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named. 

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Dear Authors! 

You present the software tool Dendrify. A Python package that seeks to 

extend Brian2 with primitives to allow for modelling of simplified 

multi-compartment neuron models. The topic is of interest to both the 

computational neuroscience and neuromorphic community. The paper is 

written well, text and figures are clear and engaging. 

The manuscript presents Dendrify on four examples of increasing 

complexity. A basic compartmental model with passive dendrites, a 

reduced compartmental model with active dendrites, a simplified yet 

biologically accurate model of a CA1 pyramidal cell, and on pathway 

interaction in CA1 model neurons. All models come with ready-to-use 

code examples that reproduce the figures, which is very welcome! 

The method section of the paper details the mathematical background of 

the implementation and gives a guide on developing reduced models. 

The manuscript is primarily advertised as presenting a software tool, 

therefore I will also mainly judge it under this premise. 

Please find points that need to be addressed below. 

A) Why a new tool? 

"To address the abovementioned complexity issues and provide a 

framework that allows the seamless incorporation of dendrites in SNN 

models, we developed Dendrify." 

Developing a new tool is always fun, but you need to explain why the 

existing solutions are not sufficient. A convincing way to do so would 

be to compare one of your examples with implementations in other simulators 

and point out their shortcomings. 

The comparison should be against multi-compartment simulators like 

NEURON (https://neuron.yale.edu/) and/or Arbor 

(https://arbor-sim.org/), but especially the built-in SpatialNeuron of 

Brian2 itself. Also NEST has support for multi-compartment neurons and 

should be included in the comparison. 

B) The solution to the cable equation 

Dendrify collects a set of equations from the currents between 

compartments and the state variables of neurons and synpases. While 

this is fine, using explicit methods like forward Euler is _not_. The 

equation of the cable is stiff and must be solved via implicit methods 

like backward Euler. Tools like NEURON and Arbor, but also the 

SpatialNeuron of Brian2 do it correctly. This is a major problem and 



needs to be corrected. I would propose to eliminate your manual 

implementation and base it on Brian2's SpatialNeuron. 

Please see Mascagni, Michael V., and Arthur S. Sherman. “Numerical 

Methods for Neuronal Modeling.” Methods in Neuronal Modeling 2 

(1998). https://www.cs.fsu.edu/~mascagni/papers/RCEV1996_1.pdf 

I've put together an example demonstrating the problem. 

C) Software best practices 

The Python code looks reasonable in form and style. However, you need 

to implement the following: 

* continuous integration and tests (also against upstream Brian2) 

* continuous delivery, e.g. provide the latest release on PyPI 

* linting and style checking 

* published documentation, e.g. readthedocs.org 

You and your users want to use the tool for many years. But without 

the points above, it will degrade. Especially the checks against 

upstream Brian2 are vital. 

D) Performance 

Please show the performance of your implementation. How long does it take 

to simulate one neuron, 10, 1000? What about networks of neurons? 

Minor points 

1) You stress that Brian2 has seamless compatibility with Dendrify 

which is a bit funny as Dendrify is based on Brian2 and not the other 

way around. 

2) All examples work with single neurons although you often, 

especially in the introduction, talk about networks. Please add at 

least one example of a network of multi-compartment neurons. 

3) "The attenuation of currents traveling along the somatodendritic axis 

is an intrinsic property of biological neurons and is due to the 

morphology and cable properties of dendritic trees." 

You don't really show currents traveling along the axis as you have 

only a handful of compartments. 

4) neuromorphic implementations 

Please cite more multi-compartment neuromorphic implementations, e.g. 

"Emulating Dendritic Computing Paradigms on Analog Neuromorphic Hardware" 

Kaiser et al. 

https://doi.org/10.1016/j.neuroscience.2021.08.013 

Thanks, 

your reviewer 



#!/usr/bin/env python3
"""
Example showing the problem using forward Euler for stiff equations

Based on "Numerical Integration in Computational Neuroscience"
https://www.neuron.yale.edu/ftp/ted/neuron/numerical_integration.pdf

[REDACTED]
"""
import matplotlib.pyplot as plt

from dendrify import Soma, Dendrite, NeuronModel

import brian2 as b
from brian2.units import (ms, um, pA, nS, uS, ohm, cm, mV, uF, mvolt, 
siemens, volt, Mohm)

soma = Soma('soma', model='passive', length=10*um, diameter=10*um)
spine = Dendrite('spine', model='passive', length=1*um, diameter=1*um)

g = 0.001*siemens/cm**2
C = 1*uF/cm**2
ra = 1.0168*Mohm

# will show non diverging behaviour
# ra *= 10000

edges = [(soma, spine, 1/ra)]

model = NeuronModel(edges,
                    cm=C,
                    gl=g,
                    v_rest=0*mV, # needs v_rest_zero.patch
                    r_axial=None,
                    scale_factor=1,
                    spine_factor=1)

group = b.NeuronGroup(1,
                      model=model.equations,
                      method='euler',
                      namespace=model.parameters)
model.link(group)

group.V_soma = 1*mV
group.V_spine = 0*mV

M = b.StateMonitor(group, ["V_soma", "V_spine"], record=True)
b.defaultclock = 0.1*ms
b.run(1*ms)

plt.plot(M.t/ms, M.V_soma[0]/mV, label="soma")
plt.plot(M.t/ms, M.V_spine[0]/mV, label="spine")

plt.xlim(0, 1)
plt.ylim(0, 1)



plt.xlabel("t [ms]")
plt.ylabel("membrane [mV]")
plt.legend()

plt.show()



diff --git a/dendrify/compartment.py b/dendrify/compartment.py
old mode 100644
new mode 100755
diff --git a/dendrify/ephysproperties.py b/dendrify/ephysproperties.py
index ab707b7..9611726 100644
--- a/dendrify/ephysproperties.py
+++ b/dendrify/ephysproperties.py
@@ -93,7 +93,7 @@ class EphysProperties(object):
         d = {}
         error = None
 
-        if self.v_rest:
+        if self.v_rest is not None:
             d[f"EL_{self.tag}"] = self.v_rest
         else:
             print(f"ERROR: Could not resolve 'EL_{self.tag}'\n")
diff --git a/dendrify/neuronmodel.py b/dendrify/neuronmodel.py
index d2baef5..fb20ae7 100644
--- a/dendrify/neuronmodel.py
+++ b/dendrify/neuronmodel.py
@@ -146,7 +146,7 @@ class NeuronModel(object):
                 i._ephys_object.gl = gl
             if r_axial and (not i._ephys_object.r_axial):
                 i._ephys_object.r_axial = r_axial
-            if v_rest and (not i._ephys_object.v_rest):
+            if v_rest is not None and (not i._ephys_object.v_rest):
                 i._ephys_object.v_rest = v_rest
             if scale_factor:
                 i._ephys_object.scale_factor = scale_factor



Reviewer #2 (Remarks to the Author): 

The authors introduce a python-package to facilitate the modeling of dendritic compartments in 

spiking networks. The objective is an easy to use and computationally efficient framework which 

captures dendritic features currently omitted in the simulation packages. 

On the basis of developments in neurophysiology, computational neuroscience, and recent results in 

the field of machine learning, they outline how accounting for dendritic phenomenon is necessary to 

facilitate advancements in computational neuroscience and neuromorphic computing. 

The authors set up four model scenarios to exemplify dendritic behaviour. 

* Coupling of passive dendrites 

* Compartmental model with active dendrites 

* A compartmental model fit to a CA1 pyramidal cell. 

* Coincidence detection in populations of CA1 model neurons. 

The code is very well documented and accessible at their github repository. This will make it very 

easy to use for anyone with some programming experience. 

Lastly, the authors example a practical guide of developing models with their package. 

Developing joint, open source software is extremely important to facilitate research progress and to 

validate results. Here, this package fills an important gap. 

We did check the code and did not find technical problems. 

The manuscript is well written and well understandable, serving as a good guide for starters. 

Comments 

The authors mention several times the computational capabilities, and the compatibility of dendrify 

with brian 2, yet are not clearly mentioning any of the specifics. 

Their github actually makes clear that their implementation is fully build on top of the existing brian 2 

frameworks. Which is appropriate as everything can be reinterpreted as more complicated neuron 

models. This should be clarified in the manuscript as well. 

On a technical note, the formatting of the manuscript make any mathematical derivations hard to 

read, and we hope that the next version improves here.



Response to Reviewers

We are excited that both referees find our work interesting and important and are grateful to both of them for their 

constructive feedback which has been critical for improving our manuscript. We are especially thankful to the first 

referee whose comments were extremely helpful in filling the gaps in our approach and making our work more 

attractive/useful to the community.  Below, we present analytical answers to all of their comments. 

Reviewer #1 

Dear Authors! 

You present the software tool Dendrify. A Python package that seeks to extend Brian2 with primitives to allow for 

modeling of simplified multi-compartment neuron models. The topic is of interest to both the computational 

neuroscience and neuromorphic community. The paper is written well, text and figures are clear and engaging. 

The manuscript presents Dendrify on four examples of increasing complexity. A basic compartmental model with 

passive dendrites, a reduced compartmental model with active dendrites, a simplified yet biologically accurate 

model of a CA1 pyramidal cell, and on pathway interaction in CA1 model neurons. All models come with ready-to-

use code examples that reproduce the figures, which is very welcome! 

The method section of the paper details the mathematical background of the implementation and gives a guide on 

developing reduced models. 

The manuscript is primarily advertised as presenting a software tool, therefore I will also mainly judge it under this 

premise. 

Please find points that need to be addressed below. 

We thank the reviewer for their positive comments and appreciation of our work. 

A) Why a new tool? 

“To address the abovementioned complexity issues and provide a framework that allows the seamless incorporation 

of dendrites in SNN models, we developed Dendrify.” 

Developing a new tool is always fun, but you need to explain why the existing solutions are not sufficient. A 

convincing way to do so would be to compare one of your examples with implementations in other simulators 

and point out their shortcomings. 

The comparison should be against multi-compartment simulators like NEURON (https://neuron.yale.edu/) and/or 

Arbor (https://arbor-sim.org/), but especially the built-in SpatialNeuron of Brian2 itself. Also NEST has support for 

multi-compartment neurons and should be included in the comparison. 

The reviewer raises some valid points here since a comparison with other popular simulators was missing from the 

initial manuscript (now added in the Discussion/Supplement). Before comparing our approach with other tools, we 

would like to clarify two important things. 



A. Dendrify aims to be more than a software tool

The primary goal of this project was to serve as both an inspiration and a means for facilitating the adoption of 

dendrites in spiking neural networks used for neuroscience research and/or neuromorphic applications. We place 

special emphasis on facilitating dendritic SNNs as the impact of dendrites at the network level remains poorly 

understood. We believe that this gap in the literature persists due to the following reasons:  

a. In vivo dendritic research remains technically difficult and requires expensive equipment and techniques 

that few labs can afford. 

b. Detailed biophysical models of neurons with dendrites are too complex and computationally costly for 

large-network simulations. 

c. SNNs and neuromorphic studies generally prefer simple, “point-neuron” models because they are more 

efficient, mathematically tractable, and easier to work with. 

d. Many recent findings of dendritic research have not yet found their way into other fields beyond 

Neuroscience. 

Although we cannot do much about point a, in our manuscript, we tried to approach points b-c by: 

I. Presenting the idea of the “extended point neuron” model that requires only a handful of compartments 

and event-driven mechanisms to simulate many essential dendritic functions. 

II. Highlighting the advantages of reduced compartmental models through carefully designed experiments. 

III. Summarizing significant findings from decades of dendritic research throughout the manuscript, using 

simple language while having non-expert readers in mind. 

B. Dendrify does not aim to “compete” with or substitute other simulators 

Dendrify is not a dedicated simulator per se. It is a tool created to perform a specific task; to facilitate the 

development of SNNs that efficiently simulate essential dendritic mechanisms. While it is compatible with the Brian 

2 simulator, it could easily have been based on other simulators. However, the combination of Brian 2 and Dendrify 

is currently, to our knowledge, the only software solution that combines the following advantages: 

- Model definitions and the computational experiment script are written in the same language. This reduces 

the chance for error and eliminates the need to learn different languages just to run some simulations. It 

makes computational modeling more accessible for non-experts as well. 

- Models are not black boxes; the differential equations are written as Python strings and parameters are 

Brian 2 units.  

- Inexperienced users benefit from our standardized approach for describing models, while advanced users 

benefit from Brian’s flexibility that allows the definition of arbitrary models. 

- Dendritic spiking can be implemented without using the HH equations, using only event-driven 

mechanisms. This results in models that are more efficient, more tractable and easier to work with. 

- Dendrify and Brian run on all operating systems (in numpy mode) and their installation requires only a 

single line of code. 

- Brian offers numerous options for optimization such as C++ generation and GPU acceleration through 

Brian2Genn and Brian2CUDA. 

- Our approach is reasonably fast, offering great explanatory power. 

Having said that, in response to the specific comment, we have done the following: 

1. Made small changes throughout the manuscript to highlight the positioning of our work with respect to 

other tools/approaches. 

2. Added 2 paragraphs in the Discussion (Pages: 29-30, Lines: 403-422) that refers to other simulators and 

points out the differences in their approach vs. ours  



3. Directly compared our approach to the SpatialNeuron class of Brian 2 (see comment below). We also added 

an entire section in the supplementary material (see: Figures S8-S17 | Simulation accuracy and numerical 

stability analysis) 

B) The solution to the cable equation 

Dendrify collects a set of equations from the currents between compartments and the state variables of neurons 

and synapses. While this is fine, using explicit methods like forward Euler is _not_. The equation of the cable is stiff 

and must be solved via implicit methods like backward Euler. Tools like NEURON and Arbor, but also the 

SpatialNeuron of Brian2 do it correctly. This is a major problem and needs to be corrected. I would propose to 

eliminate your manual implementation and base it on Brian2’s SpatialNeuron. 

Please see Mascagni, Michael V., and Arthur S. Sherman. “Numerical Methods for Neuronal Modeling.” Methods in 

Neuronal Modeling 2 (1998). https://www.cs.fsu.edu/~mascagni/papers/RCEV1996_1.pdf 

I’ve put together an example demonstrating the problem. 

We thank the reviewer for this excellent remark. Empirically we have seen that using explicit methods is “good 

+34:-.B ,47 24*+18 </9. ' ;+7= 82'11 3:2(+7 4, )425'792+398 '3* 8.479 8/2:1'9/43 9/2+ 89+58 C*9 O F@G 28D@

Notably, Brian 1 natively supports building networks of reduced compartmental neurons, although this feature was 

dropped in Brian 2. Additionally, our equation-based approach was based on Brian’s guidelines: 

“Brian 1 offered support for simple multi-compartmental models in the compartments module. This module allowed 

you to combine the equations for several compartments into a single Equations object. This is only a suitable solution 

for simple morphologies (e.g. “ball-and-stick” models) but has the advantage over using SpatialNeuron that you can 

have several of such neurons in a NeuronGroup. If you already have a definition of a model using Brian 1’s 

compartments module, then you can simply print out the equations and use them directly in Brian 2.” 

However, we should have made Dendrify’s limitations (in its current version) clearer to its users and informed them 

about possible pitfalls related to the problem explained by the reviewer. To address this comment, we took the 

following actions: 

Action 1: We contacted the Brian team to find out if SpatialNeuron can be used as it is for simulating networks 

of multi-compartmental neurons. Their official response (by Marcel Stimberg, co-creator of Brian) was that: “Using 

SpatialNeuron is not feasible in your case, since it cannot be used to make networks (there is work in progress to 

make this possible, but don’t expect the feature to land in 2022).” 

Conclusion 1: Currently, Brian 2 does not natively support creating neuronal networks using SpatialNeuron objects. 

Action 2: We explored the option of basing Dendrify on SpatialNeuron. Although Brian’s SpatialNeuron is neither 

designed nor optimized for network simulations, we could theoretically base Dendrify on it by creating a wrapper 

“Network” class that uses SpatialNeuron objects at its core. However, this approach would be highly problematic 

for the reasons we analyze below. Notably, as explained by Marcel Stimberg in a recent CNS tutorial (2:04:00 of this 

video), Brian simulations run significantly faster and more efficiently when the model code is written in a way that 

minimizes the usage of Brian objects (NeuronGroups, Synapses, Monitors etc). 

Basing our approach on SpatialNeuron would come with the following shortcomings: 



a. Every single node in a network of compartmental neurons should be an additional SpatialNeuron object 

(i.e., 10n neurons = 10n SpatialNeuron objects). Interestingly, under the hood, a SpatialNeuron is, in fact, a 

NeuronGroup itself. With Dendrify, a single NeuronGroup object is created for every different neuronal 

population regardless of its size (i.e., a homogenous population of 10n neurons = 1 NeuronGroup object). 

b. Since every network node would be an independent NeuronGroup, every synapse should be an additional 

Synapse object due to how synapses are implemented in Brian (i.e., 10n synapses = 10n Synapse objects). 

With Dendrify, each synaptic pathway requires a single Synapse object regardless of the total number of 

synapses (i.e., one synaptic pathway that results in 10n synapses = 1 Synapse object). 

c. To record a variable of interest during a simulation (e.g., the voltage of a single compartment or the somatic 

spike times), one would need to include an extra Monitor object per compartment per neuron. To 

understand this problem, please consider the following example: Let us assume a Network consisting of 

10000, 3-compartmental neurons and that for a given experiment, we wish to record all compartment 

voltages and the somatic spike times. For a SpatialNeuron-based approach, this experiment would require 

30000 voltage Monitors and 10000 spike Monitors. With Dendrify, we can collect the same data using only 

two monitor objects. 

To test how some of the abovementioned implementation differences affect real-world performance, we 

performed a simple benchmarking test, the details of which are shown below. 

Benchmark details 

Model: 

- 4-compartmental model (3 passive dendrites + leaky I&F somatic unit) 

- Input: A square current pulse (1000 ms long) injected at the soma

Simulation details: 

- Total simulated time: 1250 ms 

- Time step (dt) = 0.1 ms 

- Integration method: Forward Euler 

- A SpikeMonitor was also used to record somatic spikes

System: 

- Ubuntu 22.04.1 laptop 

- i7-9750H CPU 

- 16 GB of RAM

Setup: 

- Jupyter notebook (%%timeit module) 

- Run Brian in “numpy” mode 

- Measured model build + runtime (mean of 10 runs) 

Results (mean execution time ± std, n=10 runs): 

- 1 x Spatial Neuron: 2.18 s ± 23.9 ms

- 3 x Spatial Neurons: 5.83 s ± 101 ms

- 1 x Dendrify Neuron: 0.985 s ± 16.5 ms

- 6000 x Dendrify Neurons: 2.18 s ± 23 ms

Even in this trivial example, we observe that Dendrify has significant performance benefits over a SpatialNeuron-

based approach. Simulating a single SpatialNeuron required as much time as a group of 6000 neurons made with 

Dendrify. Furthermore, adding only 2 SpatialNeurons resulted in almost three times slower simulation time. It is 



evident that our equation-based approach minimizes the need for creating Brian objects, thus seeming optimal in 

terms of performance and allowing for a good population size scaling. Notably, we expect the performance gap 

between the two approaches to be even more apparent if synapses and more monitors are included in the 

comparison.  

Next, we examined how replacing forward Euler with more sophisticated and stable (explicit) integration methods 

available in Brian 2 would impact performance. The results are shown below: 

Exponential Euler (mean execution time ± std, n=10 runs): 

- 1 x Spatial Neuron: 2.14 s ± 27.2 ms

- 3 x Spatial Neurons: 5.91 s ± 195 ms

- 1 x Dendrify Neuron: 1.06 s ± 8.42 ms

- 6000 x Dendrify Neurons: 2.34 s ± 62.6 ms

Heun’s method (mean execution time ± std, n=10 runs): 

- 1 x Spatial Neuron: 2.19 s ± 39 ms

- 3 x Spatial Neurons: 5.98 s ± 68.8 ms

- 1 x Dendrify Neuron: 1.01 s ± 55.2 ms

- 6000 x Dendrify Neurons: 2.28 s ± 64.2 ms

Second Order Runge-Kutta (mean execution time ± std, n=10 runs): 

- 1 x Spatial Neuron: 2.2 s ± 27.3 ms2 

- 3 x Spatial Neurons: 5.94 s ± 111 ms

- 1 x Dendrify Neuron: 1.5 s ± 12 ms

- 6000 x Dendrify Neurons: 4.27 s ± 75 ms

Fourth Order Runge-Kutta (mean execution time ± std, n=10 runs): 

- 1 x Spatial Neuron: 2.13 s ± 148 ms

- 3 x Spatial Neurons: 6.01 s ± 311 ms

- 1 x Dendrify Neuron: 2.38 s ± 31.7 ms per

- 6000 x Dendrify Neurons: 8.65 s ± 500 ms

Comment: even when using more computationally costly integration methods, Dendrify seems to be a more viable 

solution than a SpatialNeuron-based approach for building large-scale networks. This occurs because simulation 

time in the case of Dendrify does not increase linearly with the number of neurons. 

Apart from the net simulation time, another important aspect of neural network simulations is the amount of 

memory required to perform an experiment. Less memory-hungry models allow researchers to scale their 

network’s size more easily or increase its complexity and simulation time. For this reason, we also tested the 

memory cost of a SpatialNeuron vs. an equation-based approach. The model used here is the same as the one 

described previously. For the memory profiling test, we used the following Python package: memory-profiler · PyPI. 

Results summary (memory consumption for creating and running the model): 

- 1 x SpatialNeuron: 13.48 MiB or 14.134804 MB CGJK@HL %/" P GKM@LK %/"D

- 1 x Dendrify neuron: 3.09 MiB or 3.2401 MB CGJK@IG %/" PGJM@JF %/"D

- 19000 x Dendrify neurons: 11.98 MiB or 12.56194 MB CGJK@KK %/" P GKL@KI %/"D



Detailed results: 

1 x SpatialNeuron

1 x Dendrify neuron 

19000 x Dendrify neurons 

For this specific test, the amount of memory needed to create and simulate a single SpatialNeuron is more than the 

equivalent memory cost of a pool of 19000 “Dendrify neurons”. Of course, we do not interpret this result as 

Dendrify being 19000 times more efficient than SpatialNeuron. In contrast to execution times, memory needs are 

harder to gauge accurately and sometimes are irrelevant to real-world performance; if more memory results in 

better performance or increased accuracy, then high memory need is not necessarily bad. However, these results 

point towards our equation-based approach being significantly more efficient than a SpatialNeuron-based 

approach. 



Conclusion 2: Based on the implementation constraints explained above and the benchmarks and memory test 

results, we conclude that using SpatialNeuron for network simulations in Brian 2 is currently a suboptimal and 

inefficient solution. Dendrify is more compatible with Brian’s design philosophy, offering significant performance 

advantages than the built-in SpatialNeuron when running simulations of reduced compartmental neurons at a large 

scale. 

Action 3: We tested if using explicit integration methods results in simulation errors and numerical instabilities. 

Biophysically and morphologically detailed models are very stiff and require complex implicit methods. However, 

with Dendrify, we aim to extend the “point-neuron” idea by adding a few compartments that account for specific 

regions in the dendritic morphology. Thus, our approach typically results in reduced compartmental neuron models 

that share these characteristics: 

1. They have small compartments (usually around 3-5). 
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3. Model compartments are not divided into segments; thus, the number of segments equals the number of 

compartments. 

As explained in “Numerical Methods for Neuronal Modeling.” Methods in Neuronal Modeling 2 (1998) attached by 

the reviewer: “The stiffness gets extremely large as we increase the number of compartments in our cable model. 

In fact, it grows as the square of the number of compartments in our models. Thus we see that compartmental 

models can be very stiff when there is little dissipation via the membrane conductance. Paradoxically this stiffness 

increases as we use smaller and smaller compartments to better resolve spatial details.” 

Since our approach utilizes neurons with a small number of big compartments, we expect that explicit approaches 

and a reasonable simulation time step would not cause any substantial numerical issues. To test this hypothesis, 

we directly compared Dendrify against SpatialNeuron (which utilizes an implicit method) using the same 4-

compartment model as before and a challenging simulation protocol. Notably, the comparison between the two 

approaches was also suggested by the Brian team. Their prediction was that: “... for small dt, the results are very 

similar, but at some point, the dendrify simulation will do something completely wrong (or generate NaN or 

something like that), while SpatialNeuron will become inaccurate in a smooth way.”

Test details: 

- A very high frequency (300 Hz) Poisson input is provided at the most distal dendritic compartment. 

- This input generates synaptic currents of fast kinetics (instant rise and 2 ms decay time constant). 

- The synaptic weight is large enough to cause robust somatic activation (~8 Hz). Typically, inputs to distal 

branches of pyramidal neurons fail to do that. 

- Simulation time step: Ranged from 0.025 ms to 0.425 ms (with step 0.025 ms). 

- We tested all integration methods that are available in Brian 2. 

Results summary: 
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identical to a SpatialNeuron, regardless of the integration method used. 

2. When dt > 0.1 ms, we observe deviations between Dendrify and SpatialNeuron that affect the somatic spike 

times and less the voltage traces. 

3. When dt = 0.425 ms, both approaches become unstable and fail. We also confirm the Brian team’s 

prediction that “the dendrify simulation will do something completely wrong (or generate NaN or something 

like that), while SpatialNeuron will become inaccurate in a smooth way”. However, this is true only for the 



forward Euler method; all the other integration methods are numerically stable and comparable to a 

SpatialNeuron. 

Important notes 

1. According to Brian’s documentation, an error can be introduced during a simulation because spike times 

are constrained to a grid and cannot occur at arbitrary times. “Note that the inaccuracy introduced by the 

spike time approximation is of order O(dt), so the total accuracy of the simulation is of order O(dt) per time 

step. This means that regardless of the integration method, increasing the dt also increases the error linked 

to how spike times are calculated. It is essential to keep this in mind when comparing Dendrify and 

SpatialNeuron, especially when the dt is high. 

2. For this comparison we run hundreds of different combinations of integration method, dt and simulation 

time. For practical reasons, we provide below only the data for dt " {0.05, 0.1, 0.15} and method " {Forward 

Euler, Exponential Euler, 2nd order Runge-Kutta, 4th order Runge-Kutta, Heun’s method}. 

3. We color coded the different simulation time steps (yellow = 0.05 ms, green = 0.1 ms, blue = 0.15 ms) 

dt = 0.05 ms 





dt = 0.1 ms 



dt = 0.15 ms 
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numerically stable and has almost identical results with Brian’s SpatialNeuron which utilizes an implicit integration 

method for solving model equations. 

Action 4: We updated the manuscript’s Discussion (Pages: 30-31, Lines: 437-448) and Dendrify’s documentation to 

highlight the limitations of our approach. We also added some of the abovementioned tests to the Supplement 

(Figures S8-S17 | Simulation accuracy and numerical stability analysis) for the interested reader.  

C) Software best practices 

The Python code looks reasonable in form and style. However, you need to implement the following: 

* continuous integration and tests (also against upstream Brian2) 

* continuous delivery, e.g. provide the latest release on PyPI 

* linting and style checking 

* published documentation, e.g. readthedocs.org 

You and your users want to use the tool for many years. But without the points above, it will degrade. Especially the 

checks against upstream Brian2 are vital. 

We thank the reviewer for this vital point! We have taken the following actions to comply with their suggestions. 

Actions taken: 

1. We debugged, improved, and formatted (using autopep8) the entire Dendrify code. 

2. We documented every public class, property, method, or parameter. We also included type hints and links 

to third-party documentation when necessary. 

3. We created a new, official GitHub repository:  https://github.com/Poirazi-Lab/dendrify

4. We also created a new documentation website (using sphinx): https://dendrify.readthedocs.io/en/latest/ . 

This website is automatically updated every time we push commits to the main branch. New content such 

as code examples and tutorials, will be added soon. All Jupyter notebooks that reproduce the manuscript’s 

figures have been transferred there as well. 

5. Dendrify can now be easily installed through PyPI: https://pypi.org/project/dendrify/ . The latest package 

version is automatically uploaded with every new GitHub release. 

Regarding continuous testing, we are working on it, but we have not completed it yet. However, achieving good 

test coverage will be one of our top priorities in the immediate future. Currently, Dendrify works perfectly with the 

latest Brian 2 version. 

D) Performance 

Please show the performance of your implementation. How long does it take to simulate one neuron, 10, 1000? 

What about networks of neurons? 

We thank the reviewer for another great suggestion. First, as the reviewer is certainly aware of, simulation 

performance depends on multiple factors, including the selected Brian operation mode, model complexity, and 



hardware specifications. Additionally, model optimization usually occurs at the late stages of development, if 

necessary, and also depends on a user’s specific needs. It is also worth mentioning that there are currently two 

different approaches that make Brian 2 run on Nvidia GPUs, namely Brian2GeNN and Brian2CUDA, with the latter 

also being compatible with Dendrify (verified by its developers, but we have not tested it yet). Thus, finding the 

single most representative use case to test the performance of our implementation is not so straightforward. 

Having said that, we designed a series of simple benchmarks to test Dendrify under some realistic conditions and 

have added a new section (Scalability Analysis, Pages: 24-27, Lines: 322-357) and a new figure (figure 6, also 

included below) in the manuscript that exemplifies our findings.  

Benchmark details 

Neuron model: 

- 4 compartments (3 dendrites + leaky IF soma) 

- External input -> Poisson generators 

- Synapses with AMPA-like kinetics 

Simulation details: 

- Simulated time -> 1 second 

- dt = 0.1 ms 

- Integration method: Forward Euler 

System details: 

- Ubuntu 22.04.1 laptop 

- i7-9750H CPU 

- 16 GB RAM 

Setup: 

- Jupyter notebook (%%timeit module) 

- Run Brian in “numpy” mode 

- Measured model build + runtime (mean of 10 runs) 

Tests cases: 

1. A group of N neurons with passive dendrites, 2 N generators, and no interneuronal connections

2. A group of N neurons with active dendrites, 2 N generators, and no interneuronal connections

3. A group of N neurons with active dendrites, 2 N generators with recurrent connections (~50 

synapses/neuron) 



Figure 6 | Estimating Dendrify's performance when increasing network complexity & size. a) Schematic 

illustration of the three model cases used for the benchmark tests. In all cases, the neuronal model was an adapted 

version of the 4-compartment model shown in Fig. 2a. Note that the number of Poisson input generators scaled 

with N. Left: a group of N neurons with passive dendrites and no recurrent synapses. Middle: a group of N neurons 

with active dendrites (i.e. furnished with Na+ dspikes) and no recurrent synapses. Right: a recurrent network of N 

neurons with active dendrites and ~50 synapses/neuron. b) The benchmark results, showing how the combined 

build and simulation time scales when increasing N. The times plotted here represent the average of 10 runs. 

Simulations were performed on a laptop (blue, orange, green) or an ipad (black). For more information, refer to 

table S4. All benchmark codes and the raw results are available on GitHub. 



Minor points 

1) You stress that Brian2 has seamless compatibility with Dendrify which is a bit funny as Dendrify is based on Brian2 

and not the other way around. 

The reviewer is right; we have removed any references to “seamless compatibility” in the text to prevent any 

misunderstanding. 

2) All examples work with single neurons although you often, especially in the introduction, talk about networks. 

Please add at least one example of a network of multi-compartment neurons.

This is a valid point. In response to this comment, we have added a new figure (Figure 6) in the manuscript showing 

the performance of increasing numbers of neurons with passive and active dendrites stimulated with synaptic 

input. This figure consists of both isolated (groups) of neurons as well as interconnected (networks) of neurons.  

3) “The attenuation of currents traveling along the somatodendritic axis is an intrinsic property of biological neurons 

and is due to the morphology and cable properties of dendritic trees.”

You don’t really show currents traveling along the axis as you have only a handful of compartments.

Thank you. This comment was not referring to the toy model but rather to the signal attenuation seen in biological 

neurons. We have rephrased the sentence that refers to the model to clarify this (Page: 7, Lines: 116-117). 

4) neuromorphic implementations 

Please cite more multi-compartment neuromorphic implementations, e.g. “Emulating Dendritic Computing 

Paradigms on Analog Neuromorphic Hardware” Kaiser et al. https://doi.org/10.1016/j.neuroscience.2021.08.013 

Thank you for the recommendation. This is indeed a very interesting study that we are familiar with and was an 

oversight that it was not included in the original manuscript. It is now added. 

Thanks, 

your reviewer 

Thank you!! 

Reviewer #2 

The authors introduce a python-package to facilitate the modeling of dendritic compartments in spiking networks. 

The objective is an easy to use and computationally efficient framework which captures dendritic features currently 

omitted in the simulation packages. 

On the basis of developments in neurophysiology, computational neuroscience, and recent results in the field of 

machine learning, they outline how accounting for dendritic phenomenon is necessary to facilitate advancements 

in computational neuroscience and neuromorphic computing. 

The authors set up four model scenarios to exemplify dendritic behaviour. 

* Coupling of passive dendrites 

* Compartmental model with active dendrites 

* A compartmental model fit to a CA1 pyramidal cell. 

* Coincidence detection in populations of CA1 model neurons. 



The code is very well documented and accessible at their github repository. This will make it very easy to use for 

anyone with some programming experience. 

Lastly, the authors example a practical guide of developing models with their package. 

Developing joint, open source software is extremely important to facilitate research progress and to validate results. 

Here, this package fills an important gap. 

We did check the code and did not find technical problems. 

The manuscript is well written and well understandable, serving as a good guide for starters. 

We are grateful to the reviewer for their positive feedback and appreciation of our work! 

Comments 

The authors mention several times the computational capabilities, and the compatibility of dendrify with brian 2, 

yet are not clearly mentioning any of the specifics. 

Their github actually makes clear that their implementation is fully build on top of the existing brian 2 frameworks. 

Which is appropriate as everything can be reinterpreted as more complicated neuron models. This should be clarified 

in the manuscript as well. 

We thank the reviewer for this important comment. We have now clarified in various places in the text that Dendrify 

builds on top of Brian 2. We have also added an extensive set of comparisons in the Discussion (Pages: 29-30, Lines: 

403-422) that refers to other simulators and points out the differences in their approach vs. ours. We also directly 

compared our approach to the SpatialNeuron class of Brian 2 (see: Figures S8-S17 | Simulation accuracy and 

numerical stability analysis). For more advantages of Dendrify over SpatialNeuron, please refer to our response to 

Reviewer 1, comment B. 

On a technical note, the formatting of the manuscript make any mathematical derivations hard to read, and we 

hope that the next version improves here. 

We thank the reviewer for this comment. We are unsure as to exactly what the reviewer refers to, however we 

have revised the derivation of the coupling conductances and improved formatting in various Method sections 

(Lines: 527-530, 535-539, 548-549, 594-597). If you have any specific recommendations on the notation or 

formatting of the equations, please feel free to share them with us. All remaining equations are taken from the 

following books1,2.  
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

Dear authors! 

Thanks for revising the manuscript. You've covered all my points. Best, your reviewer. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my points. 
It would be great if already in the abstract it would be clearly mentioned that their toolbox is fully built 
on Brian 2.


