), joint coordinate system offsets
(State.cfg); coordinate system transformation matrices between joint testing and imaging, and
experimental anatomical landmarks transformed to model coordinate system (.xml).

Processing of Passive Flexion Data Experimental passive flexion data file (.tdms) were processed.
Kinematics data were 3, which provide
joint kinematics in an anatomical joint coordinate system (defined in the experiment based on
cylindrical joints)16 relative to a reference state (joint offsets given in State.cfg4). Kinetics data
were 3, which provide joint kinetics in
an anatomical tibia coordinate system as applied as loads on tibia16. The Python script extracted,
processed, and stored the data:

1. Extracted data such that the data from 0° to maximum flexion was re-sampled at 5°
increments, averaging data on each channel where flexion angle was within +/- 0.5 °.

2. Added kinematics offsets (from State.cfg) to kinematics channels to report bone pose and
orientation in an absolute fashion.

3. Transformed kinematics data to the convention used in the model, i.e., cylindrical joint
translations and rotations, accommodating offsets at model reference state when
reconstructing experiment coordinate systems in the model.

33

4. Transformed kinetics data to the convention used in the model, i.e., joint loading applied
to femur in model coordinate system, which is registered and aligned to experiment
coordinate system.

5. Wrote kinematics and kinetics to a text based file (.csv) both in experiment and model
conventions; plot and store as graphics files (.png).

Thresholds for cropping and resampling of data may change depending on data quality, e.g.,
noise and errors that may become apparent during analysis. The content of experimental
kinematics-kinetics data files are in right knee abstraction, which were managed during any
coordinate system transformation.

Processing of Laxity Data Kinematics-kinetics data for laxity were split into files based on flexion
angle (0º, 30º, 60º, 90º), dominant loading axis (anterior-posterior translation, internal-external
rotation, varus-valgus), and direction of loading axis (positive, negative). Kinematics data were

3, which provide joint kinematics in an
anatomical joint coordinate system (defined in the experiment based on cylindrical joints)16
relative to a reference state (joint offsets given in State.cfg4). Kinetics data were extracted from

3, which provide joint kinetics in an anatomical tibia
coordinate system as applied as loads on tibia16. A Python script was developed for extraction,
processing, and storage of laxity data:

 Extracted data by finding the indices of the data points (from Kinetics.JCS.Desired) where
the force was held constant for all loading cases at all degrees of flexion where laxity data
was collected (0 º, 30 º, 60 º, 90 º), taking the index of the final data point for each flat
section of the data and ext

 Added kinematics offsets (from State.cfg) to kinematics channels to report bone pose and
orientation in an absolute fashion.

 Transformed kinematics data to the convention used in the model, i.e., cylindrical joint
translations and rotations, accommodating offsets at model reference state when
reconstructing experiment coordinate systems in the model.

 Transformed kinetics data to the convention used in the model, i.e., joint loading applied
to femur in model coordinate system, which is registered and aligned to experiment
coordinate system.

 Wrote kinematics and kinetics to a text based file (.csv) both in experiment and model
conventions; plot and store as graphics files (.png).

34

Thresholds for cropping and resampling of data may change depending on data quality, e.g.,
noise and errors that may become apparent during analysis. The content of experimental
kinematics-kinetics data files are in right knee abstraction, which were managed during any
coordinate system transformation.

A3. Model customization for application of kinematics-kinetics (with or
without experimental data)

Target Outcome Customized full knee models in FEBio13 format (.feb, XML20 based text file)
prepared for all simulation cases, and all experimental loading conditions. Models include
converged meshes, confirmed material properties and calibrated in situ ligament strains, and for
reproduction of experiments, loading and boundary conditions of joint testing registered and
transformed to model coordinate system.

Software requirements experiment_to_model.py: In house Python script to update models
with target kinetics-kinematics. Script available in,
https://simtk.org/plugins/datashare/?group_id=485# (OKS_model) DOI pending.

Input Template FEBio model file of the full knee (.feb13) and model properties (.xml20) files for
with converged meshes, confirmed material properties, experiment coordinate systems, and
calibrated in situ ligament strains; kinematics-kinetics data (experimental or simulated target)
(.csv27).

Customization for Experiment or simulated Loading Cases Python script updates knee model in
FEBio13 to replicate experimental or simulated conditions. Experimental kinetics were applied as
external femur loads, and experiment flexion angle was prescribed to the extension-flexion joint.
Tibia was fixed; femur and patella were free to move and all loads and boundary conditions were
applied in one step. From time 0 to 1, in situ strain were applied while keeping flexion at 0°. From
time 1 to 2, the loads and boundary conditions at the start of experiment were prescribed, i.e.,
the flexion angle was set and the loads in the remaining degrees of freedom were applied on
femur. From time 2 to 3, the loads and boundary conditions of the experimental trial were
applied until the end point of the experiment. Load curves for each degree of freedom
(particularly the dominant loading) were defined based on experiment data points and
simulation output were requested at each experiment point. The kinematics-kinetics trajectories
of experiment were split to facilitate prescription of loading scenarios in simulations.

35

A4. Model calibration procedure

Mesh Convergence

Target Outcome Geometric reconstruction of tissues of interest as smooth and watertight
triangulated surface representations (.stl)29 and finite element meshes (.med)24 with several
mesh densities including converged mesh densities. Compartmental models of tissues of interest
in FEBio13 format (.feb, XML20 based text file) for mesh convergence simulations. Simulation
results as binary and text output files (.xplt and .log, respectively)13 and as summary of mesh
convergence analysis including target convergence metric as a function of mesh density (XML20
based text file). Full knee model with converged meshes in FEBio13 format (.feb, XML20 based text
file). Tissues for which mesh convergence were conducted include cartilage femoral, tibial
(medial & lateral), patellar; menisci medial & lateral, ligaments anterior/posterior cruciate,
medial/lateral collateral, patellar; tendons quadriceps.

Input Raw triangulated surface representations of tissues of interest (without filtering and
smoothing) in .stl29 format in image coordinate system.

Geometry Generation Procedures For each tissue of interest, several geometries were created at
different mesh densities. Smoothing procedures were performed as described in model
development A1. The Iso Parameterization Remeshing phase was repeated several times, to
obtain the mesh densities specified below.

 Iso Parameterization Sampling Rates

Femoral Cartilage 8,10,15,20

Tibial Cartilage 6,8,10,15

Patellar Cartilage 6,8,10,15

Menisci 4,6,8,10

ACL 4,6,8,10

PCL 3,4,6,8

Patellar Ligament 4,6,8,10

Quadriceps Tendon 4,6,8,10

36

 Iso Parameterization Sampling Rates

MCL 5,7,9,11

LCL 3,4,6,8

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. LCL: lateral collateral ligament.
MCL: medial collateral ligament.

Mesh Generation Procedures For each tissue geometry that was generated above, a mesh was
created in Salome26. A new MED24 file was generated where all node/element/face groups, which
were already created for original tissue mesh, were transferred to the new MED24 file. This was
done in a scripted fashion, using in house Python32 script transfer_med_groups.py by treating the
groups as a binary field and applying that binary field to the new mesh to find the correspondence
of nodes and elements in the new mesh. This correspondence was used to select nodes and
elements to generate groups with the new node and element sets. A quality assurance check was
completed here to ensure that all node/element/face groups are as expected. For example, a
check was done for all ligament insertion origins that the insertion area covers the entire width
of the ligament where it connects to the bone.

Model Generation Procedures Each of the tissues of interest was tested by creating a model with
the boundary conditions outlined in the table below. The models were created for each mesh
density, such that 4 models exist for each tissue, with the only difference being the density of the
mesh of the tissue of interest. Model generation was performed according to the model
development A1 (using in home scripts MedToFebio.py, FebCustomization_p3.py), and boundary
conditions were updated manually in the FEBio model input files for each model.

Tissue of
Interest

Included Parts Boundary Conditions* Simulation
Outputs

Femoral
Cartilage

FMC, FMB, TBC-L, TBC-M Compression of the FMC between the
FMB (rigid) and the TBC-L, TBC-M
modeled as rigid bodies. TBC fixed,
FMB displaced 2 mm in -z direction.

Z-reaction force
in FMB (primary)

Contact pressure
(secondary)

Tibial
Cartilage

1. FMB, TBC-L, TBB

2. FMB, TBC-M, TBB

Compression of the Tibial Cartilage
between the TBB (rigid) and the FMC
modeled as a rigid body. TBB fixed,

Z-reaction force
in FMC (primary)

37

Tissue of
Interest

Included Parts Boundary Conditions* Simulation
Outputs

FMC displaced 1 mm in the -z direction
for TBC-L and 0.2 mm for TBC-M.

Contact pressure
(secondary)

Patellar
Cartilage

PTC, PTB, FMC Compression of the PTC between the
PTB (rigid) and the FMC modeled as a
rigid body. FMC fixed, PTB displaced
1mm in the y direction.

Y-reaction force
in PTB (primary)

Contact pressure
(secondary)

Menisci 1. MNS-M, FMC, TBC-M,
TBB

2. MNS-L, FMC, TBC-L,
TBB

Compression of the MNS between the
FMC and TBC, both modeled as rigid
bodies.

TBC fixed, FMC displaced 1 mm in the
-z direction. Test applied to MNS-M,
MNS-L separately.

Z-reaction force
in FMC (primary)

Contact pressure
(secondary)

Fiber stretch
(secondary)

ACL ACL, FMB, TBB Tension test. TBB fixed, FMB displaced
3 mm in the z direction.

FMB reaction
force (primary)

Fiber stretch
(secondary)

PCL PCL, FMB, TBB Tension test. TBB fixed, FMB displaced
3 mm in the z direction.

FMB reaction
force (primary)

Fiber stretch
(secondary)

Patellar
Ligament

P TL, PTB, TBB Tension test. TBB fixed, PTB displaced
4 mm in the z direction.

Z-reaction force
in PTB (primary)

Fiber stretch
(secondary)

38

Tissue of
Interest

Included Parts Boundary Conditions* Simulation
Outputs

Quadriceps
Tendon

QAT, PTB, QSO (rigid
body connected to QAT)

Tension test. QSO fixed, PTB displaced
4 mm in the z direction.

Z-reaction force
in PTB (primary)

Fiber stretch
(secondary)

MCL MCL, TBB, FMB Tension test. TBB fixed, FMB displaced
4 mm in the z direction

Z-reaction force
in FMB (primary)

Fiber stretch
(secondary)

LCL LCL, TBB, FBB Tension test. FBB fixed, FMB displaced
4 mm in the z direction

Z-reaction force
in FMB (primary)

Fiber stretch
(secondary)

FMB: femur bone. TBB: tibia bone. FBB: fibula bone. PTB: patella bone. FMC: femoral cartilage.
TBC-L: tibial lateral cartilage. TBC-M: tibial medial cartilage. PTC: patellar cartilage. MNS-L: lateral
meniscus. MNS-M: medical meniscus. ACL: anterior cruciate ligament. PCL: posterior cruciate
ligament. MCL: medial collateral ligament. LCL: lateral collateral ligament. PTL: patellar ligament.
QAT: quadriceps tendon. QSO: quadriceps origin.

*Displacement levels were chosen to induce approximately 10% nominal strain on target tissue.

Mesh Convergence Procedures Each of the models created above was run in FEBio, beginning with
the coarsest mesh density. The simulation was repeated, each time with a finer mesh. The
primary measured outputs were compared with those of the previous simulation, and when
there was less than 5% difference (7.6% for medial tibial cartilage), convergence was assumed.
The mesh density at which the output converged was then used in the final model. If no
convergence is found within the specified mesh densities, finer/coarser mesh densities were
created to continue testing until convergence was found.

39

Template Full Knee Model with Converged Meshes The in house scripts MedToFebio.py, and
FebCustomization_p3.py were run including all of the selected knee tissues with converged mesh
densities.

Confirmation of Material Properties

Target Outcome Compartmental models of tissues of interest in FEBio13 format (.feb, XML20
based text file) for simulations to confirm and modify material properties using converged
meshes. Simulation results as binary and text output files (.xplt and .log, respectively)13 and as
summary of calibration process including target metric, model predictions as a function of
material property and fit error (XML20 based text file). Full knee model with confirmed and
modified material properties in FEBio13 format (.feb, XML20 based text file). Tissues for which
material properties were confirmed include cartilage femoral, tibial (medial & lateral), patellar;
menisci medial & lateral, ligaments anterior/posterior cruciate, medial/lateral collateral,
patellar; tendons quadriceps.

Input FEBio model file of the full knee with converged meshes, including all the tie/contact
surfaces.

Compartmental Modeling of Structural Tissue Behavior In order to confirm and modify material
properties, structural tissue response or gross material behavior were compared with literature.
If, the tissue behavior fell outside the range of expected behavior, the material properties were
adjusted until the mechanical response of the tissue is considered within the reported normal
range. This process essentially confirmed each tissue material property used for model
development with a second information resource. Details of the simulations (and/or analyses)
performed are provided below. An in house script ModelReduction_rigid3.py, was used to reduce
the full knee model to include only the desired components for each of the test simulation cases.
An in house script StiffnessFromLog.py was used to determine linear stiffness from model results.

Ligaments and Tendons

Tissue to
Calibrate

Included Parts Boundary Conditions* Simulation
Outputs

Expected
Behavior

ACL ACL, FMB, TBB Tension: TBB fixed, FMB
displaced 3 mm in the
fiber direction of the ACL.

FMB reaction
force-
displacement
curve

Linear stiffness =
242±28 N/mm14

40

Tissue to
Calibrate

Included Parts Boundary Conditions* Simulation
Outputs

Expected
Behavior

PCL PCL, FMB, TBB Tension: TBB fixed, FMB
displaced 5 mm in the
fiber direction of the PCL.

FMB reaction
force-
displacement
curve

Linear stiffness =
258±62 N/mm15

Patellar
Ligament

PTL, PTB, TBB Tension: TBB fixed, PTB
displaced 5 mm in the
fiber direction of the PTL.

PTB reaction
force-
displacement
curve

Linear modulus =
337.8.±67.7
MPa17

Quadriceps
Tendon

QAT, PTB, QSO Tension: QSO fixed, PTB
displaced 5 mm in the
fiber direction of the QAT.

PTB reaction
force-
displacement
curve

Linear modulus =
255.3±64.1
MPa17

MCL TBB, MCL, FMB Tension: TBB fixed, FMB
displaced 5 mm in the
fiber direction of the MCL.

FMB reaction
force-
displacement
curve

Linear stiffness =
63±14 N/mm16

LCL FBB, FMB, LCL Tension: FBB fixed, FMB
displaced 5 mm in the
fiber direction of the LCL

FMB reaction
force-
displacement
curve

Linear stiffness =
59±12 N/mm16

FMB: femur bone. TBB: tibia bone. FBB: fibula bone. PTB: patella bone. ACL: anterior cruciate
ligament. PCL: posterior cruciate ligament. MCL: medial collateral ligament. LCL: lateral collateral
ligament. PTL: patellar ligament. QAT: quadriceps tendon. QSO: quadriceps origin.

*Displacement levels were chosen to induce approximately 10% nominal strain on target tissue.
No prestrain was applied.

For the tension test simulations in the fiber direction, a load curve was defined from 0 to X, where
X is the desired total displacement. Then, in the boundary section the prescribed displacement

41

was specified in the fiber direction. For example, given a fiber direction of [-0.101,-0.511,0.854]
a unit displacement (X=1) :

<rigid_body mat="4">

<prescribed bc="x" lc="3">-0.101</prescribed>

<prescribed bc="y" lc="3">-0.511</prescribed>

<prescribed bc="z" lc="3">0.854</prescribed>

<fixed bc="Rx"/>

<fixed bc="Ry"/>

<fixed bc="Rz"/>

</rigid_body>

Python script StiffnessFromLog.py was used to extract rigid body reaction force displacement
data from simulation output (.log). In following, force-displacement response of the tissue along
its fiber direction was calculated. Linear stiffness of the tissue (k) was calculated by fitting a line

(E) was calculated as (k x Lo / Ao), where Lo and Ao are the reference ligament length and cross
sectional area, respectively. The reference length was calculated as the distance between the
centers of the insertion and origin. The cross sectional area was calculated as the average cross
sectional area between the insertion and origin. If the simulated tissue properties (k and/or E)
fall outside two standard deviations of the expected behavior, the fiber modulus (C5) was scaled
to bring the tissue response within the expected range.

Cartilage

Since we assume cartilage properties to be consistent for all cartilage tissues, we performed one
indentation test to confirm if cartilage structural response is within what is reported in literature.
For this purpose, we used indentation stiffness of lateral tibial cartilage, which was reported as
20.38±5.32 N/mm30. A model was generated to reproduce the experiment conditions30. The
model included the tibia bone (TBB), lateral tibial cartilage (TBC-L), and a 1mm diameter indenter
as a rigid body, which was in frictionless contact with the cartilage. The indenter was placed
above the cartilage near the meniscus, as described in the study, and a load of 0.5 N was applied

42

to force the indenter against the tibial cartilage. StiffnessFromLog.py was used to extract indenter
force and displacement data from simulation results (.log) and the linear stiffness was calculated
using the linear region (upper third) of the force-displacement curve. Material properties of
cartilage (C1) were scaled as needed to get the range within two standard deviations of the
reported stiffness value. Bulk modulus parameter (K) scaled accordingly.

Meniscus

Depending on the location of the sample (anterior, central, posterior) and the thickness of it,
circumferential tensile modulus of medial meniscus was reported as 43.4±26.8 MPa to
141.2±56.7 MPa17. The fiber modulus (C5) of meniscus was scaled to match within two standard
deviations of the reported modulus.

Customized Full Knee Model with Confirmed Material Properties

The in house script FebCustomization_p3.py needs to be run including all of the selected knee
tissues with updated material properties.

Calibration of In Situ Ligament Strains

Target Outcome Full knee models with converged meshes, confirmed material properties, joint
coordinate system defined to align with the experimental coordinate system, and loading and
boundary conditions of experiments selected for calibration in FEBio13 format (.feb, XML20 based
text file). Simulation results as binary and text output files (.xplt and .log, respectively) and as
summary of calibration process including target metric, model predictions as a function of in situ
ligament strains and fit error (XML based text file). Full knee model with calibrated in situ
ligament strains in FEBio format (.feb, XML based text file). Tissues for which in situ ligament
strains were calibrated include ligaments anterior/posterior cruciate, medial/lateral collateral.

Input Template FEBio model file of the full knee (.feb 1) and model properties (.xml20) files with
converged meshes, confirmed material properties, and experiment coordinate systems;
processed specimen-specific kinematics-kinetics data (.csv27).

Models experiment_to_model.py, was used to generate models representative of the loading and
boundary conditions of selected laxity tests to calibrate in situ strains. Only joint laxity data at 0°
flexion was used to modify in situ strains for anterior cruciate ligament (ACL), posterior cruciate
ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL). The
decision to use only these data was made to save on computational cost and time. All other
loading scenarios include flexion of the joint prior to performing laxity testing, which can be

43

costly, and often, convergence issues may arise. This way, the calibration could be performed
quickly, and the models were unlikely to have any convergence issues.

Template model (.feb) and model properties (.xml) reflective of converged meshes, confirmed
material properties, and experiment coordinate systems were the basis for customization of
models for calibration. Modifications to the customization script and/or additional scripts were
necessary to implement the loading scenarios Overall, application of loading and boundary
conditions and output requests was similar to those described in A1 with exceptions noted in
here. Tibia was fixed; femur and patella were free to move and all loads and boundary conditions
were applied in one step. From time 0 to 1, in situ strain was applied while keeping flexion at 0°.
From time 1 to 2, the loads and boundary conditions at the start of experiment were prescribed,
i.e., the flexion angle was set and the loads in the remaining degrees of freedom were applied on
femur to reflect the loading state of the joint at the start of testing. This step accounted for any
offsets in bone configuration between imaging and the experiment and it should be done after
the prestrain step as we do not want the in situ strain calibration to be dependent on the
orientation of the knee in different experiment trials. From time 2 to 3, the loads and boundary
conditions of the experiment were prescribed, i.e., the flexion angle was constant and the loads
in the remaining degrees of freedom were applied on femur. Load curves for each degree of
freedom (particularly the dominant loading) were defined based on experiment data points and
simulation output were requested at each experiment point. A total of 4 models were generated:

Model Name Flexion (°) Loading from Experiment To Calibrate

F00_AT_C 0 Anterior laxity ACL

F00_PT_C 0 Posterior laxity PCL

F00_VL_C 0 Valgus laxity MCL

F00_VR_C 0 Varus laxity LCL

ACL: anterior cruciate ligament. PCL: posterior cruciate ligament. MCL: medial collateral
ligament. LCL: lateral collateral ligament.

Calibration Procedure An iterative procedure was used to identify optimal in situ ligament strains
in anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament
(MCL), and lateral collateral ligament (LCL):

44

1. Use F00_AT_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find
ACL in situ strain by minimizing the difference between model predicted and
experimental anterior translation and force.

2. Use F00_PT_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find
PCL in situ strain by minimizing the difference between model predicted and experimental
posterior translation and force.

3. Use F00_VL_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find
MCL in situ strain by minimizing the difference between model predicted and
experimental valgus rotation and moment.

4. Use F00_VR_C (with previously modified ACL, PCL, MCL, LCL in situ strains, if any) to find
LCL in situ strain by minimizing the difference between model predicted and experimental
varus rotation and moment.

5. Repeat steps 1-4 until convergence of in situ strains, i.e., stop when absolute change in
calculated in situ strain is less than 0.001.

The Python script InSituOptimization.py was developed to update the in situ strain of the target
ligament in the model, to read the simulation results (displacement and load in dominant degree
of freedom), to implement a scalar (one-dimensional) optimization that minimized the sum of
the squared differences between model predicted and experimental loading response in the
dominant degree of freedom, and to write optimization results in a text file (.xml). It should be
noted that these calculations were performed with readily aligned kinematics-kinetics
conventions of the model and experiment, i.e., following registration, kinematics-kinetics data
processing, and accounting for experimental local coordinate systems offsets.

45

A5. Edge lengths calculated for all meshes used in the models

For each of the mesh component in each model, average edge length (mm), standard
deviation(mm), number of nodes and number of elements (tetrahedral or triangular) were
calculated.

Specimen Oks001 Oks002 Oks003 Oks004 Oks006 Oks007 Oks008 Oks009
ACl 0.87,

0.24,
4025,
15152

0.66,
0.13,
6284,
28526

0.57,0.
13,
15792,
72552

0.48,
0.09,
11726,
54489

0.42,
0.08,
15354,
76547

0.50,
0.10,
13189,
63071

0.53,
0.10,
12186,
57440

0.49, 0.09,
14018,
68169

Pcl 1.11,
0.25,
3389,
14055

0.72,
0.13,
7455,
35647

0.76,0.
19,
3714,
14379

0.63,
0.15,
10769,
48710

0.62,
0.15,
10729,
48357

0.69,
0.17,
10283,
45649

0.70,
0.16,
11253,
51560

0.71, 0.19,
11793,
59303

Lcl 0.61,
0.20,
2873,
9010

0.56,
0.18,
3360,
11055

0.62,0.
20,
2960,
9773

0.56,
0.12,
3408,
13306

0.40,
0.08,
8049,
32389,

0.52,
0.12,
8187,
34157

0.45,
0.09,
8630,
35687

0.43, 0.08,
9581, 41306

Mcl 0.84,
0.29,
8839,
31366

0.72,
0.30,
4661,
14465

0.55,0.
16,
15693,
62712

0.42,
0.09,
19010,
83192

0.28,
0.07,
58517,
232256

0.42,
0.09,
19322,
81795

0.53,
0.10,
28897,
137254

0.36, 0.09,
18335,
74539

Mns-m 0.55,
0.13,
29608,
135176

0.30,
0.05,
94066,
477653

0.67,0.
15,
11706,
51009

0.58,
0.12,
13599,
60458

0.28,
0.05,
99589,
512314

0.33,
0.06,
93452,
475512

0.42,
0.09,
63431,
310827

0.36, 0.07,
55857,
273901

Mns-l 0.57,
0.17,
20222,
90511

0.35,
0.08,
69661,
337649

0.71,
0.18,
10901,
44953

0.28,
0.06,
58394,
277929

0.34,
0.07,
72444,
356524

0.34,
0.07,
79725,
400518

0.41,
0.10,
51494,
238358

0.33, 0.07,
74632,
368347

Fmc 1.14,
0.36,
27908,
103027

1.10,
0.47,
19722,
62819

1.034,0
.45,
24870,
87072

0.64,
0.24,626
35,22017
9

0.99,
0.36,
25165,
85120

1.13,
0.36,
23148,
84098

1.19,
0.42,
21670,73
673

1.12, 0.42,
25612,
86456

Ptc 0.62,
0.12,
33063,
157775

0.42,
0.12,
48109,
225560

0.62,0.
12,
26121,
121105

0.47,
0.10,
39329,
179404

0.48,
0.14,
33656,
136808

0.56,
0.12,
42881,
198903

0.58,
0.14,
48539,22
0942

0.55, 0.13,
43103,
193241

Tbc-m 0.75,
0.16,

0.42, 0.57,0.
13,

0.41,
0.12,

0.39,
0.10,

0.52,
0.15,

0.58,
0.17,

0.45, 0.12,
43536,
191271

46

16193,
70116

0.12,
36242,
148206

18060,
75627

35360,
145241

48114,
214978

29169,
119930

30035,
119206

Tbc-l 0.69,
0.15,
22878,
106371

0.47,
0.12,
35137,
155235

0.42,0.
08,
40669,
200079

0.36,
0.10,
34350,
137229

0.42,
0.09,
48458,
229876

0.47,
0.12,
39497,
173275

0.57,
0.16,
39778,
168556

0.48, 0.12,
47239,
211345

Qat 0.90,
0.24,
12860,
55421

0.57,
0.12,
82238,4
22315

1.10,0.
21,
14963,
69410

0.91,
0.18,
17462,
82857

0.55,
0.10,
72400,
363834

0.55,
0.12,
71417,
360181

0.50,
0.10,
115125,
615494

0.41, 0.06,
55870,
266284

ptl 1.06,
0.25,
11464,
48975

0.52,
0.13,
54739,
257643

1.07,
0.30
9280,
35616

0.62,
0.12,
28998,
136496

0.53,
0.14,
51502,
238304

0.58,
0.16,
62126,
320541

0.68,
0.22,
50954,
255236

0.48, 0.08,
55166,
259878

fmb 0.64,
0.13,
76178,
15232

0.95,
0.11,
24302,4
8600

20171,
40338,

1.02,
0.16,
20414,
40824

1.14,
0.18,
17255,
34506

1.09
0.18,
21872,
43740

1.33,
0.21,
17012,
34020

1.14, 0.18,
21629,
43254

tbb .98,
.10,213
86,
42768

0.85,
0.10,
24059,
48114

0.85,
0.10,
20900,
41796

0.87,
0.15,
20171,
40338

0.76,
0.10,
24059,
48114

1.01,
0.16,
18956,
37908

1.08,
0.19,
17741,
35478

0.95, 0.15,
21629,4325
4

ptb 0.62,
0.07,
10802,
21600

0.61,
0.10,
9290,
18576

0.74,
0.09,
8642,
17280

0.60,
0.08,
9614,
19224

0.60,
0.10,
9722,
19440

0.68,
0.10,
9722,
19440

0.75,
0.12,
9614,
19224

0.48, 0.07,
21872,
43740

fbb 1.06,
.12,
4802,
9600

0.87,
0.10,
4802,
9600

0.90,
0.12,
3794,
7584

0.37,
0.06,
20170,
40338

0.39,
0.06,
20900,
41796

0.45,
0.07,
17012,
34020

0.47,
0.08,
21872,
43740

0.44,
0.07,21143,
42282

A6. Model specific measures for convergence

Once the models were customized, some model specific adjustments had to be made for full
convergence. Models were run in FeBio 2.9. If run in other versions, due to inherent software
behavior, other measures might be needed to achieve convergence.

oks001 Stiffness for springs between medial meniscus and MCL was reduced from 1000 N/mm
to 300 N/mm for full convergence.

oks002, oks004, oks008 Stiffness for springs between medial meniscus and MCL was reduced
from 1000 N/mm to 3 N/mm for full convergence.

47

oks006 Adjusted ties for MCL-femur. Stiffness for springs between medial meniscus and MCL
was reduced from 1000 N/mm to 3 N/mm, MCL prestrain reduced to 0.025 and, LCL prestrain
reduced to 0.02.

oks007 Stiffness for springs between medial meniscus and MCL was reduced from 1000 N/mm
to 3 N/mm and MCL prestrain updated to 0.025 for full convergence.

oks009 Stiffness for springs between medial meniscus and MCL was reduced from 1000 N/mm
to 3 N/mm, updated MCL- Femur ties for full convergence.

Note check FeBio_custom.feb model file for inactive contact definitions for each model.

A7. Database folder structure
Various model related data are organized in subfolders under folder with the specimen name.

oks00x

 segmentation

 geometry

 densities

 template model

 FeBio

 MED

 final model

 processed results

src

doc

48

A8. Python scripts and usage

1. StltoMed.py, MedtoFebio.py, ConnectivityXML.py

Python scripts to convert surface geometries to volume meshes and using them create
template Febio models. Platform requirement and usage is as follows,

Linux

 Need Salome 7.8 to run StlToMed.py and MedToFebio.py (both written in Python 2.7)

Windows

 Need Salome 8.3 (to run MedToFebio.py, older versions do not work)
 However, if Salome 8.3 is used to correct ties and contacts in MED files then the

exported version is MED 3.3.1 which will not be compatible with Salome 7.8 (required
for Linux).

 In that case either use Salome 7.8 or Salome 9.2 to correct MED files and save in MED
version 3.2.

 To run StlToMed.py and MedToFebio.py from Salome 8.3,

Usage -
1. Open command prompt
2. Navigate to Salome directory,
3. Type: >run_salome.bat -t --pinter path\StlToMed.py OR path\MedToFebio.py args:path\
Connectivity.xml

49

Both

 In connectivity.xml file all .stl locations have to be pointed to the directory they are
located in.

MedToFebio.py

 MED files have to be in version 3.2.
 Does not work well on Windows.

Note: Use Febio version 2.9 as it handles contacts better

OS preference for other software components in the pipeline:

 Segmentation/geometry generation (Slicer, Meshlab): Windows/Linux
 StltoMed.py (Salome): Linux
 Fix contacts and ties(Salome): Linux, Windows (have to export MED files in v3.2)
 MedtoFebio.py (Salome): Linux, Windows
 Pick Landmarks (Meshlab): Windows/ Linux
 Customization: Windows/Linux
 Febio: Windows/Linux (edit geometry file location in Febio_custom.feb)

2. FebCustomization_p3.py, Anatomical_Landmarks_p3.py

 Python scripts to customize template FeBio model file for material properties, loading and

boundary conditions etc.
 When running customization for the registered models, the registered landmarks have been

hard coded into a function in AnatomicalLandmarks_p3.py. In DoCalculations(), comment
line 1256, and uncomment line 1259 (before running the customization script). Instead of
calculating the joint axes from the manually chosen landmarks, it uses the experimentally
probed landmarks, registered to the model coordinate system.

 If there are any changes in registration of the knees, the hard coded landmarks should be
updated in the respective function as needed.

3. Register_probed_points.py

 This function performs the registration for open knees. To run open knees registration, go

the main function at the end of the file, change the local directories for the state file and the
directory containing the .stl registration markers. Run the open_knee_registration() function.

 Resulting transformation matrix, transformed anatomical landmarks will be printed to the
screen. Resulting transformation matrix, transformed anatomical landmarks will be added to
an xml file with registration result and saved in the current working directory.

50

4. tdms_processing_oks.py

 Python script used to process the tdms files from open knees data. Saves the data as a png
graphs and csv files. plot_groups function can be used to save the csv, png files in
intermediate steps (raw, partially processed, etc).

5. experiment_to_model.py

 This script was designed to take processed experimental data (kinematics in JCS with model

offsets already removed, kinetics as forces/moments applied to the femur defined in the tibia
coordinate system), and the model that results from running the customization script, and,
create a model that applies to experimental conditions to the model by first converting the
kinetics data into the image coordinate system, and then applying those kinetics as external
forces to the femur.

 Kinematics load curves were also added, so that the kinematics can be easily applied to the
cylindrical joint by setting the translation/rotation of the joint to follow the load curve. The
make_model function will do this for one model. NOTE - it will change the existing febio_file
if name is not given make_model(modelprops_file, febio_file, kinetics_csv, kinematics_csv,
name=none) To run it for several files at the same time, read_from_xml(exp_to_mod_xml)
function should be used.

6. InSituOptimization.py

 This script was designed to perform calibration of the ACL, PCL , LCL, MCL in situ strains. The

input for this function is an xml file that points to the models used in the calibration, and the
,

 https://simtk.org/plugins/datashare/?group_id=485# (OKS_model) DOI pending.
 Under the Files section: provide the path to the model properties file. The model properties

file should include the added anatomical landmarks from running the customization script, as
the joint axes which are added are used to process the model kinematics.

 Under the Options section: rms_error type can be defined as "loading" or "all". loading =
minimize rms error in the loading direction only (ex for ACL find in situ strain to only minimize
mismatch on anterior translation axis) all= minimize rms error on all 6 dof (ax for ACL in situ
strain to minimize mismatch on all translation and rotation axes). opt type can be defined as
"single" or "multi" . single = single variable optimization, optimize in situ strain for one
ligament at a time. multi = multi variable optimization, optimize in situs train for all ligament
simultaneously (this will take much longer)

 Under the Ligaments section: for each of the ligaments, provide the febio file (created using
experiment_to_model.py). For example, for the ACL, this would be a model generated to
mimic the 0 degree flexion anterior loading test. (doesn't need to be 0 degrees, we just
decided 0 because the models run the fastest) provide the experiment kinematics file - needs
to match with whatever file was used for the febio file. For example, if ACL 0 degree anterior

51

laxity, then this should be the kinematics file for that trial in situ strain is the initial guess for
in situ strain. This shouldn't matter in theory - eventually it should find the solution.

 However, if the optimization has already run and a small change is made and need to run it
again to be sure it doesn't affect results, etc. a known solution can be put as the initial guess
to save a lot of computation time.

 The order in which these ligaments appear in the xml file is the order in which they will be
optimized. Running this script will create summary files named Optimization<num>.txt,
where num is the counter for which round of optimization it is on.

 The script will continue to loop on all the ligaments until convergence is achieved. Essentially
create febio models for each laxity test (using experiment_to_model.py) and put them each
in their own folder. Then create the InSituOpt.xml file pointing to each of these files, and
other relevant files. Then run from the terminal as:
python InSituOptimization.py /path/to/InSituOpt.xml febioCommand

febioCommand is the path to the febio execulatble, on linux it can be found in
'/FEBio2.8.2/bin/febio2.lnx64'

If always running from the same computer, the febio command can be hard coded into the
run_from_xml(). Leave out the febioCommand when running from the terminal.

7. LogPostProcessing.py

 Python script creates a folder of images and csv files with model results. Can be run using

Exp_to_Mod.xml with the run_all_in_file() function.

8. model_prediction_errors.py

 To run after LogPostProcessing.py. Compares the kinematics between the model results and

the experiment kinematics. Creates images, and files storing the rms error between them.
Can be run using Exp_to_Mod.xml with the from_xml() function. see main function at end of
script for examples of use.

9. transfer_med_groups.py

 Transfers nodes and element sets from one mesh to another for a given component by

treating the groups as a binary field and applying that binary field to the new mesh to find
the correspondence of nodes and elements in the new mesh. This correspondence is used to
select nodes and elements to generate groups with the new node and element sets.

52

10. StiffnessFromLog.py

 Python script extracts rigid body reaction force displacement data from simulation output

(.log).

11. ModelReduction_rigids3.py

 Removes all contacts and ties for the specified component that needs to be removed and
converts it into a rigid body.

12. edge_lengths.py

 Python script to calculate average edge lengths, standard deviations, minimum and
maximum edge lengths for a given volume mesh (.med).

Note: Full path of Geometry.feb file has to be provided in the FeBio_custom.feb file if using Febio
2.9 in Windows. If using Linux, there is no need to supply the whole path as long as the files are
in the same folder.

References

1. 3D Slicer image computing platform. 3D Slicer. https://slicer.org/

2. Aframian A, Smith TO, Tennent TD, Cobb JP, Hing CB. Origin and insertion of the medial
patellofemoral ligament: a systematic review of anatomy. Knee Surg Sports Traumatol Arthrosc.
2017;25(12):3755-3772. doi:10.1007/s00167-016-4272-1

3. BioRobotics, SimVitro - SimVITRO Data File Contents for Open Knee, User Manual, 2013CB-031-
002.B.
https://simtk.org/plugins/moinmoin/openknee/Infrastructure/ExperimentationMechanics?action=
AttachFile&do=get&target=2013CB-031-002.B+simVITRO+Data+File+Contents_Open+Knee.pdf

4. BioRobotics, SimVitro - State Configuration File Explanations, User Manual, 2013CB-031-001.A.
https://simtk.org/plugins/moinmoin/openknee/Infrastructure/ExperimentationMechanics?action=
AttachFile&do=get&target=2013CB-031 001.A_State+Configuration+File+Explanations.pdf

5. Bull AMJ, Katchburian MV, Shih YF, Amis AA. Standardisation of the description of patellofemoral
motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc.
2002;10(3):184-193. doi:10.1007/s00167-001-0276-5

53

6. Chokhandre S, Neumann EE, Nagle TF, et al. Specimen specific imaging and joint mechanical testing
data for next generation virtual knees. Data Brief. 2021;35:106824. doi:10.1016/j.dib.2021.106824

7. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. MeshLab: an Open-Source
Mesh Processing Tool. Eurographics Italian Chapter Conference. Published online 2008:8 pages.
doi:10.2312/LOCALCHAPTEREVENTS/ITALCHAP/ITALIANCHAPCONF2008/129-136

8. dfwg. NIfTI: Neuroimaging Informatics Technology Initiative. https://nifti.nimh.nih.gov/

9. Dhaher YY, Kwon TH, Barry M. The effect of connective tissue material uncertainties on knee joint
mechanics under isolated loading conditions. J Biomech. 2010;43(16):3118-3125.
doi:10.1016/j.jbiomech.2010.08.005

10. Donahue TLH, Hull ML, Rashid MM, Jacobs CR. A finite element model of the human knee joint for
the study of tibio-femoral contact. J Biomech Eng. 2002;124(3):273-280. doi:10.1115/1.1470171

11. FEBio Software Suite. https://febio.org/

12. FEBio Theory Manual. FEBio Documentation. https://help.febio.org/FEBioTheory/FEBio_tm_3-
4.html

13. FEBio User Manual Version 2.9. https://help.febio.org/FEBio/FEBio_um_2_9/index.html

14. Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral
ligament during valgus knee loading. J Orthop Res. 2003;21(6):1098-1106. doi:10.1016/S0736-
0266(03)00113-X

15. Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional
motions: application to the knee. J Biomech Eng. 1983;105(2):136-144. doi:10.1115/1.3138397

16. Knee Joint Coordinate System v2.1.
https://simtk.org/plugins/moinmoin/openknee/Infrastructure/ExperimentationMechanics?action=
AttachFile&do=get&target=Knee+Coordinate+Systems.pdf

17. Lechner K, Hull ML, Howell SM. Is the circumferential tensile modulus within a human medial
meniscus affected by the test sample location and cross-sectional area? J Orthop Res.
2000;18(6):945-951. doi:10.1002/jor.1100180614

18. Maas SA, Erdemir A, Halloran JP, Weiss JA. A general framework for application of prestrain to
computational models of biological materials. Journal of the Mechanical Behavior of Biomedical
Materials. 2016;61:499-510. doi:10.1016/j.jmbbm.2016.04.012

19. Netgen/NGSolve. https://ngsolve.org/

20. Office Open XML - What is OOXML? http://officeopenxml.com/

21. Peña E, Calvo B, Martínez MA, Doblaré M. A three-dimensional finite element analysis of the
combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech.
2006;39(9):1686-1701. doi:10.1016/j.jbiomech.2005.04.030

54

22. PostView FEBio Software Suite. https://febio.org/postview/

23. Roelofs G. PNG: The Definitive Guide.

24. SALOME MED -
platform.org/5/med/user/medmem.html

25. -
platform.org/latest/gui/NETGENPLUGIN/netgen_2d_3d_hypo_page.html

26. Salome Platform - The open-source platform for numerical simulation. https://www.salome-
platform.org/

27. Shafranovich Y. Common Format and MIME Type for Comma-Separated Values (CSV) Files.
Published online 2005. https://www.rfc-editor.org/info/rfc4180

28. Shriram D, Praveen Kumar G, Cui F, Lee YHD, Subburaj K. Evaluating the effects of material properties
of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep.
2017;7(1):6011. doi:10.1038/s41598-017-06271-3

29. STL (STereoLithography) File Format Family. Published September 12, 2019.
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml

30. Thambyah A, Nather A, Goh J. Mechanical properties of articular cartilage covered by the meniscus.
Osteoarthr Cartil. 2006;14(6):580-588. doi:10.1016/j.joca.2006.01.015

31. The NI TDMS File Format - National Instruments. http://www.ni.com/product-
documentation/3727/en/

32. Welcome to Python.org. Python.org. https://www.python.org/

