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   AGAAGAAGGAAAACGGGGCCGGTTCCTTCAGGACCCGCCTCAGGGGGCACCGCGGCGGCTTGGGGACCACTTGG

 

agaagaaggaaagcggggccgg t t c c t t c a ggacccgcc t c agggggc a c c g c g g c g g c t t g g g g a c c a c t t g g
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Reference

   |    |   |    |    |    |    |    |    |    |    |    |   .   |     |    |    |    |    |    |    |    |    |   |    |    |    |   |    |    |    |    |    |    |    |    |    |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |    |   |    |    |     |    |    |     |   |    |    |   |   |    |    |
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a g c c c c g t c c t g g g gagaaaacag c t c a c g t c t a t g g c c c t g a c t g c t t a g g c ggga g c t g c g t g c a g c t c a g c t

Pseudogene
Reference

   |     |    |    |    |    |     |   |    |   |    |    |    |    |     |    |    |   |    |    |    |   |    |    |    |    |   |    |    |    |    |    |   |   |   |    |    |     |    |   |    |    |    |    |    |   |    |    |   |   |    |     |    |    |    |    |    |    |     |    |   |    |     |   |    |    |    |    |    |   |    |   |     |    |   |

TCTCCGGGGCATTTTTTTCTACACGCTGGGGGAAGCTATGAAC
t c t c c g g g g c a t t t t t t t c t a c a c g c t g g g t g a - g c t a t g aac

Pseudogene
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   |   |   |    |    |     |    |    |     |    |    |   |    |   |   |   |   |   |    |   |    |    |    |    |    |    |   |    |    |    |    .    |    |         |    |   |    |    |    |   |    |    |

Sanger-sequencing

primer-Rprimer-F

   

TAGAAGTACACCCCCCCACCCCTGCTCCTTGGAGGACAACGTGATCACTGTATTCAGCTCTGTCAAGAATGGTCCAGGTTC

 

tagaag tac c c c a c c c c a c c c c tgc t c c t t ggaggacaacg t g a tcac t g t a t t cagc t c t g t caagaa tgg t c cagg t t c

 

Pseudogene
Reference

   |   |    |    |    |    |   |   |    |    .    |    |   .     |    |    |    |    |    |    |    |    |   |   |    |    |    |   |    |    |    |    |    |    |    |    |    |   |    |    |    |    |    |    |   |   |    |    |   |    |    |   |    |   |   |    |    |    |    |    |   |    |    |    |    |    |    |   |    |    |   |   |    |    |    |    |    |    |   |   |    |
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NM_001686.4

G3378.8

ATP5F1B

(Novel transcript)primer-F primer-R

novel
Reference

Sanger-sequencing

novel
Reference

novel
Reference

  

GTCCATCCTG -------------------------------------------------------------------------------------------------------------------------------------------
|     |    |    |    |     |    |    |    |    |

g t c c a t c c t g tcagggactatgcggcgcaaacatctccttcgccaaaagcaggcgccgccaccgggcgcatcgtggcggtcattggcgcagtggtg

----------------------------------------------------------------------------------------------------------------------------------------------------------GGG
gacgtccagtttgatgagggactaccaccaattctaaatgccctggaagtgcaaggcagggagaccagactggttttggaggtggcccagcatttggg t g

 |    .    | 

novel
Reference

AGAGCACAGTAAGGACTATTGCTATGGATGGTACAGAAGGCTTGGTTAGAGGCCAGAAAGTACTGGATTCTGGTGCAC
a g a g c a c a g t a a g g act a t t g c t a t g g a t g g t a c a gaaggc t t g g t t a g aggc c agaaag t a c t g g a t t c t g g t g c a c

Sanger-sequencing

primer-Rprimer-F

novel
Reference

novel
Reference

novel
Reference

ATGAAGCCG-----------------------------------------------------------------------------------------------------------------------------------------------------

t a t c a t g g c t a t a t t t g t c a c g a g t g a a t t g t t c t c a g t t t c t c g g t t t a t g t g c t c t t c c a g g t t g t a a a t t t a a a g a t g t t a

  |    |    |     |    |    |    |    |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |     |    |    |     |    |   |    |    |    |    |    |    |   |     |    |    |    |     |    |    |   |   |    |   |    |    |    |    |   |    |   |    |     |    |    |     |    |    |    |    |    |     |    |     |    |     |    |   |

NM_001330173.2
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NM_005192.4

NM_001130051.2

G4256.9
(Novel transcript)

  |    |    |    |    |    |    |    |     |        

a t g a a g c c g c c c a g t t c a a t a c a a a c a a g t g a g t t t g a c t c a t c a g a t g a a g a g c c t a t t g a a g a t g a a c a g a c t c c a a t t c a t a
--------GCTATCTTTGTCACGAGTGAATTGTTCTCAGTTTCTCGGTTTATGTGCTCTTCCAGGTTGTAAATTTAAAGATGTTA

GAAGAAATGTCCAAAAAGATACAGAAGAACTAAAGAGCTGTGGTATACAAGACATATTTGTTTTCTGCACCAGAGGGGAACT

novel
Reference

GTCAAAATATAGAGTCCCAAACCTTCTGGATC

  |     |   |    |    |    .    |   |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |    |   |    |    |   |    |    |     |    |   |    |    |   |    |     |    |    |    |    |   |    |    |    |    |    |     |    |   |    |   |    |     |    |     |    |   |    |    |    |    |    |    |   |   |    |    |     |    |    |   |    |    |   |    | 

  |    |    |     |    |    |    |    |   |    |    |    |    |     |    |   |    |    |    |     |    |     |    |   |   |    |    |    |    |     |   |    |

g a a g a a a t g t c c a a a a a g a t a c a g a a g a a c t a a a g a g c t g t g g t a t a c a a g a c a t a t t t g t t t t c t g c a c c a g a g g g g a a c t

g t c a a a a t a t a g a g t c c c a a a c c t t c t g g a t c

CAATCAAAATTCCTGTTGGTCCTGAGACTTTGGGCAGAATCATGAATGTCATTGGAGAACCTATTGATGAAAGAGGTCCC
c a a t ca a a a t t c c t g t t g g t c c t g a g a c t t t g g g c a g a a t c a t g a a t g t c a t t g g a g a a c c t a t t g a t g aaagagg t c c c
 |    |    |    |    |    |   |    |    |    |    |    |    |   |    |    |    |   |    |    |    |    |    |    |    |    |    |    |    |   |   |    |    |    |    |     |    |    |    |    |   |    |    |    |    |    |    |    |   |      |    |    |    |    |   |     |    |    |    |    |    |    |   |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  

NM_014931.4

G7988.23

Sanger-sequencing

primer-Rprimer-F

   
 ----------------------------------------------------------------------------------------------------------------------------------

GAGGTAGCAAGAGATGAGGGCGCCATGTTTTGGAAGTTTGACCTGCACACAAGCTCGCACCTGGACACGCTGCTGGAGCGGG 
 --------------------------------------------a g g g c g c c a t g t t t t ggaag t t t g a c c t g cacac a a g c t c g c a c c t g g acacgc t g c t g g a g c g g g 

AGGACCTGAGCCTGCCCGAGCTGCTGGACGAGGAAGACGTGCTGCAGGAGTGAAAGGTCGTCAA
 

novel
Reference

novel
Reference

novel
Reference

PPP6R1

(Novel transcript)

 a g g a c c t gagcc t g c c c g a g c t g c t ggacgaggaagacg t g c t g c a g g a g t gcaagg t c g t c a a

ACTCGAAGAGGCTCGGGAAGGAGGAGGGAGCAGCCCAGCCCCGGCTGAGGGCAGTCAGGTGTGACGCCCACGCGG

   |     |    |    |    |    |     |   |    |   |    |   |    |   |    |    |    |   |    |    |    |   |    |   |    |    |    |   |    |    |    |    |    |    |   |    |    |    |    |   |    |    |    |    |    |   |    |    |    |    |    |    |    |    |   |   |     |    |   |    |     |    |    |    |    |     | 

   |    |    |     |    |    |    |   |    |    |    |    |   |    |    |    |    |    |    |    |     |   |    |    |    |   |    |    |    |    |    |    |    |    |   |    |    |    |    |    |    |    |    |    |    |   |     |    |     |    |    |   |    .   |    |    |     |   |   |    |    |    |   |    |

novel
Reference

ATCAAAACCAAACAATTTGCTCCATTTCATGCTGAG
a t c aaaaccaaacaa t t t g c t c c c a t t c a t g c t g a g
 |   |    |    |    |   |    |    |    |   |    |    |    |    |    |    |   |    |    |    |    |    |   |    .    .    |   |   |    |    |    |    |    |    |    |    |

|     |    |     |    |    |     |    |     |   |    |    |     |    |    |    |    |    |   |   |    |     |    |   |     |    |    |     |   |    |    |    |    |    |    |    |    |    |    |    |    |    |   |    |     |    |    |    |    |    |    |    |    |    |    |     |    |   |    |    |    |   |    |    |    |    |    |    |   |    |    |    |    |    |    |    |    |    |
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Materials and Methods 5 

Experimental design 6 

We set five groups to evaluate stability and reliability of SCAN-seq2. Two groups of 960 cells 7 
were from 9 cell lines (K562, HepG2, Hela, 293T, H9, GM12878 for human and MEF, 3T3, AtT20 8 
for mouse). One of them was sorting individual cells from each cell line into 96-well plates with 9 
known identity for each cell (Library 9CL). The other were first mixing these nine cell lines together 10 
and then sorting individual cells into 96-well plates (Library 9CL-mix, parallel group #1 to #3). One 11 
group of 96 cells (Library UMI-100) and one group of 192 cells (Library UMI-200) were both 12 
derived from human K562 cell line and mouse 3T3 cell line. The last group was from 4 cell lines 13 
(human K562 & 293T cells and mouse MEF & 3T3 cells), and we mixed every 16 human cells and 14 
16 mouse cells together after reverse transcription step and used the same 5’ barcode primer to 15 
amplify them (Library 4CL). 16 

Cell culture 17 

K562 cells were maintained in RPMI 1640 medium, supplemented with 10% fetal bovine 18 
serum (FBS), 1% penicillin-streptomycin and 1% L-glutamine. GM12878 and H9 cells were both 19 
maintained in RPMI 1640 medium, supplemented with 10% FBS and 1% penicillin-streptomycin. 20 
HEK293T and MEF cells were both maintained in DMEM medium, supplemented with 10% FBS, 21 
1% penicillin-streptomycin and 1% L-glutamine. Hela, HepG2, and 3T3 cells were maintained in 22 
DMEM medium, supplemented with 10% FBS, 1% penicillin-streptomycin. AtT20 cells were 23 
maintained in F12 medium, supplemented 15% horse serum (HS) and 2.5% FBS. All cell culture 24 
reagents were purchased from Gibco. 25 

Single cell isolation 26 

AtT20 cells were collected and washed with DPBS once, centrifuged at 300 rcf for 5 minutes, 27 
then resuspended with 1 mL medium. Same for K562 cells, H9 cells and GM12878 cells. For other 28 
5 cells lines, cells were washed with DPBS, then digested with 0.05% trypsin at 37°C for 1-2 29 
minutes. Cells were then centrifuged at 300 rcf for 5 minutes, resuspended with 1 mL medium. 30 
Followed by staining with 7-AAD, live single cells were sorted into individual wells of 96-well 31 
plates by FACS.  32 

SCAN-seq2 single cell amplification 33 

Cells from each line were sorted into 96-well plates containing lysis buffer. The lysis buffer 34 
comprised 2U RNase Inhibitor (Takara, Cat. 2313B), 0.475% Triton X-100 (Sigma-Aldrich, Cat. 35 
X100), 2.5 mM dNTP mixture (Thermo, Cat. R0193), 0.75 μM RT primer 36 
(TCAGACGTGTGCTCTTCCGATC-XXXXXXXXXXXXXXXXXXXXXXXX-N8-T25, with X 37 
representing the nucleotide of cell-specific barcode, N8 representing unique molecular identity), 38 
and 0.025% ERCC spike-in. Plates were thoroughly vortexed for 60 seconds and incubated at 72˚C 39 
for 10 minutes, so that the linearized RNA molecules were released. Then they were immediately 40 
transferred on ice. Next, we added 2.85 μL RT mixture into each well, which consisted of 10U 41 
Maxima H-minus RT enzyme (Thermo, EP0752), 2.5U RNase Inhibitor, 40 mM DTT, 12.5 mM 42 
MgCl2 (Sigma-Aldrich, Cat. 63020), 150 mM NaCl, 125 mM Tris-HCl pH8.3, 25% PEG 4000, 5 43 
mM GTP, and 10 μM TSO primer (5’ biotin-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G, 44 
with rG representing riboguanosines and +G representing the locked nucleic acid (LNA)-modified 45 
guanosine). The RT reaction was carried out at 42˚C for 90 minutes, 11 cycles for 50˚C for 2 minutes, 46 



42˚C for 2 minutes, and 85˚C for 15 minutes to deactivate the enzyme. After that, plates were spun 47 
down. We pooled mRNA-cDNA hybrid strands of every 32 cells with different 3’ barcodes together 48 
and purified with 0.8X Ampure XP beads (Beckman, Cat. A63882) once. PCR mixture that included 49 
2× KAPA HiFi Hot-Start Ready Mix, 266 nM 3’ P2 primer 50 
(GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC), 266 nM IS PCR oligo (ATGC-51 
XXXXXXXXXXXXXXXXXXXXXXXX-AAGCAGTGGTATCAACGCAGAGT, with X 52 
representing the nucleotide of cell-specific barcode) was added into each tube. The amplification 53 
was performed by the following program: 4 cycles at 98˚C for 20 seconds, 62˚C for 30 seconds, and 54 
72˚C for 5 minutes, followed by 15 cycles at 98˚C for 20 seconds, 67˚C for 15 seconds, and 72˚C 55 
for 5 minutes, with a final cycle at 72˚C for 5 minutes. Then, we pooled the cDNAs with different 56 
5’ barcodes together and purified twice with 0.6X and 0.8X Ampure XP beads, respectively. And 57 
we quantified cDNA products with Equalbit® dsDNA HS Assay Kit (Vazyme, Cat. EQ111-01/02). 58 
Up to 1 µg cDNA products were used for further library construction. 59 

SCAN-seq2 library preparation and sequencing 60 

We constructed the library for Nanopore sequencing with Ligation Sequencing Kit 1D (ONT, 61 
Cat. SQK-LSK109). Briefly, the cDNA fragments were end-repaired and added dA-tailed using the 62 
Ultra II End Prep module (NEB, Cat. E7546). Then 1D adapters were tethered to above products by 63 
Quick Ligation Module (NEB, Cat. E6056). After that, each cDNA library was loaded into one R9.4 64 
chip and sequenced on PromethION 48. 65 

IGG treatment 66 

Isoginkgetin (IGG) (MCE, Cat. HY-N2117) was dissolved in DMSO and stored in -80˚C. Hela 67 
and HepG2 cells were pre-cultured to achieve sufficient amount. Then cells were equally divided 68 
into 96-well plates and each well contained 3,000 cells and 100 µL medium. We set three IGG 69 
concentration gradients (0 µM, 10 µM, and 30 µM) and added them to the culture medium 70 
correspondingly. Both cell lines had at least three parallel groups for each gradient. Then we 71 
digested cells at 6 h, 24 h, and 48 h after dosing treatment, respectively. Living cells were sorted by 72 
FACS after 7-AAD staining, and 2,304 cells were collected in total. 73 

SCAN-seq2 data processing 74 

Base calling was performed on the electric signals of nanopore sequencing to generate fastq 75 
files using Guppy (v4.0.1). Single-cell barcodes were extracted from 150 bp on both ends of the 76 
reads by nanoplexer (v0.1.2, https://github.com/hanyue36/nanoplexer). Reads with low quality (q < 77 
7) and short length (< 100 bp) were filtered out using NanoFilt (v2.7.1) [1]. Pychopper (v2.5.0, 78 
https://github.com/nanoporetech/pychopper) was utilized to trim adaptors, identify and orient full-79 
length cDNA sequence. UMIs were extracted from 3’ end of reads and added to header by UMI-80 
tools (v1.0.1) [2] extract command. Poly-A sequences were trimmed using cutadapt (v3.2) [3] with 81 
parameters ‘-a "A{10}" -e 0.2’. Clean reads were mapped to a merged reference transcriptome of 82 
human (GRCh38.p13) and mouse (GRCm38.p6) cDNAs from Ensembl release 101 using minimap2 83 
(v 2.17-r941) [4]. PCR duplications were filtered based on UMI sequence and mapping position 84 
using dedup command of UMI-tools (v1.0.1) [2] with parameters “--method=directional --edit-85 
distance-threshold=1 --per-gene --per-contig --buffer-whole-contig”. Expression levels of each 86 
transcript and each gene were quantified using Salmon (v1.3.0) [5] in alignment-based mode. 87 
Transcript per million (TPM) of each gene and transcript was calculated as UMI count per million 88 
unique UMIs.  89 



Pseudogene analysis 90 

In the human and mouse genomes, a number of pseudogenes involving in complex gene 91 
regulatory networks and with potential as cancer biomarkers were identified. There are four major 92 
types of pseudogenes in human genome - the processed (~10,000), unprocessed (~3,500), unitary 93 
(~200) and polymorphic (~50) pseudogenes with different mechanisms of origin [6]. We identified 94 
pseudogenes based on Ensembl annotations. Genes with following biotypes were defined as 95 
pseudogenes in this research: processed pseudogene, unprocessed pseudogene, unitary pseudogene, 96 
polymorphic pseudogene. Other pseudogenes, including rRNA pseudogenes and pseudogenes of 97 
immunoglobin and T cell receptor were not included. For processed pseudogene and unprocessed 98 
pseudogene, corresponding parent genes were also identified based on Ensembl gene annotation. 99 

The expression level of pseudogenes was defined as the average TPM of top 100 cells with 100 
highest expression level of this gene. Correlation between pseudogene and parent gene was 101 
evaluated by Spearmans rank -order correlation. The absolute value of correlation coefficient larger 102 
than 0.2 was considered significant. 103 

Dimensionality reduction and clustering 104 

Further analysis based on expression matrix was performed with Seurat package (v4.0.3) [7]. 105 
Cells with less than 2000 genes detected or more than 15% mitochondrial UMIs were discarded. 106 
Top 2,000 highly variable genes were selected with Seurat FindVariableFeatures function. Principle 107 
component analysis (PCA) was then performed on highly variable genes. Unsupervised clustering 108 
of cells was performed using original Louvain algorithm of Seurat FindClusters function. UMAP 109 
embedding was calculated to visualized cluster and cell type information. 110 

Differential gene expression (DGE) and differential transcript usage (DTU) analysis 111 

Differential gene expression analysis was performed using Wilcoxon rank sum test on 112 
log2(transcript per million) value. Genes with absolute log2-transformed fold change of >1, and an 113 
adjusted P value of P < 0.05 were considered as differentially expressed. 114 

Differential transcript usage analysis was performed with R package DTUrtle (v1.0.2) [8]. First, 115 
transcripts with less than 5 UMI support or detected in less than 25 cells were removed to reduce 116 
multiple testing. The Dirichlet-multinomial model was used to estimate the precision parameter. 117 
Next, a group-wise maximum likelihood estimation of transcript proportions was calculated. A 118 
likelihood ratio test for transcript proportions was used to identify DTU. Genes with false discovery 119 
rate (FDR) < 0.05 were considered significant. 120 

Transcriptome assembly 121 

Unique reads after deduplication were mapped to reference genome of human (GRCh38.p13) 122 
or mouse (GRCm38.p6) from Ensembl release 101 using minimap2 (v 2.17-r941) [4]. Reads with 123 
MAPQ < 30 were discarded. We performed transcriptome assembly for each single cell using 124 
StringTie (v2.1.7) [9] in long reads processing mode. Gene annotation gtf files from Ensembl were 125 
used to guide the assembly process. Single-cell assemblies were classified using the sqanti3_qc.py 126 
script of SQANTI3 (v3.4.1) [10] with the parameters “--skipORF --report pdf” and then filtered 127 
using the sqanti3_RulesFilter.py script of SQANTI3 (v3.4.1) with default parameters. 128 

Single-cell transcriptome assemblies were integrated into merged assembly in a hierarchical 129 
manner using the merge subcommand of TAMA (v0.0) [11]. Briefly, single-cell assemblies were 130 
first merged into 9 cell-line assemblies with the parameter “-a 100 -m 20 -z 50”. Only transcript 131 



supported by more than 5 cells were retained in cell line assemblies. Next, 6 cell-line assemblies for 132 
human and 3 cell-line assemblies for mouse were merged respectively with the parameter “-a 10 -133 
m 10 -z 10”. The merged assemblies were then compared with Ensembl gene annotation (release 134 
101) and filtered using SQANTI3 (v3.4.1) with identical parameters as used for single-cell 135 
assemblies. 136 

Consensus and polishing of TCR and immunoglobin (BCR) sequences 137 

In each GM12878 or H9 cell, reads mapped to immunoglobin or T cell receptor gene locus 138 
(IGH: chr14:105,586,437-106,879,844; IGL: chr22:22,026,076-22,922,913; TRA: 139 
chr14:21,621,904-22,552,132; TRB: chr7:142,299,011-142,813,287) were extracted. For each 140 
single cell, extracted reads were initially clustered using usearch (v.11.0.667) [12] -cluster_fast -id 141 
0.75 -sizeout -centroids. The centroid read of the largest group was selected as representative 142 
sequence and used as the template for 4 rounds of polishing using all reads from the same cluster 143 
with minimap2 (v 2.17-r941) [4] -x map-ont followed by racon (v1.5.0) [13] -w 200 -m 8 -x -6 -g -144 
8 -q 7. The racon-polished sequence was further corrected using all reads of the same cluster with 145 
Medaka (https://github.com/nanoporetech/medaka) consensus -m r941_min_high_g360. The 146 
medaka-corrected sequences were regarded as the TCR/immunoglobin transcripts and were utilized 147 
for the identification of V(D)J recombination. This pipeline was reported to produce sequence of 148 
~99.995% accuracy at 25X coverage during amplicon sequencing [14]. 149 

Identify V(D)J recombination for TCR and immunoglobin (BCR)  150 

Genes encoding variable regions of B- and T- lymphocyte antigen receptors are assembled by 151 
recombination of variable (V), diversity (D), and joining (J) gene segments [15-16]. The V(D)J 152 
elements in the corrected TCR/immunoglobin transcripts were identified with Igblast (v 1.17.1) [17] 153 
with parameters “-organism human -show_translation -outfmt 19” for immunoglobin and an extra 154 
parameter “-ig_seqtype TCR” for TCR. Annotation for human VDJ elements were downloaded 155 
from the international immunogenetics information system (IGMT). Hits with the smallest E value 156 
were retained for each cell. 157 

Subclones of GM12878 and H9 cells were identified based on the V(D)J combination of each 158 
cell. Briefly, GM12878 cells with the same VDJ elements for immunoglobin heavy chain and same 159 
VJ elements for light chain were considered as the same subclone. H9 cells with the same VDJ 160 
elements for β chain and same VJ elements for α chain were considered as the same subclone. 161 
Subclones with more than 5 cells were considered solid and retained for further analysis. 162 
  163 



Availability of data and materials 164 
All relevant data are available from the Gene Expression Omnibus (GEO) database (accession 165 
number: GSE203561). 166 
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Figure legend 205 

Fig. 1 SCAN-seq2 technical performances and analysis of Isoginkgetin (IGG) responses in cell 206 

lines. a. Schematic diagram of SCAN-seq2 library construction. N different single cells are labeled 207 

with 3’ barcode during reverse transcription and pooled into the same tube for PCR amplification. 208 

M different tubes are pooled together and sequenced with Nanopore platform, allowing parallel 209 

sequencing of N×M cells. b. Number of detected genes (top) and isoforms (bottom) in 852 cells 210 

from library 9CL. Median values are labeled under each cell line. c. Pearson correlation of ERCC 211 

concentration and sequenced UMIs in each library. d. Correlation between gene expression 212 

quantification of SCAN-seq2 and Smart-seq3 in 293T cells. Single cells are aggregated into pseudo-213 

bulk for comparison. e-f. UMAP embeddings of Hela (e) and HepG2 (f) cells after IGG treatment 214 

at different concentration and time. Cells are colored by unsupervised clustering results (top left), 215 

cell cycle phase (top right), IGG concentration (bottom left) and time of treatment (bottom right). 216 

IGG-responsive clusters are highlighted in red circles. g. Venn diagram showing the overlap in 217 

upregulated differentially expressed genes (DEGs) and differential transcript usage (DTU) in IGG-218 

responsive cluster of Hela and HepG2 cells. h. Venn diagram of DEGs and genes with significant 219 

DTU in IGG-responsive cluster of Hela cells. i. Fraction of each subcategory for NIC transcripts in 220 

different clusters. P values are calculated by two-tailed Wilcoxon rank-sum test. *: p < 0.05, **: p 221 

< 0.01, ***: p < 0.001. j. Examples of genes with significant differential transcript usage in IGG-222 

responsive cluster. Exons with different usage are highlighted in red. 223 

 224 

Supplementary Fig. S1 Flowchart of SCAN-seq2 data processing. a. Demultiplexing, trimming, 225 

filtering, and deduplication of raw Nanopore reads. b. Isoform expression quantification and 226 

reference-guided transcriptome assembly. Software utilized in each step is indicated next to the lines. 227 

The nodes are colored by the scale of the data, either single-cell level (green), cell line level (red), 228 

or all cells merged (purple). The number of reads, genes, and transcripts is also labeled in each node. 229 

For single cell level analysis, the number is calculated as the average value of all cells. The file 230 

format of each node is labeled in brackets. 231 

 232 

Supplementary Fig. S2 Statistics of SCAN-seq2 reads after each processing step. a. Boxplot of 233 

reads statistics after demultiplexing, quality control, and deduplication in every single cell. 234 

Mean_read_quality (Q-score) b. Circle plot showing number of reads and total bases retained after 235 

each processing step. The total yield of a single PromethION is defined as a whole circle. 236 

 237 

Supplementary Fig. S3 Overview of SCAN-seq2. a. Structure of SCAN-Seq2 library. Barcodes 238 

are introduced to both ends of cDNA for massively parallel analysis of thousands of single cells. b. 239 



Donut chart showing the distribution of sequenced reads from library 9CL. 75.9% of reads have 240 

complete library structure and can be used for downstream analysis. c. Fragment analysis (FA) of 241 

library 9CL. d. Histogram indicating the length of cDNA sequence after adaptor trimming. e. 242 

Mapping rate of reads from each cell line. The median values are labeled below. f. Barnyard plot of 243 

710 cells from library 4CL. Dotted line indicates specificity of 90%. Red dots indicate human-244 

specific barcodes. Blue dots indicate mouse-specific barcodes. One barcode associated with both 245 

human and mouse transcript (Gray). g. Saturation analysis of SCAN-seq2. Number of detected 246 

genes and isoforms reach plateau at 400,000 reads per cell. h. Cell-to-cell correlation of SCAN-seq2 247 

gene quantification in 293T cells, comparing with Smart-seq3. i. Expression level of PTPRC gene 248 

(top left) and its protein-coding isoforms in 3 immune cell lines. GM12878 cells mainly utilize 249 

PTPRC-209 while K562 cells mainly utilize PTPRC-201. j. Alternative splicing at exon 4 (A), 5 250 

(B), 6 (C) of PTPRC gene. PTPRC-201 uses none of these three exons, encoding CD45 RO. PTPRC-251 

209 uses all three exons, thus encoding CD45 RABC. 252 

 253 

Supplementary Fig. S4 Evaluation of sequencing errors in 24-bp barcode sequences. Errors of 254 

Nanopore sequencing, including mismatched (top), indel (middle), and overall errors (bottom) were 255 

counted in each demultiplexed barcode. a. 5 prime barcodes. b. 3 prime barcodes. 256 

 257 

Supplementary Fig. S5 Comparison of SCAN-seq2 UMIs with those in NGS methods. UMIs 258 

of ERCC reads identified by SCAN-seq2 are compared to those identified by Illumina sequencing 259 

of the same library (but the original SCAN-seq2 sequencing library has been fragmented into about 260 

300bp fragments and the fragments containing 3’ ends of the original library are captured by biotin-261 

streptavidin affinity strategy and further ligated into NGS sequencing adaptor pairs). a. No sequence 262 

error is tolerated. b. Tolerated sequence error at an edit distance of 1. 263 

 264 

Supplementary Fig. S6 SCAN-seq2 analysis of 9 different cell lines. a. UMAP embedding of 265 

library 9CL. Cells are colored by cell line (left) and unsupervised clusters (right). b. Violin plot 266 

showing selected markers of each cell line. c. Heatmap of cell-line specific markers. For each cell 267 

line, 5 genes with highest fold change against other cells are included. 268 

 269 

Supplementary Fig. S7 Systematic evaluation of pseudogene expression in human cell lines 270 

using SCAN-seq2. a. Expression measurements in SCAN-seq2 of selected pseudogenes and 271 

corresponding parent genes. 4 gene pairs with identity 95% are selected. b. Spiral chart showing 272 

pairwise sequence alignment of RPS2-201 (purple) and RPS2P46-201 (green) transcript. Gaps are 273 



highlighted in red. Mismatched bases and gap sequence are labeled by corresponding nucleobases. 274 

c. Number of expressed genes under different TPM cutoff and number of supported cells. 275 

Pseudogenes are grouped by gene type from Ensembl annotation. d. Fraction of expressed 276 

pseudogenes with different expression level. TPM of each gene is calculated as the average 277 

expression level of top 100 cells with highest expression level. e. Comparison of expression levels 278 

of pseudogenes and corresponding protein-coding parent genes. Pseudogenes generally possess 279 

significantly lower expression level comparing with parent gene. f. Correlation analysis of 280 

pseudogene expression and parent gene expression in 6 human cell lines. Pairs with absolute value 281 

of spearman correlation coefficient > 0.25 are considered significant. Significant pairs are labeled 282 

with the symbol of parent genes and pseudogene. Positively correlated pairs are colored in red. 283 

Negatively correlated pairs are colored in blue. 284 

 285 

Supplementary Fig. S8 Unsupervised clustering on pseudogene expression distinguishes 286 

different cell lines. a. UMAP embedding of 6 human cell line. Reductions are calculated on 287 

pseudogenes only. Cells are colored by cell line (left) and unsupervised clusters (right). b. Heatmap 288 

of cell-line specific pseudogene markers. For each cell line, 5 pseudogenes with highest fold change 289 

against other cells are included. 290 

 291 

Supplementary Fig. S9 Examples of pseudogenes identified in H9 and GM12878 cells. 292 

Schematic displays 3 pseudogene-parent gene pairs (pseudogene CRYBB2P1 and parent gene 293 

CRYBB2, pseudogene PMS2P1 and parent gene PMS2, pseudogene AC139256.1 and parent gene 294 

PLA2G10) (a-c). The red parts indicate regions of identical sequences between the pseudogene and 295 

corresponding parent gene. The blue parts are pseudogene-specific regions, which were amplified 296 

by RT-PCR followed by Sanger-sequencing. Details are showed in Supplementary Table. S8. 297 

 298 

Supplementary Fig. S10 Transcriptome assembly using SCAN-seq2. a. Number of assembled 299 

isoforms in each single cell. The median values of each cell line are labeled below. b. Schematic 300 

diagram of isoform classification by comparing with gene annotations. Disagreements with 301 

annotations are highlighted in red. Full splice match (FSM) and incomplete splice match (ISM) 302 

indicate splicing events conforming to annotations. Novel in catalog (NIC) indicates combination 303 

of known splicing site and junctions. Novel not in catalog (NNC) indicates novel splicing sites. c. 304 

Fraction of each isoform classification in 6 human cell lines (top) and 3 mouse cell lines (bottom). 305 

Transparency of bars indicates number of concordant cell lines. Isoforms detected in all cell lines 306 

are colored with lowest transparency. d. Schematic diagram of unannotated transcript classification. 307 



Disagreements with annotations are highlighted in red. CJ indicates unannotated combination of 308 

splicing junctions. CS utilizes known splicing sites to create unannotated junctions. IR indicates 309 

retained intron. NNC includes unannotated splicing sites. e. Donut chart demonstrating fraction of 310 

each NIC subcategories in 6 human cell lines (left) and 3 mouse cell lines (right).  311 

 312 

Supplementary Fig. S11 Examples of unannotated transcripts identified in H9 and GM128278 313 

cells. a. Transcript G3378.8 matches partially to ATP5F1B gene sequences, but lacks the second 314 

exon. b. CDKN3 gene has three annotated transcripts whereas transcript G4256.9 lacks the second 315 

exon compared with the known three transcripts. c. Transcript G7988.23 shares a portion of 316 

sequences with PPP6R1 gene, but uses an alternative transcription start site (TSS). Details are 317 

showed in Supplementary Table. S8. 318 

 319 

Supplementary Fig. S12 T cell receptor (TCR) analysis of H9 cell line. a. Schematic diagram of 320 

V(D)J recombination in TCR beta chain (TRB) and alpha chain (TRA). In the assembled genome, 321 

only a single VDJ element is retained for expression. b. Expression of all TCR constant region genes 322 

in 3 immune cell lines. H9 cells mainly utilize TRBC1 for beta chain. c. Identification of VDJ 323 

elements in TRB transcript and VJ in TRA transcript in each single cell. Elements with more than 5 324 

cells are labeled. Cells with insufficient reads or no significant hits are labeled as none. d. Subclone 325 

analysis of H9 cell line. Two distinct clones with different TRAV and TRAJ elements are identified. 326 

 327 

Supplementary Fig. S13 Immunoglobin (BCR) analysis of GM12878 cell line. a. Schematic 328 

diagram of V(D)J recombination in Immunoglobin heavy chain (IGH), kappa light chain (IGK) and 329 

lambda light chain (IGL). b. Expression of all immunoglobin heavy chain constant region genes in 330 

3 immune cell lines. Transcripts of gene IGHM and IGHD are detected in GM12878 cells, indicating 331 

that most GM12878 cells express immunoglobulin M (IgM) whereas a small proportion of 332 

GM12878 cells express immunoglobulin D (IgD). c. Expression of all immunoglobin light chain 333 

constant region genes in 3 immune cell lines. GM12878 cells only utilize IGLC2 from lambda light 334 

chain locus for light chain construction. d. Identification of VDJ elements in IGH transcript and VJ 335 

in IGL transcript in each single cell. The D element of IGL is not detected, and VJ rearrangement is 336 

same in essentially all GM12878 cells. Elements with more than 5 cells are labeled. Cells with 337 

insufficient reads or no significant hits are labeled as none. E. Subclone analysis of GM12878 cell 338 

line. Three distinct clones with different VDJ elements are identified. 339 

 340 

Supplementary Fig. S14 Comparison of clustering on IGG-treated Hela cells by SCAN-seq2 341 



and NGS methods. UMAP embeddings of Hela cells after IGG treatment at different 342 

concentrations and times. scRNA-seq was performed with both SCAN-seq2 (a) and NGS-based 343 

STRT method (b). Cells are colored by unsupervised clustering results (top left), IGG concentration 344 

(top right), time of treatment (bottom left) and cell cycle phase (bottom right). 345 

 346 

Supplementary Fig. S15 GO enrichment analysis in IGG-responsive cluster in 2 cell lines. Dots 347 

are colored by fold of enrichment and sized by the number of relevant genes. 348 

 349 

Supplementary Fig. S16 Validation of DTU events between H9 and GM12878 cell lines. DTU 350 

events in 4 genes (ANAPC5, RANGRF, RPL22L1, ISOC2) are shown (a-d). For each DTU event, 351 

two different cDNA products from transcripts of different lengths from a specific gene are amplified 352 

by one pair of primers. The expression ratios inferred by SCAN-seq2 are listed on the right. 353 
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