Supplementary Information for

Fluorescent Half-Sandwich Iridium Picolinamidate Complexes for In-Cell Visualization

Sohini Bose, Hieu D. Nguyen, Anh H. Ngo, Loi H. Do*

Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas, 77004, United States

Email: loido@uh.edu

TABLE OF CONTENT	<u> </u>	Page(s)
General Procedures		S 3
Physical Methods		S 3
Synthesis and Characte	erization	
Scheme S1	Synthesis of Ir1b, Ir2b, and Ir3b	S4
Experimental Details		S5-S13
Figure S1	Absorption and emission spectra of iridium complexes	S14
Table S1	Transfer hydrogenation reactions	S15
Biological Studies		
Cytotoxicity Studies		S16
Iridium Accumulation	n in Live Cells	S17
Cellular Localization	Studies	S18
Table S2	Cytotoxicity and uptake of iridium complexes	S19
Figure S2	Microscope images of Ir complexes and Mito-ID	S20
Figure S3	Microscope images of Ir complexes and Hoechst 3342	S21
Figure S4	Microscope images of Ir complexes and Lyso-ID	S22
Table S3	Pearson's correlation coefficient data	S23
NMR Spectra		
Figure S5	¹ H NMR spectrum of 1	S24
Figure S6	¹³ C NMR spectrum of 1	S25
Figure S7	¹ H NMR spectrum of 2	S26
Figure S8	13 C NMR spectrum of 2	S27
Figure S9	¹⁹ F NMR spectrum of 2	S28
Figure S10	¹ H NMR spectrum of 3	S29
Figure S11	13 C NMR spectrum of 3	S 30
Figure S12	¹ H NMR spectrum of 4a	S31
Figure S13	¹³ C NMR spectrum of 4a	S32
Figure S14	¹ H NMR spectrum of 4b	S33
Figure S15	¹³ C NMR spectrum of 4b	S34
Figure S16	¹⁹ F NMR spectrum of 4b	S35
Figure S17	¹ H NMR spectrum of 4c	S36
Figure S18	¹³ C NMR spectrum of 4c	S37
Figure S19	¹ H NMR spectrum of 5a	S 38

Figure S20	13 C NMR spectrum of 5a	S39
Figure S21	¹⁹ F NMR spectrum of 5a	S40
Figure S22	¹¹ B NMR spectrum of 5a	S 41
Figure S23	¹ H NMR spectrum of 5b	S42
Figure S24	¹³ C NMR spectrum of 5b	S 43
Figure S25	¹⁹ F NMR spectrum of 5b	S 44
Figure S26	¹¹ B NMR spectrum of 5b	S45
Figure S27	¹ H NMR spectrum of 5 c	S46
Figure S28	¹³ C NMR spectrum of 5 c	S47
Figure S29	¹⁹ F NMR spectrum of 5c	S 48
Figure S30	¹¹ B NMR spectrum of 5c	S49
Figure S31	¹ H NMR spectrum of Ir1b	S 50
Figure S32	¹⁹ F NMR spectrum of Ir1b	S 51
Figure S33	¹¹ B NMR spectrum of Ir1b	S 52
Figure S34	¹ H NMR spectrum of Ir2b	S 53
Figure S35	¹³ C NMR spectrum of Ir2b	S 54
Figure S36	¹⁹ F NMR spectrum of Ir2b	S55
Figure S37	¹¹ B NMR spectrum of Ir2b	S56
Figure S38	¹ H NMR spectrum of Ir3b	S 57
Figure S39	¹³ C NMR spectrum of Ir3b	S58
Figure S40	¹⁹ F NMR spectrum of Ir3b	S59
Figure S41	¹¹ B NMR spectrum of Ir3b	S60
Fluorescence Studi	es	
Evaluating the E	Effects of Biomolecules on Fluorescence	S 61
Figure S42	Emission spectra of Ir3b + biomolecules	S61
Mass Spectrometry	v Data	
Figure S43	Mass spectra of Ir1b, Ir2b, and Ir3b	S62
References		S63

General Procedures

Commercial reagents were used as received without further purification. All air- and watersensitive manipulations were performed using standard Schlenk techniques or under a nitrogen atmosphere using a glovebox. Anhydrous solvents were obtained from an Innovative Technology solvent drying system saturated with Argon. Iridium complexes **Ir1a**, **Ir2a**, and **Ir3a** were prepared as previously described.¹ NIH-3T3 mouse fibroblast cells was obtained from ATCC.

Physical Methods

NMR spectra were acquired using JEOL spectrometers (ECA-400, 500, and 600) at room temperature and referenced using residual solvent peaks. A Horiba Fluoromax 4 fluorometer was used to record the emission spectra. Gas chromatography mass spectrometry was performed using an Agilent 7890 GC/5977A MSD instrument equipped with an HP-5MS capillary column. A Varian 810 instrument was used to acquire inductively coupled plasma-mass spectrometry (ICP–MS) analyses. All biological cell images were obtained using Olympus IX-83 inverted microscope equipped with a 100× oil objective.

Synthesis and Characterization

A) Synthesis of Compound 3

B) Synthesis of Ligands 4a-c

- C) Synthesis of Ligand **4d** 4c $\xrightarrow{\text{NHMe}_2 \cdot \text{nH}_2\text{O}}_{100 \text{ °C}, 2 \text{ d}}$ $\xrightarrow{\text{N}}_{\text{N}}$ $\xrightarrow{\text{HN}}_{\text{N}}$ $\xrightarrow{\text{N}}_{\text{N}}$ $\xrightarrow{\text{N$
- D) Synthesis of Complexes Ir1b-Ir3b

Scheme S1. Synthetic routes for the preparation of complexes Ir1b, Ir2b, and Ir3b.

Preparation of Compound 1:

To a 100 mL round bottom flask, solid phenylboronic acid (750 mg, 5 mmol, 1 equiv.) and solid 2,2-dimethyl-1,3-propanediol (521 mg, 5 mmol, 1 equiv.) was dissolved in 20 mL of dry toluene. The reaction was refluxed for 3 h. After cooling to room temperature, the solvent was then removed by rotary evaporation. Quantitative amount of the crude products was collected as a white solid and was used for the next step without any further purification. ¹H NMR (500 MHz, CDCl₃): $\delta = 10.03$ (s, 2H), 7.95 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 9.6 Hz, 2H), 3.78 (s, 4H), 1.02 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 192.91$, 137.86, 134.42, 128.73, 125.39, 72.48, 31.96, 21.93 ppm. GC-MS: calc. for C₁₂H₁₅BO₃ [M]⁺ = 218.0, found 218.1. These data match those reported in the literature.²

Preparation of Compound 2:

To a 250 mL round bottom flask, compound **1** (654 mg, 3 mmol, 1 equiv.) was dissolved in 100 mL of dry DCM. The reaction mixture was degassed under N₂ for 20 min. 4 drops of TFA were added to the mixture, followed by addition of 2,4-dimethylpyrrole (640 μ L, 6.15 mmol, 2.05 equiv.) to the solution via a Luer-lock syringe. The reaction mixture was stirred for 12 h under N₂ in an

ice bath to obtain a red-colored solution. Solid DDQ (1396 mg, 6.15 mmol, 2.05 equiv.) was then added to the solution, giving a dark brown slurry. The mixture was stirred for another 30 min, followed by the addition of triethylamine (6 mL) and BF₃.Et₂O (6 mL) in sequence, and the reaction was stirred for additional 1 h. Water was added to quench the reaction after completion. The mixture was then filtered through a basic alumina plug to remove a dark brown solid using DCM as eluent. Once collected, the brown solute was then concentrated in vacuo until ~ 50 mL of solvent was left. After being washed with an excess amount of water, the organic phase was combined, separated from the aqueous layer, dried over Na₂SO₄, filtered, and evaporated to dryness to give a brown-colored oil. The crude product was purified by silica gel column chromatography using hexanes/DCM as the eluent (10:1 to 1:1, v/v), to yield a red solid (385 mg, 30%). ¹H NMR (500 MHz, CDCl₃): δ = 7.89 (d, J = 7.5 Hz, 2H), 7.26 (d, J = 6.9 Hz, 2H), 5.95 (s, 2H), 3.79 (s, 4H), 2.54 (s, 6H), 1.35 (s, 6H), 1.05 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 155.44, 143.39, 142.13, 137.31, 134.59, 131.39, 127.24, 121.25, 72.52, 46.94, 32.05, 22.09, 14.56, 8.76 ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -150.76 ppm. CI–MS: calc. for C₂₄H₂₈B₂N₂O₂F₂ [M]⁺ = 436.2305, found 436.2311. These data match those reported in the literature.³

Preparation of Compound 3:

In a 100 mL pressurized tube, solid 4-chloropicolinic acid (945 mg, 6 mmol) and 10 mL of dimethylamine (40% in water) were combined. The tube was then sealed with a PTFE plug equipped with an O-ring and was stirred at 150 °C for 2 d. After cooling to room temperature, the solvent was removed in vacuo to obtain an orange-colored liquid as the crude product. For purification, the mixture was diluted with Et₂O and cooled to -20 °C overnight to precipitate out

the desired product. The precipitated solid was isolated by filtration, rinsed with cold DCM:MeOH (10:1, v/v) until it was colorless, and then dried under vacuum to yield the final product as an off-white solid (810 mg, 91%). ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 9.38$ (s, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.21 (s, 1H), 6.93 (s, 1H), 3.17 (s, 6H) ppm. ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 161.04$, 157.76, 146.48, 138.64, 107.00, 105.71, 34.00 ppm. ESI–MS(+): calc. for C₈H₁₀N₂O₂ [M+H]⁺ = 167.0815, found 167.0816. These data match those reported in the literature.⁴

General Procedure for the Synthesis of 4a, 4b, and 4c: In a 50 mL round bottom flask, solid picolinic acid (or its derivative) (1.0 equiv.), solid EDC \cdot HCl (1.5 equiv.), solid DMAP (1.5 equiv.), solid HOBt (1.5 equiv.) were combined in 10 mL of anhydrous DMF under N₂. The reaction flask was stirred at RT for 15 min, giving a brown-colored solution. Solid 4-bromoaniline (1 equiv.) was added to the flask, and the reaction mixture was stirred at 50 °C under N₂ for 24 h. When the reaction was complete, excess amounts of water were added to the mixture, followed by the addition of ethyl acetate. The combined organic layer was separated, dried over Na₂SO₄, filtered, and removed in vacuo. The crude mixture was purified by silica gel chromatography using hexanes: ethyl acetate as the eluent.

Compound 4a:

Purified using 20% ethyl acetate in hexanes as eluent, 2 mmol scale, white solid, 240 mg, 43%. ¹H NMR (500 MHz, CDCl₃): $\delta = 10.03$ (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 8.27 (d, J = 7.7 Hz, 1H), 7.89 (t, J = 7.7 Hz, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.48 (t, J = 6.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 162.12$, 149.56, 148.10, 137.88, 136.95, 132.14, 126.75, 122.55, 121.31, 116.95

ppm. GC-MS: calc. for C₁₂H₉BrN₂O $[M]^+$ = 275.9, found 276.0. MP: 144.2 – 145.8 °C. These data match those reported in the literature.⁵

Compound 4b:

Purified using 10% ethyl acetate in hexanes as eluent, 2 mmol scale, fluffy white solid, 400 mg, 58%. ¹H NMR (500 MHz, CDCl₃): $\delta = 9.92$ (s, 1H), 8.80 (d, J = 5.0 Hz, 1H), 8.51 (s, 1H), 7.72 (d, J = 4.9 Hz, 1H), 7.67 (d, J = 7.0 Hz, 2H), 7.49 (d, J = 6.7 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 160.67$, 151.07, 149.25, 140.62, 140.34, 136.48, 132.28, 123.61, 122.38, 121.41, 118.68, 118.65, 117.50 ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -64.67$ ppm. GC-MS: calc. for C₁₃H₈BrF₃N₂O [M]⁺ = 343.9, found 344.0. IR: $\nu = 497$, 614, 667, 820, 869, 1131, 1169, 1335, 1525, 1686, 3342 cm⁻¹. MP: 141.7 – 142.6 °C.

Compound 4c:

Purified using 40% ethyl acetate in hexanes as eluent, 2 mmol scale, off-white solid, 387 mg, 61%. ¹H NMR (400 MHz, CDCl₃): $\delta = 10.18$ (s, 1H), 8.16 (d, J = 5.9 Hz, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 2.8 Hz, 1H), 7.45 (d, J = 8.8 Hz, 2H), 6.56 (dd, J = 5.9, 2.8 Hz, 1H), 3.06 (s, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.13$, 155.48, 149.59, 148.01, 137.22, 132.04, 121.22, 116.59, 108.45, 105.30, 39.45 ppm. GC-MS: calc. for C₁₄H₁₄BrN₃O [M]⁺ = 319.0, found 319.0. IR: v =507, 703, 713, 716, 814, 824, 834, 995, 1070, 1225, 1390, 1514, 1676, 3300 cm⁻¹. MP: 222.5 – 224.8 °C. General Procedure for the Synthesis of 5a, 5b, and 5c: In a 50 mL round bottom flask, compound 2 (1.1 equiv.), compound 4 (1 equiv.), Cs_2CO_3 (2 equiv.) were combined in 10 mL of dry THF/PhMe/EtOH (2:2:1). The solvent was degassed under N₂ for at least 30 min before use. The reaction mixture was stirred under N₂ for 10 min. Solutions containing Pd(OAc)₂ (0.2 equiv.) and PPh₃ (0.6 equiv.) were prepared in two separate 20 mL screw capped vials using degassed THF/PhMe/EtOH (2:2:1, 2 mL each). These two solutions were sonicated for 5 min and then added into the reaction flask via syringe. The reaction mixture was stirred continuously at 80 °C under N₂ for 2 d to obtain a dark red colored solution. After the reaction was complete, the solvent was removed in vacuo, and the crude product was dissolved into DCM and washed with water. The organic layer was separated, dried over Na₂SO₄, filtered, evaporated to dryness, and purified by silica gel column chromatography, using a hexanes/DCM gradient mixture as eluent, to obtain the final product as red solid.

Compound 5a:

Purified using hexanes/DCM (2:3, v/v) as eluent, 0.18 mmol scale, red solid, 35 mg, 37%. ¹H NMR (500 MHz, CDCl₃): $\delta = 10.14$ (s, 1H), 8.63 (d, J = 5 Hz, 1H), 8.32 (d, J = 5 Hz, 1H), 7.95-7.91 (m, 3H), 7.76-7.71 (m, 4H), 7.52-7.50 (m, 1H), 7.33 (d, J = 10 Hz, 2H), 5.99 (s, 2H), 2.56 (s, 6H), 1.45 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 162.16$, 155.56, 149.77, 148.11, 143.26, 141.56, 141.11, 137.89, 137.68, 135.89, 133.79, 131.56, 128.59, 127.74, 127.38, 126.70, 122.56, 121.32, 120.11, 14.72, 1.13 ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -146.12$ (m) ppm. ¹¹B NMR (160 MHz, CDCl₃): $\delta = -0.18$ (t, J = 33.1 Hz) ppm. ESI–MS(+): calc. for C₃₁H₂₇BF₂N4O [M+H]⁺ = 521.2324,

found 521.2246. IR: *v* = 415, 803, 813, 1017, 1261, 1507, 1538, 1688, 3319 cm⁻¹. MP: 289.3 – 291.7 °C (decomposed).

Compound 5b:

Purified using hexanes/Et₂O/DCM as eluent (gradient from 7:1:1 to 5:1:1, ν/ν), 0.18 mmol scale, red solid, 30 mg, 32%. ¹H NMR (600 MHz, CDCl₃): 10.02 (s, 1H), 8.83 (d, *J* = 6 Hz, 1H), 8.56 (s, 1H), 7.90 (d, *J* = 6 Hz, 2H), 7.75-7.72 (m, 5H), 7.34 (d, *J* = 6 Hz, 2H), 5.98 (s, 2H), 2.55 (s, 6H), 1.44 (s, 6H) ppm. ¹³C NMR (150 MHz, CDCl₃): 160.68, 155.59, 151.29, 149.21, 143.22, 141.55, 140.97, 137.19, 136.37, 133.93, 131.54, 128.64, 127.82, 127.40, 122.26, 121.33, 120.25, 118.67, 29.80, 14.70 ppm. ¹⁹F NMR (470 MHz, CDCl₃): -64.66 (s), -146.15 (m) ppm. ¹¹B NMR (160 MHz, CDCl₃): -0.17 (t, *J* = 33.1 Hz) ppm. ESI–MS(+): calc. for C₃₂H₂₆BF₅N₄O [M+H]⁺ = 589.2198, found 589.2210. IR: ν = 399, 666, 974, 1059, 1143, 1185, 1326, 1507, 1540, 1683, 3340 cm⁻¹. MP: 271.4 – 273.7 °C (decomposed).

Compound 5c:

Purified using hexanes/DCM/MeOH as eluent (gradient from 7:4:0 to 1:9:0.1, v/v), 0.18 mmol scale, 38 mg, red solid, 37%. ¹H NMR (500 MHz, CDCl₃): $\delta = 10.18$ (s, 1H), 8.20 (d, J = 5.9 Hz, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 2.8 Hz, 1H), 7.47 (d, J = 8.8 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.5 Hz, 2H), 6.60 (dd, J = 5.9, 2.7 Hz, 1H), 5.97 (s, 2H), 3.08 (s, 6H), 2.54

(s, 6H), 1.43 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 163.44$, 156.74, 155.55, 155.34, 149.51, 148.12, 143.30, 141.99, 136.98, 132.11, 131.93, 129.42, 126.96, 121.41, 121.23, 116.93, 116.24, 108.55, 105.51, 39.42, 14.68 ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -145.84$ (m) ppm. ¹¹B NMR (160 MHz, CDCl₃): $\delta = -0.17$ (t, J = 33.4 Hz) ppm. ESI–MS(+): calc. for C₃₃H₃₂BF₂N₅O [M+H]⁺ = 564.2746, found 564.2702. IR: $\nu = 411$, 473, 703, 762, 793, 968, 1059, 1151, 1182, 1258, 1302, 1435, 1504, 1522, 1585, 1608, 1610, 1661, 3268 cm⁻¹. MP: 213.1 – 215.0 °C.

General Procedure for the Synthesis of Ir1b, Ir2b, and Ir3b: In a 50 mL round bottom flask, 10 mL of dry DMF was purged with nitrogen for about 30 min. Solid $[IrCl_2(\mu-Cp^*)]_2$ (1.0 equiv.) and the corresponding picolinamide ligand (2.0 equiv.) were added and stirred for 15 min at 90 °C. The reaction mixture was then treated with ammonium hexafluorophosphate (4.7 equiv.) and stirred for an additional 22 h at 90 °C. After cooling to room temperature, the reaction mixture was diluted with 20 mL of dichloromethane and then washed with water (3×20 mL). The organic phase was separated, dried over Na₂SO₄, filtered, and then evaporated to dryness. The crude product was purified by silica gel column chromatography using hexanes:DCM as the eluent.

Complex Ir1b:

Purified using hexanes/DCM/MeOH as eluent (gradient from 7:3:0 to 1:9:0.1, v/v), 0.01 mmol scale, 5.2 mg, red solid, 59%. ¹H NMR (500 MHz, CDCl₃): $\delta = 8.59$ (d, J = 5 Hz, 1H), 8.17 (d, J = 5 Hz, 1H), 7.94 (t, J = 5 Hz, 1H), 7.79-7.74 (m, 4H), 7.62 (d, J = 10 Hz, 2H), 7.51 (t, J = 5 Hz, 1H), 7.31 (d, J = 10 Hz, 2H), 5.99 (s, 2H), 2.56 (s, 6H) 1.47-1.45 (m, 21H) ppm. ¹⁹F NMR (470

MHz, CDCl₃): $\delta = -146.16$ (m) ppm. ¹¹B NMR (160 MHz, CDCl₃): $\delta = -0.15$ ppm. ESI–MS(+): calc. for C₄₁H₄₁BF₂IrN₄O [M-Cl]⁺ = 847.2971, found 847.3002. IR: $v = 400, 419, 838, 975, 1154, 1193, 1305, 1364, 1467, 1509, 1540, 1587, 1620 \text{ cm}^{-1}$. MP: 300 °C (decomposed). λ_{max} (M⁻¹cm⁻¹, tBuOH/H₂O 1:4) = 267 (27,100), 360 (sh; 9,000), and 500 (31,800) nm. λ_{em} (tBuOH/H₂O 1:4) = 511 nm; $\Phi = 0.04$. *Note: A ¹³C NMR spectrum of Ir1b could not be obtained due to its poor solubility in typical NMR solvents*.

Complex Ir2b:

Purified using hexanes/DCM as eluent (gradient from 3:1 to 1:2, ν/ν), 0.01 mmol scale, 4.8 mg, dark red solid, 50%. ¹H NMR (500 MHz, CDCl₃): $\delta = 8.76$ (d, J = 5 Hz, 1H), 8.42 (s, 1H), 7.76-7.71 (m, 5H), 7.64 (d, J = 10 Hz, 2H), 7.32 (d, J = 10 Hz, 2H), 5.99 (s, 2H), 2.56 (s, 6H), 1.47 (s, 21H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 167.71$, 157.39, 155.49, 150.74, 147.69, 143.32, 141.83, 141.67, 140.72, 140.44, 136.39, 133.54, 131.60, 128.47, 127.49, 127.33, 126.95, 123.01, 121.30, 87.34, 14.78, 8.71 ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -64.69$ (s), -146.14 (m) ppm. ¹¹B NMR (160 MHz, CDCl₃): $\delta = -0.16$ (t, J = 33.2 Hz) ppm. ESI–MS(+): calc. for C42H40BF5IrN4O [M-Cl]⁺ = 915.0477, found 915.2846. IR: $\nu = 399$, 477, 666, 972, 1048, 1141, 1185, 1304, 1326, 1405, 1464, 1508, 1541, 1681 cm⁻¹. MP: 113.4 – 115 °C. λ_{max} (M⁻¹cm⁻¹) = 271 (27,100), 332 (sh; 13,800), and 500 (57,600) nm. λ_{em} (tBuOH/H₂O 1:4) = 512 nm; $\Phi = 0.02$.

Complex Ir3b:

Purified using hexanes/DCM as eluent (1:1, ν/ν), 0.01 mmol scale, 4.7 mg, dark red amorphous solid, 47%. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, J = 8 Hz, 1H), 7.78-7.74 (m, 4H), 7.60 (d, J = 8 Hz, 2H), 7.34-7.30 (m, 3H), 6.60-6.57 (m, 1H), 5.99 (s, 2H), 3.14 (s, 6H), 2.56 (s, 6H), 1.47-1.44 (m, 21H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 169.67$, 155.41, 155.23, 154.21, 148.73, 148.67, 143.39, 142.02, 135.50, 133.21, 131.64, 128.34, 127.71, 127.44, 126.57, 121.26, 109.45, 108.70, 85.87, 39.63, 14.80, 8.72, 1.12 ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -146.11$ (m) ppm. ¹¹B NMR (160 MHz, CDCl₃): $\delta = -0.18$ (t, J = 33.2 Hz) ppm. ESI–MS(+): calc. for C₄₃H₄₆BF₂IrN₅O [M-Cl]⁺ = 890.34, found 890.33. IR: $\nu = 400$, 419, 774, 791, 973, 1068, 1161, 1194, 1304, 1435, 1490, 1503, 1522, 1591, 1659 cm⁻¹. MP: 280 °C (decomposed). λ_{max} (M⁻¹cm⁻¹) = 276 (37,800), 343 (s; 18,600), and 500 (41,700) nm. λ_{em} (tBuOH/H₂O 1:4) = 512 nm; $\Phi = 0.02$.

Figure S1. UV-visible absorption (left) and emission spectra of the iridium complexes **Ir1b** (black line), **Ir2b**, (purple line), and **Ir3b** (blue line). The complexes were dissolved in tBuOH/H₂O (1:4) at a concentration of 10 μ M.

Table S1. Transfer Hydrogenation Yields Obtained Using Different Ir Complexes^a

O H	Ir Complex (1 mol%) HCOONa (3 equiv.)	ОН
(1 equiv.)	H ₂ O/THF 37 [°] C, 24 h	

Complex	Yield (%) ^{<i>e</i>}
Ir1a ^b	85±5
Ir2a ^c	$4{\pm}1$
$\mathbf{Ir3a}^{d}$	95±5
$\mathbf{Ir1b}^b$	68±2
$\mathbf{Ir2b}^{c}$	5±1
$\mathbf{Ir3b}^d$	95±5

^{*a*}Reaction conditions used: benzaldehyde (60 µmol), HCOONa (180 µmol), Ir complex (0.60 µmol), H₂O/THF, 37 °C, 24 h. Slightly different solvent amounts were used due to differences in the catalyst solubility. ^{*b*}Solvent = H₂O/THF (2:2.1, 3.5 mL), Ir concentration = 172 µM. ^{*c*}Solvent = H₂O/THF (1:1, 4.8 mL), Ir concentration = 125 µM. ^{*d*}Solvent = H₂O/THF (1.5:1, 4.2 mL), Ir concentration = 142 µM. ^{*c*}The reaction yields were determined by gas chromatography using biphenyl as an internal standard. Yields are average of triplicate runs

Cytotoxicity Studies

NIH-3T3 mouse fibroblast cells (10000 cells/well) were seeded in a 96-well plate and allowed to attach overnight in a 5% CO₂ humidified incubator. The Ir complexes were predissolved in sterile DMSO to give a 5 mM stock solution and then diluted using commercial cell growth media (Dulbecco's Modified Eagle Medium supplemented with 5% fetal bovine serum, FB Essence from VWR) and 1% penicillin streptomycin solution (100×) to give a series of different concentrations $(0.1, 1, 25, 50, 100, and 250 \mu M)$. The cells were then treated with the iridium solution (6 wells per concentration) for 3 h. The solutions were removed by pipette and the cells were washed with fresh DMEM (2×) before adding DMEM containing 3-(4,5-dimethylthiazol-2-yl)-5-(3carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) (2 mL of MTS per 8 mL of DMEM). After 1 h, the absorbance of the 96-well plate was measured at 490 nm to determine the amount of orange formazan product formed. Cell viability was considered to be proportional to the absorbance of the wells. The absorbance of the wells containing solutions of MTS was taken as background and subtracted from the absorbance of wells containing treated and control cells. The cell viability percentage was calculated using the following equation: $(A_{conc}/A_{control}) \times 100\%$, where A_{conc} is the absorbance of the test sample and A_{control} is the absorbance of the untreated cells sample. The cell viability data were fit to a single exponential decay function and the IC₅₀ value was extracted from this fit at 50% cell viability.

Iridium Accumulation in Live Cells

NIH-3T3 cells were cultured in 100 mm tissue culture plates (Corning) at 37 °C under a 5% CO₂ atmosphere. After 100% confluence was achieved, the cells were incubated with either 5 or 10 μ M of iridium complex for 2 h in DMEM supplemented with 5% fetal bovine serum (FB Essence) and 1% penicillin streptomycin solution (100×) (diluted from 5 mM stock solution in sterile DMSO). After 2 h of incubation the catalyst solutions were removed and the cells were rinsed twice with fresh DMEM. The adhered cells were detached by treating with trypsin and counted using a BIO-RAD TC10 automated cell counter. The sample was then centrifuged and the supernatant was removed. The cell pellet was washed an additional time with phosphate buffered saline (PBS), centrifuged, and then the supernatant was removed. The cell pellets were digested with 0.5 mL of 70% HNO₃ at room temperature overnight. Each sample was diluted with 6.5 mL of HPLC grade H₂O to obtain 5% HNO₃ sample solutions. The cloudy solutions were centrifuged and the clear supernatant was separated and used for analysis by ICP-MS. The total iridium content per cell was calculated using the solution volume and cell density from each sample preparation.

<u>Cellular Localization Studies</u>

NIH-3T3 cells were cultured at 37 °C under a 5% CO₂ humidified atmosphere in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FB Essence from VWR) and 1% penicillin streptomycin solution (100×). For live cell imaging, cells were plated in μ -Slide 8-well plates (IBIDI) in 200 μ L of DMEM in each well. After overnight cell growth, the medium was removed and cells were treated with 5 μ M iridium solution in DMEM (diluted from 5 mM stock in sterile DMSO). After an incubation time of 30 min (37 °C, 5% CO₂), the growth solutions were removed and cells were co-treated with the iridium complex and Mito-ID or Hoechst33342 for another 30 min (37 °C, 5% CO₂). The cells were rinsed with fresh DMEM (1×200 μ L each well), followed by phenol red free DMEM (1×200 μ L each well), and then visualized immediately using microscopy (Olympus IX83) with a 100× oil-immersion objective. The excitation wavelength used was 488 nm for the iridium complexes (emission filter: 500-550 nm), 405 nm for Hoechst33342 (emission filter: 426-450 nm), and 561 nm for Mito-ID. The images were processed by subtracting background signal and emission from control cells using the program ImageJ. Pearson's Correlation Coefficients (PCC) were calculated using MATLAB.

Complex	\mathbf{IC} 50 ($\mu \mathbf{M}$) a	Intracellular Conc. $(ng Ir/10^6 cells)^b$
Ir1a	108 ± 30	42 ± 1
Ir2a	31 ± 4	104 ± 29
Ir3a	119 ± 3	21 ± 5
Ir1b	23 ± 2	179 ± 81
Ir2b	67 ± 7	8 ± 1
Ir3b	28 ± 2	111 ± 45

 Table S2. Cytotoxicity and Uptake of Iridium Complexes in NIH-3T3 Cells

^{*a*}Cells were treated with various concentrations of the iridium complexes for 3 h and then viability was determined using a colorimetric MTS assay. The average IC₅₀ values provided were determined from triplicate experiments. ^{*b*}Cells were treated with 5 μ M of the iridium complexes for 2 h, washed, and then lysed. The cell lysates were analyzed by ICP-MS and the average intracellular iridium concentration was determined from triplicate experiments.

Iridium Complex (@488 nm)	(Mito-ID (@561 nm)	Merged Images	
1 Section 1	•		P Y	
lr1b <u>5</u> ,	m	<u>5 μm</u>	<u>5 μm</u>	
lr2b <u>5 </u>	<u>m</u>	<u>5 µт</u>	<u>5 μm</u>	
lr3b	<u>m</u>	<u>5 µm</u>	<u>5 μm</u>	

Figure S2. Fluorescence microscope images of NIH-3T3 cells co-treated with iridium complexes (left panel, $\lambda_{ex} = 488$ nm) and Mito-ID (middle panel, $\lambda_{ex} = 561$ nm). The merged images show the signal overlap between the 488 and 561 nm channels (right panel). These data were acquired using an Olympus IX83 microscope with a 100× oil objective.

Iridium Complex (@488 nm)	Hoechst 33342 (@561 nm)	Merged Images
12 Marine		and a
lr1b <u>5 µ</u>	<u>n</u> 5 μm_	<u>5 μm</u>
lr2b <u>5 µ</u>	<u>n 5 µm</u>	<u>5 μm</u>
lr3b <u>5 µ</u>	<u>т</u> <u>5 µт</u>	<u>5 µт</u>

Figure S3. Fluorescence microscope images of NIH-3T3 cells co-treated with iridium complexes (left panel, $\lambda_{ex} = 488$ nm) and Hoechst 3342 (middle panel, $\lambda_{ex} = 405$ nm). The merged images show the signal overlap between the 405 and 488 nm channels (right panel). These data were acquired using an Olympus IX83 microscope with a 100× oil objective.

Figure S4. Fluorescence microscope images of NIH-3T3 cells co-treated with iridium complexes (left panel, $\lambda_{ex} = 488$ nm) and Lyso-ID (middle panel, $\lambda_{ex} = 561$ nm). The merged images show the signal overlap between the 488 and 561 nm channels (right panel). These data were acquired using an Olympus IX83 microscope with a 100× oil objective.

Complex	Mitochondria	Nucleus	Lysosome
Ir1b	0.74	0	0.77
Ir2b	0.54	0	0.43
Ir3b	0.69	0	0.68

Table S3. Pearson's Correlation Coefficient Determined Based on Co-Staining Experiments

NMR Spectra

Figure S5. ¹H NMR spectrum (500 MHz, CDCl₃) of 1.

Figure S6. ¹³C NMR spectrum (126 MHz, CDCl₃) of **1**.

Figure S7. ¹H NMR spectrum (500 MHz, CDCl₃) of 2.

Figure S8. ¹³C NMR spectrum (126 MHz, CDCl₃) of 2.

Figure S9. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of 2.

Figure S10. ¹H NMR spectrum (500 MHz, DMSO-*d*₆) of 3.

Figure S11. ¹³C NMR spectrum (126 MHz, DMSO-*d*₆) of **3**.

Figure S12. ¹H NMR spectrum (500 MHz, CDCl₃) of 4a.

Figure S13. ¹³C NMR spectrum (126 MHz, CDCl₃) of 4a.

Figure S14. ¹H NMR spectrum (500 MHz, CDCl₃) of 4b.

Figure S15. ¹³C NMR spectrum (126 MHz, CDCl₃) of 4b.

Figure S16. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of 4b.

Figure S17. ¹H NMR spectrum (400 MHz, CDCl₃) of 4c.

Figure S18. ¹³C NMR spectrum (100 MHz, CDCl₃) of 4c.

Figure S19. ¹H NMR spectrum (500 MHz, CDCl₃) of 5a.

Figure S20. ¹³C NMR spectrum (126 MHz, CDCl₃) of 5a.

Figure S21. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of 5a.

Figure S22. ¹¹B NMR spectrum (160 MHz, CDCl₃) of 5a.

Figure S23. ¹H NMR spectrum (500 MHz, CDCl₃) of 5b.

Figure S24 ¹³C NMR spectrum (126 MHz, CDCl₃) of 5b.

Figure S25. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of 5b.

Figure S26. ¹¹B NMR spectrum (160 MHz, CDCl₃) of 5b.

Figure S27. ¹H NMR spectrum (500 MHz, CDCl₃) of 5c.

Figure S28. ¹³C NMR spectrum (126 MHz, CDCl₃) of 5c.

Figure S29. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of 5c.

Figure S30. ¹¹B NMR spectrum (160 MHz, CDCl₃) of 5c.

Figure S31. ¹H NMR spectrum (500 MHz, CDCl₃) of complex Ir1b.

Figure S32. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of complex Ir1b.

Figure S33. ¹¹B NMR spectrum (160 MHz, CDCl₃) of complex Ir1b.

Figure S34. ¹H NMR spectrum (500 MHz, CDCl₃) of complex Ir2b.

Figure S35. ¹³C NMR spectrum (126 MHz, CDCl₃) of complex Ir2b.

Figure S36. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of complex Ir2b.

Figure S37. ¹¹B NMR spectrum (160 MHz, CDCl₃) of complex Ir2b.

Figure S38. ¹H NMR spectrum (500 MHz, CDCl₃) of complex Ir3b.

Figure S39. ¹³C NMR spectrum (126 MHz, CDCl₃) of complex Ir3b.

Figure S40. ¹⁹F NMR spectrum (470 MHz, CDCl₃) of complex Ir3b.

Figure S41. ¹¹B NMR spectrum (160 MHz, CDCl₃) of complex Ir3b.

Evaluating the Effects of Biomolecules on Fluorescence

A stock solution of **Ir3b** (5 mM) was prepared in DMSO. Stock solutions of *L*-glutamine (100 mM), glycine (100 mM), *L*-lysine (100 mM), *L*-arginine (100 mM), *D*-glucose (100 mM), *L*-glutathione reduced (100 mM) were prepared in millipore water. The appropriate volumes of the stock solutions of interest were combined in a 1.5-dram vial. Additional *t*BuOH and water were added to maintain a constant co-solvent concentration of 20% of *t*BuOH in 3 mL of water. The solutions were stirred for 30 min at 37 °C before transferring to the cuvette for fluorescence measurements.

Figure S42. Emission spectra of complex **Ir3b** in the presence of different biomolecules. The complex was dissolved in *t*BuOH/H₂O (1:4) at a concentration of 20 μ M. The concentration of biomolecules used correspond to their relative amounts present in commercial DMEM high glucose solutions: *L*-glutamine (4.0 mM), *D*-glucose (25 mM), *L*-lysine (1.0 mM), *L*-arginine (0.2 mM), glycine (0.5 mM), *L*-glutathione reduced (20 μ M).

Mass Spectrometry Data

A) Mass Spectrum of Ir1b ([M-Cl]⁺)

Figure S43. Mass spectrometry data (ESI-MS, positive mode) for **Ir1b** (A), **Ir2b** (B), and **Ir3b** (C) showing the m/z values for their corresponding [M-Cl]⁺ ions.

References

- (1) Ngo, A. H.; Do, L. H., *Inorg. Chem. Front.* **2020**, *7*, 583–591.
- (2) Drożdż, W.; Walczak, A.; Stefankiewicz, A. R., Org. Lett. 2021, 23, 3641–3645.
- (3) DiCesare, N.; Lakowicz, J. R., *Tetrahedron Lett.* **2001**, *42*, 9105–9108.
- (4) Lu, C.; Htan, B.; Fu, S.; Ma, C.; Gan, Q., *Tetrahedron* **2019**, *75*, 4010–4016.
- (5) Sarkar, S.; Sahoo, T.; Sen, C.; Ghosh, S. C., *Chem. Commun.* **2021**, *57*, 8949–8952.