Cell Reports, Volume 4171

Supplemental information

Recruited monocytes/macrophages drive pulmonary
neutrophilic inflammation and irreversible

lung tissue remodeling in cystic fibrosis

Hasan H. Oz, Ee-Chun Cheng, Caterina Di Pietro, Toma Tebaldi, Giulia Biancon, Caroline
Zeiss, Ping-Xia Zhang, Pamela H. Huang, Sofia S. Esquibies, Clemente J. Britto, Jonas C.
Schupp, Thomas S. Murray, Stephanie Halene, Diane S. Krause, Marie E.
Egan, and Emanuela M. Bruscia



Supplementary Figure S1
A B

o
o

200

# of total CCR2*
events/mmsq

Non-CF CF

¥ .
20 um

Merge + DAPI

ADGRG3 1
PROK?2 4

he
[ IX 1)

(@]
%
0000

Average Expression

- P

FABP4

APOCH - 1
C1QB1

M

0

'|'|
-
sy}
@

o00-

Features
ot
-
OEE
233
>>=
(11

Percent Expressed

GZME 1
JCHAIN - -0
IRF4 e 25

® 50
® 75
@ 00

o=
ow
o5
p gt
000

PMN  Mono MO  AM DC pDC B T/NK  Epithelial

D

CF_1 CF_16 CF_17 CF_18 CF_19 CF_2 CF_21 CF_22 CF_28 CTRL_23 CTRL_24 CTRL_25 CTRL_26 CTRL_5

AM 17 1 1 11 2 9 1 0 2 514 1758 1691 364 1769
B 25 52 113 10 17 48 96 22 60 44 5 17 14 19
DC 17 15 48 1 6 3 15 6 6 6 6 11 72 7
Epithelial 36 47 828 33 95 64 64 71 21 214 6 164 103 80
MO 29 20 48 3 8 10 23 1 27 43 90 105 214 35
Mono 166 549 227 137 281 426 420 56 69 4 5 3 14 34
PMN 1275 974 77 865 1103 1474 1526 177 471 12 6 12 82 34
pDC 1 21 26 0 36 0 6 1 2 3 1 0 2 1
T_NK 8 5 20 1 2 2 13 0 45 5 13 7 5 7

Figure S1: Human lung CCR2* monocytes and macrophages are abundant in patients with CF. (A)
Quantification of CCR2* events / mm? of tissue from CCR2 stained human Non-CF and CF lung tissues. (B)
Representative immunofluorescence staining for CCR2 (red), CD14 (yellow) and DAPI (blue) in CF human
lung tissue. (C) Dot plot showing average expression and percent expression of marker genes used to identify
sputum cell populations for scRNAseq studies. (D) Table showing the numbers of cells identified per cell
cluster by scRNAseq for each individual sample. Related to Fig. 1.
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Figure S2: Characterization of immune cells in CF mouse models and CF patients. (A) Flow cytometry
gating strategy of blood Ly6C* cMons and Ly6C- mons and histograms showing the fluorescence intensity of
CCR2 staining in WT, CF, dKO, and CCR2” blood monocyte population (B) Total cell numbers of lung
immune populations were quantified by flow cytometry as % of viable cells multiplied by lung cell count in the
inferior lung lobe. (C) CBCs at TO, T1, and T2 of WT, CF, dKO, and CCR2"- mice. (D) flow cytometry analysis
showing the percentage of circulating cMons (CD11b*Ly6C*) among CD45* cells in blood. Data are generated
form three independent experiments with n=2-6 mice per genotype and time point. Each biological replicate is
represented by a dot. Bars are depicted as means + SEM, significance was tested by One-way ANOVA and

Tukey’s multiple comparisons test between genotypes for each time point separately (* p<0.05; ** p<0.01; ***
p<0.001). Related to Fig. 2.
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Figure S3: Flow cytometry gating strategy. Gating strategy on single lung tissue homogenates (A) and BALF
(B) for assessed immune cells was adapted from Misharin et al 2013, see STAR methods for detailed description.
(C) Histogram showing SiglecF expression in AMs at TO and T2.
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Figure S4: Weight loss and lung damage is limited by CCR2 deficiency (A) Alveolar architectural
disruption scoring system: 0: Normal: homogeneous distribution of alveolar architecture throughout lung. 1:
Mild: Alveolar expansion with septal disruption affecting <10% lung, typically apical (arrow). 2: Moderate:
Alveolar expansion with septal disruption affecting 10-25% lung, typically apical (arrows). 3: Marked: Alveolar
expansion with septal disruption affecting 25-50% lung, extending towards hilus (arrows). 4: Severe: Alveolar
expansion with septal disruption affecting >50% lung, throughout (arrows). (B) Relative weight changes of
WT, CF, dKO, and CCR2"- mice during 5 weeks of LPS nebulization. Related to Fig. 3.



Supplementary Figure S5
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Figure S5: Collagen depositions are limited by CCR2 deficiency in CF mice. The arrows indicate collagen
deposition (blue), which were more abundantly accumulated at sites surrounding vascular vessels or bronchioles in
samples from CF relative to WT, dKO, and CCR2" at 100x (A) and 400x (B) magnification. B, bronchioles; V,
vascular vessels. Scale bar: (A) 500 ym; (B) 100 um.



Supplementary Figure S6
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Figure S6: Myofibroblast accumulation is limited by CCR2 deficiency in CF mice. aSMA
staining (dark brown), and hematoxylin staining of nuclei. The arrows indicate aSMA expression,
which were more abundantly accumulated at sites surrounding vascular vessels or bronchioles in
samples from CF relative to WT, dKO, and CCR27 at 100x magnification. B, bronchioles; V,
vascular vessels. Scale bar: 500 pym.
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Figure S7: Additional TGFB related signaling pathways. (A) Densitometric
analysis of ERK and pERK in lung lysates of WT and CF mice at TO and T1,
normalized to Vinculin and WT T0. (B) miR-199a-5p (normalized to Rnu6) and
Caveolin1 (normalized to 18S) RNA expression levels in lung lysates of WT and CF
mice at TO and T1 normalized to WT TO levels. Bars are depicted as means + SEM
for n = 6 mice per genotype and timepoint. Significance was tested by two-sided
Student’s t test between the genotypes for each time point separately (* p<0.05; **
p<0.01; *** p<0.001). Related to Fig. 4.
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Figure S8: Bone Marrow Transplant model. (A) Adult WT and CCR2” mice were transplanted with bone
marrow (BM) cells from WT or CCR2”- mice. Six weeks after transplantation, mice were exposed to LPS for 5
weeks and sacrificed 24 h after the last nebulization (T1). (B) N = 3 WT host (CD45.2) mice receiving CD45.2 WT
BM cells (top) or CD45.1 BM cells (bottom) were used to assess the indicated percentage of donor-derived
CD45.1* out of all CD45* cells in BM, blood, lungs, and BALF at T1. (C) Quantification of immune cell numbers by
FACS in the inferior lobe of transplanted mice at T1. (D) Relative weight loss after week 1 of LPS. (E) Active TGFf
levels in BALF of transplanted mice at T1 measured by ELISA. Data are generated form two independent
experiments with n=4-5 mice per genotype. Each biological replicate is represented by a dot. Bars are depicted as
means = SEM, significance was tested by One-way ANOVA and Tukey’s multiple comparisons test between
genotypes for each time point separately (* p<0.05; ** p<0.01; *** p<0.001).
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Supplementary Fig. S9: FACS gating strategy. (A) FACS gating strategy used to sort cMons, IMs, moAMs and
trAMs from mouse lung tissue homogenates treated with LPS (T1) and after recovery (T2). Sorting gates are
colored. (B) Heatmap from RNAseq analysis validating cellular markers that were used to identify and sort lung
populations, independent of genotypes (WT and CF) and time points (T1 and T2). Related to Fig. 5.
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Figure $10. Characterization of WT and CF lung monocyte and macrophage transcriptome signatures.
(A) Heatmap showing population markers associated with iMons, IMs, moAMs, and trAMs independent of
genotypes (WT and CF) and time points (T1 and T2). (B) Validation of RNAseq data by gPCR for select DEGs
comparing WT to CF cMons at T2 from n=3 biological replicates. (C) CXCL2 ELISA measured in BALF of WT,
CF, dKO and CCR27 mice at T1 and T2. (D) IF staining of CF lung tissues at T2 stained for CCR2, CXCL2 and

DAPI. White arrowheads indicate CCR2*CXCL2* cells. Related to Fig. 5.
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Figure S11. GO enrichment analysis of DEGs in CF between T1 and T2 compared to WT. One network was
generated for each population (iMon (A), IM (B), trAM(C)). Genes upregulated and downregulated in CF are
shown as arrowheads pointing up and down, respectively. Significantly enriched pathways associated with the
genes are shown as closed circles (GO biological Process 2018). (D) BioPlanet_2019 enrichment analysis for
genes differentially regulated in CF between T1 and T2 for cMons, IMs and trAMs. Node size: odds ratio
associated with enrichment. P-value for Fisher's exact test. Related to Fig. 5.
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Figure S12. Supporting data for CF mice treated with CCR2 inhibitor. (A) CBCs in CCR2inh-
treated mice at TO, T1, and T2. (B) Weight loss during 5 weeks of chronic LPS (left) anthreed after
week 1 of LPS (right) for WT, CF, and CF + CCR2inh mice. Each biological replicate per genotype and
experimental condition is represented by a dot. Bars are depicted as means + SEM, significance was
tested by One-way ANOVA and Tukey’s multiple comparisons test between genotypes for each time
point separately (* p<0.05; ** p<0.01; *** p<0.001). Related to Fig. 7.
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Figure S13: Working model. Inflammatory triggers lead to excessive accumulation of CCR2+ classical
monocytes in lungs of cystic fibrosis (CF) patients and mice. These sustain a pro-inflammatory phenotype,
drive pathogenic TGFB signaling, facilitate neutrophil recruitment, and cause persistent lung damage.
Targeting their recruitment via CCR2 inhibition is a potential target to ameliorate lung tissue damage in CF.



Supplementary Table S1: Patient demographics

Definition of abbreviations: BMI = body mass index; CF = cystic fibrosis; CFTR= cystic fibrosis transmembrane
conductance regulator; HC = healthy control; NA = not applicable; P. aeruginosa = Pseudomonas aeruginosa.

HC
Characteristics Subjects Su(l;lj:e(::,ts:\;;th
(n=5)

Age, yr

Mean + SD 354+59 30.616.5

Range 26-42 24-43
Sex, n (%)

F 2 (40) 6 {67)

M 3 (60) 3(33)
Mutation background, n (%)

F508del/F508del NA 7{77.8)

F508del/other NA 2({22.2)

No F508del mutations NA 0 {0)
FEV,, L

Mean £ SD NA 19+0.7

Range NA 0.68-2.85
FEV,, %

Mean £ SD NA 571215

Range NA 19-84
BMI, kg/m?

Mean £ SD NA 222+21

Range NA 19.11-25.73
CF comorbidities, n (%)

Pancreatic exocrine insufficiency NA 9 (100)

CF-related diabetes NA 4 {44 4)

Liver disease NA 1(11.1)
Microbiology, n (%)

P. aeruginosa colonization NA 5{55.6)
CFTR modulators, n (%)

Ivacaftor/tezacaftor NA 6(66.7)
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