IMPDH inhibition activates TLR-VCAM1 pathway and

suppresses the development of MLL-fusion leukemia

Xiaoxiao Liu, et al.

* Correspondence: goyama@edu.k.u-tokyo.ac.jp

This PDF file includes 4 Appendix tables and 10 Appendix Figures together with legends:

- Appendix Table S1: Information of PDX samples
- Appendix Table S2: Antibodies used for Western Blotting
- Appendix Table S3: Antibodies used for Flow Cytometry
- Appendix Table S4: Antibodies used for Single Cell Mass Cytometry
- Appendix Figures S1: Guanosine supplementation reversed the effect of IMPDH inhibitors on human myeloid leukemia cells in vitro
- Appendix Figures S2: MPA induced cell cycle arrest, apoptosis of MOLM13 cells
- Appendix Figures S3: Combination effects of MPA with Decitabine or with Venetoclax on MLL-AF9 cells
- Appendix Figures S4: The effect of IMPDH inhibitors on human lymphoid leukemia cells in vitro
- Appendix Figures S5: IMPDH inhibitors show less efficiency in PDX-derived leukemia in immunodeficiency mice
- Appendix Figures S6: No substantial effects of the alternate-day administration of FF-10501-01 on the numbers of immune cells in mice
- Appendix Figures S7: Reduced purine and pyrimidine levels in FF-10501-01 treated MLL-AF9 cells
- Appendix Figures S8: Altered levels of bases and amino acids in FF-10501-01 treated MLL-AF9 cells
- Appendix Figures S9: Single-cell Mass Cytometry's gating strategy and results
- Appendix Figures S10: Vcam1 is dispensable for FF-10501-01-induced myeloid differentiation of MLL-AF9 cells

Sample No.	PDX ID	Disease Stage	Genetic abnormalities	Lineage
AML#1	2017-14	R/R	tAML, MLL/AF10	AML
AML#2	2016-7	R/R	MLL/AF9	AML
AML#3	2013-11	R/R	MLL/SEPT6	AML
AML#4	2017-94	R/R	Complex Karyotype	AML
AML#5	2017-63	R/R	Mnx1/ETV6 PTPN11	AML
AML#6	2016-97	R/R	CBFA2T3-GLIS2	AML
AML#7	2017-38	R/R	MLL/AF9 with Nras mutation	AML
ALL#1	2019-116		t (4;11) MLL/AF4	ALL
ALL#2	2018-190	De novo	Infant MLL/MA9	ALL

Appendix Table S1. Information of PDX samples

Appendix Table S2. Antibodies used for Western Blotting

Protein detected	Catalog number	Supplier	Dilution ratio
p53 (DO-1)	sc-126	Santa Cruz	1/1000
p53 (1C12)	2524	Cell Signaling Technology	1/1000
Bax	2774	Cell Signaling Technology	1/1000
BCL2 (D55G8)	4223	Cell Signaling Technology	1/1000
p21 Waf1/Cip1 (12D1)	2947	Cell Signaling Technology	1/1000
IMPDH2 (E2Q1Z)	57068	Cell Signaling Technology	1/1000
IMPDH1 (E5Z5F)	35914	Cell Signaling Technology	1/1000
phospho-IKb (Ser32/36)	9246	Cell Signaling Technology	1/1000
Ikb (L35A5)	4814	Cell Signaling Technology	1/1000
phospho-p38 (Thr180/Tyr182) (28B10)	9216	Cell Signaling Technology	1/1000
р38 МАРК	9212	Cell Signaling Technology	1/1000
GAPDH (D16H11) XP	5174	Cell Signaling Technology	1/2000
Tubulin (D-66)	T0198	Sigma-Aldrich	1/2000

Antibody Name	Fluorescence	Clone	Catalog Number	Supplier	Dilution ratio
anti-mouse-Gr-1 (Ly6G/6C)	PE	RB-8C6	108408	Biolegend	1/400
anti-mouse-CD117 (c-Kit)	APC	2B8	17-1171-83	eBioscience	1/400
anti-mouse/human-CD11b	PE-Cy7	M1/70	101216	Biolegend	1/400
Annexin V	APC		640920	Biolegend	1/100
Vybrant DyeCycle	violet		V35003	Invitrogen	1/250
anti-human-CD11b	PE	ICRF44	301306	Biolegend	1/400
anti-human-CD14	APC	M5E2	301808	Biolegend	1/400
anti-human-CD66b	PE-Cy7	G10F5	305115	Biolegend	1/400
anti-human-CD115	APC	9-4D2-1E4	347306	Biolegend	1/400
anti-human-CD45	FITC	HI30(RUO)	555482	BD Bioscience	1/200
anti-human-CD19	PE-Cy7	HIB19	302215	Biolegend	1/400
anti-human-CD10	PE	HI10a	312204	Biolegend	1/400
anti-human-CD34	APC	561	343608	Biolegend	1/200
anti-mouse-NK1.1	PE	PK136	12-5941-83	eBioscience	1/400
anti-mouse-CD3	eFluor 450	17A2	48-0032-82	eBioscience	1/400
anti-mouse-CD8a	PE	53-6.7	100707	Biolegend	1/500
anti-mouse-CD4	BV421	GK1.5	100438	Biolegend	1/400
anti-mouse-CD19	PE-Cy7	6D5	115520	Biolegend	1/400

anti-mouse/human-B220	APC	RA3-6B2	10-0452-81	eBioscience	1/400
anti-mouse-CD115	PE	AFS98	135505	Biolegend	1/400
anti-mouse-Gr1	biotin	RB6-8C5	108404	Biolegend	1/400
streptavidin	BV421		405226	Biolegend	1/200
anti-mouse-F4/80	APC	BM8	123115	Biolegend	1/400
anti-mouse-CD106 (VCAM-1)	Alexa Fluor 647	429 (MVCAM.A)	105712	Biolegend	1/400
anti-mouse-CD98 (4F2)	РЕ	RL388	128207	Biolegend	1/400
anti-human-CD98	PE	UM7F8	556077	BD Biosciences	1/400

Appendix Table S4. Antibodies used for Single Cell Mass Cytometry

					Dilution
Metal Tag	Antigen	Clone	Vendor	Cat No.	ratio
141Pr	Ly-6G/C(Gr1)	RB6-8C5	Fluidigm	3141005B	1/100
143Nd	CD41	MWreg30	Fluidigm	3143009B	1/100
145Nd	CD4	RM4-5	Fluidigm	3145002B	1/100
146Nd	*VCAM1	MVCAM.A(429)	Bio Legend	105702	1/100
147Sm	CD45.2	104	Fluidigm	3147004B	1/100
149Sm	*CXCR4(CD184)	L276F12	Bio legend	146502	1/100
150Nd	*HIF1α	H206	Santa Claus	sc-10790	1/100
151Eu	CD49d (Integrin alpha 4)	R1-2	Fluidigm	3151016B	1/100
152Sm	phospho-Akt [S473]	D9E	Fluidigm	3152005A	1/100
153Eu	phospho-STAT1 [Y701]	58D6	Fluidigm	3153003A	1/100
156Gd	phospho-p38 MAP Kinase [T180/Y182]	D3F9	Fluidigm	3156002A	1/100
158Gd	phospho-STAT3 [Y705]	4/P-STAT3	Fluidigm	3158005A	1/100
159ТЬ	phospho-MAPKAP Kinase2 [T334]	27B7	Fluidigm	3159010A	1/100
160Gd	CD45R (B220)	RA3-6B2	Fluidigm	3160012B	1/100
161Dy	Ki-67	B56	Fluidigm	3161007B	1/100
162Dy	*p53 (For whole protein)	X77	Abcam	ab16465	1/100
163Dy	*phospho-mTOR [S2448]	EPR426(2)	Abcam	ab109268	1/100

165Ho	beta-Catenin	D13A1	Fluidigm	3165027A	1/100
167Er	*EPCR (CD201)	eBio 1560	eBioscience	16-2012-83	1/100
168Er	CD8a	53-6.7	Fluidigm	3168003B	1/100
169Tm	Ly-6A/E (Sca-1)	D7	Fluidigm	3169015B	1/100
170Er	CD49b	HMa2	Fluidigm	3170008B	1/100
171Yb	phospho-ERK 1/2 [T202/Y204]	D13.14.4E	Fluidigm	3171010A	1/100
172Yb	CD11b (Mac-1)	M1/70	Fluidigm	3172012B	1/100
173Yb	CD117 (c-kit)	2B8	Fluidigm	3173004B	1/100
174Yb	phospho-STAT4	38/p-Stat4	Fluidigm	3174005A	1/100
175Lu	*PGC1 alpha	polyclonal	Abcam	ab54481	1/100
191Ir	Cell-ID TM Intercalator–Ir (DNA)	NA	Fluidigm	201192A	1/100
193Ir	Cell-ID TM Intercalator–Ir (DNA)	NA	Fluidigm	201192A	1/100
198Pt	Cell-ID TM Cisplatin (Live/Dead)	NA	Fluidigm	201198	1/100

NA: not available

Appendix Figure legends

Appendix Figure S1. Guanosine supplementation reversed the effect of IMPDH inhibitors on human myeloid leukemia cells *in vitro* Cell viability assays were performed using WST-8 or WST-1. Human CB CD34⁺ cells and MV4; 11 cells (**A**), CB cells expressing MLL-ENL (CB-MLL-ENL-#1, 2) or MLL-AF9 (CB-MLL-AF9#1, 2, 3) (**B**) and patient cells (AML#1 and AML#2), (**C**) Human myeloid leukemia cell lines (HL60, Kasumi-1, OCI-AML3, U937) (**D**) were treated with titrating doses of MPA (1-100 mM) for 72 hours with/without 100 μM Guanosine in triplicates.

Appendix Figure S2. MPA induced cell cycle arrest, apoptosis of MOLM13 cells

FCM plots showing the cell cycle status (A), apoptosis (B) in MOLM13 cells treated with/without 1 mM MPA and 100 mM Guanosine for 36 hours. The number shows in (A) indicate the frequency of G1, S, G2M phase of the cells and the number shows in (B) indicate the frequency of apoptotic cells.

Appendix Figure S3. Combination effects of MPA with Decitabine or with Venetoclax on MLL-AF9 cells

Cell viability assays were performed using WST-8. MLL-AF9-expressing CB cells were treated with the indicated doses of MPA (0.125 or 0.25 mM) together with (\mathbf{A}) decitabine (0.05 or 0.1 mM) or with (\mathbf{B}) Venetoclax (5 or 10 nM) for 72 hours in triplicates. Combination index (CI) was calculated using COMPUSYN (https://www.combosyn.com/).

Appendix Figure S4. The effect of IMPDH inhibitors on human lymphoid leukemia cells in vitro

(A) Experimental Scheme used in (B)-(E). MLL-Af4-expressing CB (CB-MLL-Af4) cells or patient-derived ALL cells were co-cultured with murine stromal cell line MS-5. MPA was added at the indicated concentration to the coculture. The numbers of cobblestone forming cells were counted after 6 days culture. (B) Counts of cobblestone forming CB-MLL-Af4 cells are shown. (C) FCM plots of CD10 and CD19 expression in cobblestone formed MLL-Af4 cells with MPA at indicated concentrations after one-week culture. (D) Counts of cobblestone forming patient derived ALL cells ALL#1 (left) or ALL#2 (right) were shown. (E) Representative pictures of cobblestone forming cells treated with vehicle, 1 μ M MPA with/without 100 μ M guanosine are shown. Scale bar is 200 mm

Appendix Figure S5. IMPDH inhibitors show less efficiency in PDX-derived leukemia in immunodeficiency mice. (A) Experimental scheme used in (B). MLL-fusion PDX-derived cells (AML#2, AML#3, AML#7, and see Appendix Table S1) were transplanted to NRGS mice and treated with vehicle, MMF or FF-10501-01 every other day for three weeks. (B) Kaplan-Meier survival curves were shown. For AML#2, vehicle: n=5, FF: n=4, MMF: n=5. For AML#3 and AML#7, n=6 per group.

Appendix Figure S6. No substantial effects of the alternate-day administration of FF-10501-01 on the numbers of immune cells in mice (A and B) C57BL/6J mice were transplanted with MLL-AF9-GFP cells and were then treated with vehicle (n=5) or FF-10501-01 (n=5) every other day. Bone marrow and spleen cells were collected and analyzed on day 10. The numbers of whole bone marrow cells, GFP⁺ leukemic cells, and GFP⁻ recipient-derived hematopoietic cells in bone marrow (A) and spleen (B), and the frequencies of immune cells (B220⁺CD19⁺ B cells, CD3⁺, CD4⁺, CD4⁺, CD4⁺, CD3⁺ K1.1⁺ NK cells, CD11b⁺/CD11b^{low}Gr1⁻F4/80⁺ macrophages, Gr1^{high}CD11b⁺ neutrophils) in bone marrow (C) and spleen (D) are shown. A two-tailed unpaired t-test was used for the comparison.

Appendix Figure S7. Reduced purine and pyrimidine levels in FF-10501-01 treated MLL-AF9 cells

C57BL/6J mice were transplanted with MLL-AF9-GFP cells and were treated with vehicle or FF-10501-01 on day 11 and day 12. GFP⁺ MLL-AF9 cells were collected from vehicle- or FF-10501-01-treated mice and were used for metabolome analysis on day 13. Levels of the molecules in purine (**A**) and pyrimidine (**B**) synthesis pathway were assessed using LC-MS analysis. Black: Vehicle-, Pink: FF-10501-01-treated MLL-AF9 cells.

(A) Levels of adenosine, adenine, inosine, hypoxanthine, xanthine in Vehicle (Black) or FF-10501-01 (Pink) treated MLL-AF9 cells. The y-axis is calculated by area/MES/mg. (B) Amino acid levels in Vehicle (Black) or FF-10501-01 (Pink) treated MLL-AF9 cells. The y-axis is calculated by area/MES/mg.

Appendix Figure S9. Single-cell Mass Cytometry's gating strategy and results

CD45.2⁺ MLL-AF9 cells were collected from CD45.1⁺ recipient mice treated with vehicle (n=4) or FF-10501-01 (n=4) and were subjected to mass cytometry analysis. CD45.2⁺ fraction was used for SPADE (Spanning-tree Progression Analysis of Density-normalized Events) analysis in Cytobank (<u>https://premium.cytobank.org/cytobank/login</u>). (A) Gr-1⁺, Mac-1⁺, and c-Kit⁺ fractions were shown on the SPADE tree. (B) Gating strategy on SPADE tree using Gr-1, Mac-1 and c-Kit expression. Four populations were defined (related to Figure 6B). (C) Expression of phospho-STAT1, CXCR4, and HIF-1a in each mouse was shown. The SPADE trees show each marker's median expression.

Appendix Figure S10. Vcam1 is dispensable for FF-10501-01-induced myeloid differentiation of MLL-AF9 cells

(A) Mouse MLL-AF9 cells were treated with/ without 5 mM FF-10501-01 and 10 mM guanosine in cytokine containing suspension medium for 48 hours. Vcam1 expression was evaluated by FCM. (B) Mouse MLL-AF9-Cas9 transduced with vector or two independent Vcam1-targeting sgRNAs (KO1 and KO2) were with/without 0.5 mM FF-10501-01 and 10 mM guanosine in cytokine containing suspension medium for 72 hours. Frequency of c-Kit⁺Gr-1⁻ and Mac-1⁺Gr-1⁺ in vehicle, FF-1050-01 or FF-10501-01+ guanosine treated cells with/without Vcma1-depeletion. For each group, n=2.