SUPPLEMENTARY INFORMATION

Changes within the central stalk of *E. coli* F₁F₀ ATP synthase observed after addition of

ATP

Meghna Sobti et al.

Supplementary Fig. 1: Cryo-EM micrographs and power spectrums. (a) WT *E. coli* F_1F_0 ATP synthase. (b) $\epsilon\Delta$ CTH *E. coli* F_1F_0 ATP synthase. (left panels) Representative micrograph showing ATP synthase particles (white scale bar is equivalent to 50 nm) and (right panels) power spectrum of same micrograph. The data was taken on a distinct sample, we have imaged *E. coli* ATP synthase many times and taken full cryo-EM datasets >10 times. The micrographs shown were chosen to show clear ATP synthase particles (high defocus) and are devoid of ice contamination and particle aggregation.

Supplementary Fig. 2: Flowchart describing the classification of particles into distinct conformations in the WT *E. coli* F_1F_0 ATP synthase + 10 mM MgATP dataset.

Supplementary Fig. 3: Comparison of the relative axel rotary position between F_1 -ATPase structures. Structures were first aligned using the β barrel crown (residues α 27-136 and β 2-116) and then the rotation angle of the axel (bacterial residues 1-22 & 247-284; bovine residues 1-22 & 233-273) was calculated in Chimera. Bovine mitochondrial F_1 -ATPase ground state in black and comparison structure in red.

Supplementary Fig. 4: Local resolution estimates. Local resolution estimates of maps described in Supplementary Fig. 2 (a) and close ups of the central stalk region in State 2 "half-up" and "down" maps (b) to highlight resolution estimates in this region.

Supplementary Fig. 5: Cryo-EM maps of the γ foot and ε CTD in the State 2 "half-up" and "down" sub states. Close up view of the cryo-EM maps corresponding to the γ foot (residues 39-57), ε CTH1 (residues 87-102) and ε CTH2 (residues 110-136).

Supplementary Fig. 6: The interaction of the ϵ NTD and c ring facilitates assignment of the c subunits. Model and maps of State 2 "down" (left) and "half-up" (right) show how relative c subunit rotation was assigned using the interaction with the ϵ NTD (indicated with arrow).

Supplementary Fig. 7: Flowchart describing the classification of particles into distinct conformations in the $\epsilon \Delta CTH1 E. coli F_1F_0 ATP$ synthase + 10 mM MgATP dataset.

Supplementary Fig. 8: ATP regeneration assays. Raw trace for the ATP regeneration assays of WT, $\varepsilon \Delta CTH2$ and $\varepsilon \Delta CTH1+2$ mutations.

Supplementary Fig. 9: Subunits γ and ε from *Bacillus* PS3. Subunit ε shows a single extended ε CTH (highlighted and labelled) that binds in a distinct manner compared to *E. coli* ε CTD (shown in this study – see Fig. 1b). Model retrieved from PDB:4xd7¹.

Supplementary Fig. 10: Fourier shell correlation curves for cryo-EM maps presented in this study.

	#1 State1 (EMD B 27296)	#2 State1 half-up (EMD B 27297) (PDB 8DBP)	#3 State 1 half-up Fo classifi ed (EMD B 27298) (PDB 8DBQ)	#4 State1 half-up Fo refine (EMD B 27299)	#5 State1 down (EMD B 27300)	#6 State1 down Fo classifi ed (EMD B 27301)	#7 State2 558 (EMD B 27302)	#8 State2 half-up (EMD B 27303) (PDB 8DBR)	#9 State2 half-up Fo classifi ed (EMD B 27304) (PDB 8DBS)	#10 State2 half-up Fo refine (EMD B 27305)	#11 State2 down (EMD B 27306) (PDB 8DBT)	#12 State2 down Fo classifi ed (EMD B 27307) (PDB 8DBU)	#13 State2 down Fo refine (EMD B 27308)	#14 State3 (EMD B 27309)	#15 State 3 down (EMD B 27310) (PDB 8DBV)	#16 State 3 down Fo classifi ed (EMD B 27311) (PDB8 DBW)	#17 State 3 down Fo refine (EMD B 27312)	#18 State1 εΔCT H2 (EMD B 27313)	#19 State2 εΔCT H2 (EMD B 27314)	#20 State3 εΔCT H2 (EMD B 27315)
Data collection and processing Magnification Voltage (kV) Electron exposure ($e^{-}(\hat{A}^{2})$	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48	81,000 300 48
Defocus range (µm) Pixel size (Å) Symmetry imposed Initial particle images (no.)	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 429,63 8	0.8-3.5 1.08 C1 83,440	0.8-3.5 1.08 C1 83,440	0.8-3.5 1.08 C1 83,440
Final particle images (no.) Map resolution (Å) 0.143 FSC threshold	100,83 1 3.0	33,587 3.6	9,354 4.0	9,254 7.4	9,080 7.2	2,617 7.8	215,00 3 2.7	74,946 3.2	23,917 3.5	23,917 7.0	159,24 6 3.1	40,510 3.4	40,510 7.2	113,80 4 3.0	32,204 3.7	8,757 4.1	8,757 7.4	26,899 4.0	36,263 3.3	20,276 3.9
Refinement																				
Initial models used (PDB codes)	-	60QT	60QT	-	-	-	-	60QV	60QV	-	60QV, 1AQT	60QV, 1AQT	-	-	60QW ,1AQT	60QW ,1AQT	-	-	-	-
Model resolution (Å) 0.5 FSC threshold, masked/ unmasked	-	3.7/4.2	4.2/6.6	-	-	-	-	3.2/3.6	3.6/4.0	-	3.2/3.4	3.5/3.9	-	-	3.8/4.2	4.2/6.7	-	-	-	-
Map sharpening B factor (Å ²)	-57	-62	-73	-169	-125	-114	-53	-61	-63	-185	-63	-53	-199	-58	-74	-75	-176	-14.8	-38.6	-22.4
Model composition Non-hydrogen atoms Protein residues Ligands	- -	36,632 4,800 11	36,737 4,819 11	- -	- -	- -	- -	36,678 4,814 11	36,678 4,814 11	- -	36,937 4,847 11	36.917 4,845 11	-	-	36,863 4,837 11	36,839 4,837 11	-	- -	- -	- -
B factors (Å ²) Protein Ligand	-	148.21 87.60	173.69 111.04	-	-	-	-	159.65 85.50	131.51 66.60	-	219.08 86.12	137.28 64.63	-	-	145.65 64.93	207.29 116.50	:	- -	-	-
R.m.s. deviations Bond lengths (Å) Bond angles (°)	-	0.01 1.207	0.005 0.892	-	-	-	-	0.010 1.287	0.004 0.640	-	0.01 1.267	0.004 0.837	-	-	0.010 1.231	0.004 0.811	-	-	-	-
Validation MolProbity score Clashscore Poor rotamers (%)	- -	1.23 2.42 1.39	1.04 1.98 1.26	- - -	- - -	- - -	- - -	1.20 2.71 0.74	1.48 4.94 1.94	- - -	1.18 2.49 0.65	1.05 2.60 0.76	- - -	- - -	1.52 3.33 1.86	1.16 2.77 1.10	- - -	- - -	- - -	- - -
Ramachandran plot Favored (%) Allowed (%) Disallowed (%)	- - -	97.52 2.38 0.11	98.35 1.63 0.02	- -	- - -	- - -	- - -	97.25 2.68 0.06	98.43 1.53 0.04	- -	97.19 2.77 0.04	98.40 1.58 0.02	- - -	- - -	97.08 2.88 0.04	97.70 2.23 0.06	- - -	- - -	- - -	- - -

Supplementary Table 1: Cryo-EM data collection, refinement, and validation statistics.

References

1. Shirakihara, Y. *et al.* Structure of a thermophilic F₁-ATPase inhibited by an epsilonsubunit: deeper insight into the epsilon-inhibition mechanism. *FEBS J* **282**, 2895-2913, doi:10.1111/febs.13329 (2015).