|                                                 | SHARP SPOC:1xS5P CTD                | RBM15 SPOC                |
|-------------------------------------------------|-------------------------------------|---------------------------|
| Source                                          | MASSIF1 (ESRF, Grenoble,<br>France) | I04 (DLS, Didcot, UK)     |
| Wavelength (Å)                                  | 0.9660                              | 0.9795                    |
| Resolution (Å)                                  | 36.58-1.55<br>(1.58-1.55)           | 57.45-1.45<br>(1.47-1.45) |
| Space group                                     | P212121                             | P212121                   |
| Unit cell (Å, °)                                | 43.33 60.52 68.27                   | 43.37 58.97 68.24         |
| Molecules (a.u.)                                | 1                                   | 2                         |
| Unique reflections                              | 26393 (1257)                        | 62616 (4578)              |
| Completeness (%)                                | 98.8 (97.9)                         | 100 (100)                 |
| $R_{\rm merge}^{\rm b}$                         | 0.072 (1.95)                        | 0.112 (2.08)              |
| $R_{\rm meas}^{\rm c}$                          | 0.083 (2.25)                        | 0.116 (2.12)              |
| CC(1/2)                                         | 0.998 (0.203)                       | 0.999 (0.571)             |
| Multiplicity                                    | 4.3 (4.2)                           | 3.5 (3.6)                 |
| I/sig(I)                                        | 11.3 (1.1)                          | 12.9 (10.6)               |
| $B_{\text{Wilson}}$ (Å <sup>2</sup> )           | 20.4                                | 15.7                      |
| $R_{\rm work}^{\rm e}/R_{\rm free}^{\rm f}$ (%) | 21.5/24.7                           | 20/21.9                   |
| r.m.s.d. bonds (Å)                              | 0.004                               | 0.006                     |
| r.m.s.d. angles (°)                             | 0.731                               | 0.872                     |

### Supplementary Table 1. X-ray data collection and refinement

<sup>a</sup> Values in parentheses are for the highest resolution shell. N

$${}^{\mathrm{b}}R_{merge} = \frac{\sum_{hkl} \sum_{i=1}^{N} \left| I_{i(hkl)} - \overline{I}_{(hkl)} \right|}{\sum_{hkl} \sum_{i=1}^{N} I_{i(hkl)}}$$

$${}^{\mathrm{c}}R_{meas} = \frac{\sum_{hkl} \sqrt{N/(N-1)} \sum_{i=1}^{N} \left| I_{i(hkl)} - \overline{I}_{(hkl)} - \overline{I}_{i(hkl)} - \overline{I}_{i(hk$$

where  $\overline{I}_{(hkl)}$  is the mean intensity of multiple  $I_{i(hkl)}$  observations of the symmetry-related reflections, N is the redundancy

$${}^{e}R_{work} = \frac{\mathring{a} \|F_{obs}| - |F_{calc}\|}{\mathring{a}|F_{obs}|}$$

<sup>f</sup>  $R_{\text{free}}$  is the cross-validation  $R_{\text{factor}}$  computed for the randomly chosen test set of reflections (5 %) which are omitted in the refinement process.

## **Supplementary Table 2. Peptides**

|              | Sequence                          | Experiment              | Source           |
|--------------|-----------------------------------|-------------------------|------------------|
| CTD          | Atto488-PSYSPTSPSYSPTSPS          | Fluorescence anisotropy | Eurogentec       |
| 1xY1P        | Atto488-PSpYSPTSPSYSPTSPS         | Fluorescence anisotropy | Eurogentec       |
| 2xY1P        | Atto488-PSpYSPTSPSpYSPTSPS        | Fluorescence anisotropy | Eurogentec       |
| 1xS2P        | Atto488-PSYpSPTSPSYSPTSPS         | Fluorescence anisotropy | Eurogentec       |
| 2xS2P        | Atto488-PSYpSPTSPSYpSPTSPS        | Fluorescence anisotropy | Eurogentec       |
| 1xT4P        | Atto488-PSYSPpTSPSYSPTSPS         | Fluorescence anisotropy | Eurogentec       |
| 2xT4P        | Atto488-PSYSPpTSPSYSPpTSPS        | Fluorescence anisotropy | Eurogentec       |
| 1xS5P        | Atto488-PSYSPTpSPSYSPTSPS         | Fluorescence anisotropy | Eurogentec       |
| 2xS5P        | Atto488-PSYSPTpSPSYSPTpSPS        | Fluorescence anisotropy | Eurogentec       |
| 1xS7P        | Atto488-PSYSPTSPpSYSPTSPS         | Fluorescence anisotropy | Eurogentec       |
| 2xS7P        | Atto488-PSYSPTSPpSYSPTSPpS        | Fluorescence anisotropy | Eurogentec       |
| NCoR         | FAM-REPAPLLSAQYETLSDSDD           | Fluorescence anisotropy | EMC              |
|              |                                   |                         | microcollections |
| NCoR pS2436  | FAM-REPAPLLSAQYETLpSDSDD          | Fluorescence anisotropy | EMC              |
|              |                                   |                         | microcollections |
| FMR1         | FAM-SNASETESDHRDELSDWS            | Fluorescence anisotropy | Genosphere       |
| FMR1 pS511   | FAM-SNASETESDHRDEL <b>pS</b> DWS  | Fluorescence anisotropy | Genosphere       |
| WTAP         | FAM-MTNEEPLPKKVRLSETDFK           | Fluorescence anisotropy | Genosphere       |
| WTAP pS14    | FAM-MTNEEPLPKKVRL <b>pS</b> ETDFK | Fluorescence anisotropy | Genosphere       |
| ZC3H13       | LTPPLRRSASPYPSHSLSSP              | Fluorescence anisotropy | Genosphere       |
| ZC3H13 pS372 | LTPPLRRSA <b>pS</b> PYPSHSLSSP    | Fluorescence anisotropy | Genosphere       |
| ZC3H13 pS381 | LTPPLRRSASPYPSHSLSpSP             | Fluorescence anisotropy | Genosphere       |
| ZC3H13 pS372 | LTPPLRRSApSPYPSHSLSpSP            | Fluorescence anisotropy | Genosphere       |
| pS381        |                                   |                         |                  |
| 1xS5P        | PSYSPT <b>pS</b> PSYSPTSPS        | X-ray crystallography   | AnaSpec          |

# Supplementary Table 3. Antibodies

|                      | Source                       | Identifier           |                             |
|----------------------|------------------------------|----------------------|-----------------------------|
| Rabbit Anti-GFP      | Abcam                        | RRID:AB_303395;      | ChIP: $6 \mu L/10^8$ cells; |
|                      |                              | ab290                | 1:1000 for IF               |
|                      |                              |                      | 1:1000 for WB               |
| Mouse anti-FLAG      | Sigma                        | RRID:AB_439702;      | 1:10000 for WB;             |
| M2-peroxidase        |                              | A8592                | 1:500 for IF                |
| Mouse anti-Pol II    | Santa Cruz                   | RRID:AB_630203; sc-  | 1:1000 for WB               |
| clone F-12           |                              | 55492                |                             |
| Rabbit anti-SPT6     | Novus Biologicals            | RRID:AB_2196402;     | 1:1000 for WB               |
|                      |                              | NB100-2582           |                             |
| Mouse anti-DSIF      | Becton Dickinson             | RRID:AB_398420;      | 1:1000 for WB               |
|                      |                              | 611107               |                             |
| Rabbit anti-PAF1     | Abcam                        | RRID:AB_2159769;     | 1:1000 for WB               |
|                      |                              | ab20662              |                             |
| Rabbit anti-Leo1     | Bethyl                       | RRID: AB_309451;     | 1:1000 for WB               |
|                      |                              | A300-174A            |                             |
| Rabbit anti-CK2a     | Cell Signaling               | RRID:AB_2236816;     | 1:1000 for WB               |
|                      |                              | 2656                 |                             |
| Rat anti-ZNF768      | Kindly provided by Dirk Eick |                      | 1:10 for WB                 |
| (5c8)                |                              |                      |                             |
| Rabbit anti-MSH2     | Cell Signaling               | RRID:AB_2235387;     | 1:1000 for WB               |
|                      |                              | #2017                |                             |
| Mouse anti-          | Santa Cruz                   | RRID:AB_2894929; sc- | 1:1000 for WB               |
| HTATSF1              |                              | 514351               |                             |
| Rabbit anti-RBM15    | Bethyl                       | RRID:AB_2253435;     | 1:1000 for WB;              |
|                      |                              | A300-821A            | 1:200 for IF                |
| Rabbit anti-PCNA     | Abcam                        | RRID:AB_444313;      | 1:1000 for WB               |
|                      |                              | Ab18197              |                             |
| Rabbit anti-WTAP     | Cell Signaling               | RRID:AB_2799512;     | 1:1000 for WB               |
|                      |                              | 56501                |                             |
| Rabbit anti-CHK2     | Cell Signaling               | RRID:AB_2080793;     | 1:1000 for WB               |
|                      |                              | 2662                 |                             |
| Rabbit anti-IWS1     | Cell Signaling               | RRID:AB_10694503;    | 1:1000 for WB               |
|                      |                              | 5681                 |                             |
| Mouse anti-FMR1      | Merck Millipore              | RRID:AB_2909408;     | 1:1000 for WB               |
|                      |                              | MABN2453             |                             |
| Mouse anti-α-tubulin | Sigma                        | RRID:AB_477582:      | 1:5000 for WB               |
|                      |                              | T6074                |                             |
| Rabbit anti-DIDO1    | Atlas antibodies             | RRID: AB_2680944     | 1:500 for WB                |
|                      |                              | HPA049904            |                             |
| Goat anti-mouse      | Invitrogen                   | A11004               | 1:500 for IF                |
| Alexa Fluor 568      |                              |                      |                             |
| Goat anti-rabbit     | Invitrogen                   | A11011               | 1:500 for IF                |
| Alexa Fluor 568      |                              |                      |                             |

## Supplementary Table 4. Oligonucleotides

|                            | a                                                                                             | -                                                             |
|----------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                            | Sequence                                                                                      | Experiment                                                    |
| CMV10_down                 | 5'-TCTAGAGGATCCCGGGTGGCATC-3'                                                                 | Gibson assembly with<br>CMV10 N3XFLAG                         |
| CMV10_up                   | 5'-CGCAAGCTTGTCATCGTCATCCTTG-3'                                                               | Gibson assembly with<br>CMV10 N3XFLAG                         |
| DIDO_down                  | 5'-<br>CAAGGATGACGATGACAAGCTTGCGATGG<br>ACGACAAAGGCGACCCGAGCAATG-3'                           | Gibson assembly of<br>DIDO/DIDO dSPOC with<br>CMV10 N3XFLAG   |
| DIDO_up                    | 5'-<br>GATGCCACCCGGGATCCTCTAGACTAGGCC<br>TGCGAGGCGGTGCC-3'                                    | Gibson assembly of<br>DIDO/DIDO dSPOC with<br>CMV10 N3XFLAG   |
| DIDO_dSPOC_down            | 5'-<br>ACGTTCCCCTCCAGAGGGAGACACGGGAG<br>AGTTAGACAAGATGGACGAAAAGCGG-3'                         | Gibson assembly of DIDO<br>dSPOC with CMV10<br>N3XFLAG        |
| DIDO_dSPOC_up              | 5'-CGTGTCTCCCTCTGGAGGGGAACG-3'                                                                | Gibson assembly of DIDO<br>dSPOC with CMV10<br>N3XFLAG        |
| SHARP_down                 | 5'-<br>CAAGGATGACGATGACAAGCTTGCGATGGT<br>CCGGGAAACCAGGCATCTCTGGG-3'                           | Gibson assembly of<br>SHARP/SHARP dSPOC<br>with CMV10 N3XFLAG |
| SHARP_up                   | 5'-<br>GGGATGCCACCCGGGATCCTCTAGATCACA<br>CGGAGGCAATGACAATCATGAGGTG-3'                         | Gibson assembly of<br>SHARP with CMV10<br>N3XFLAG             |
| SHARP_dSPOC_up             | 5'-<br>GGGATGCCACCCGGGATCCTCTAGATCAGG<br>GTCTCTGGGAAGTCAGGTGTGGAGAG-3'                        | Gibson assembly of<br>SHARP dSPOC with<br>CMV10 N3XFLAG       |
| RBM15_NotI_down            | 5'-<br>CGTGCGGCGGCCGCGATGAGGACTGCGGG<br>GCGGGAC<br>-3'                                        | Cloning RBM15/RBM15<br>dSPOC into CMV10<br>N3XFLAG            |
| RBM15_XbaI_up              | 5'-<br>GCTCTAGACTATAACAGGGTCAGCGCCAAG<br>TTTTC<br>-3'                                         | Cloning RBM15 into<br>CMV10 N3XFLAG                           |
| RBM15_noSPOC_XbaI_<br>up   | 5'-<br>GCTCTAGACTAAGGGGCTGTCCCCCATCC<br>TG-3'                                                 | Cloning RBM15 dSPOC<br>into CMV10 N3XFLAG                     |
| PHF3_NLS_SPOC_NotI<br>_fw  | 5'-<br>CGTGCGGCGGCCGCGATGCGAGCCCCTAAG<br>AAAAAGCGGAAGGTGGGCGGCTCTACCTTT<br>CTGGCTCGATTG-3'    | Cloning PHF3 NLS-SPOC<br>into CMV10 N3XFLAG                   |
| PHF3_SPOC_XbaI_rv          | 5'-<br>GCTCTAGATTAACTGTGCTGTCGCTTCAG-3'                                                       | Cloning PHF3 NLS-SPOC<br>into CMV10 N3XFLAG                   |
| DIDO_NLS_SPOC_NotI<br>_fw  | 5'-<br>CGTGCGGCGGCCGCGATGCGAGCCCCTAAG<br>AAAAAGCGGAAGGTGGGCGGCACCCTCTTT<br>TTGTCTCGACTC-3'    | Cloning DIDO NLS-<br>SPOC into CMV10<br>N3XFLAG               |
| DIDO_SPOC_XbaI_rv          | 5'-<br>GCTCTAGATTAACTGTTTGCGGGACGTTTG<br>AT-3'                                                | Cloning DIDO NLS-<br>SPOC into CMV10<br>N3XFLAG               |
| SHARP_NLS_SPOC_No<br>tI_fw | 5'-<br>CGTGCGGCGGCCGCGATGCGAGCCCCTAAG<br>AAAAAGCGGAAGGTGGGCGGCGTGGATAT<br>GGTTCAACTTCTGAAG-3' | Cloning SHARP NLS-<br>SPOC into CMV10<br>N3XFLAG              |
| SHARP_SPOC_XbaI_rv         | 5'-<br>GCTCTAGATCACACGGAGGCAATGACAA-3'                                                        | Cloning SHARP NLS-<br>SPOC into CMV10<br>N3XFLAG              |

| RBM15_NLS_SPOC_No<br>tI_fw | 5'-<br>CGTGCGGCGGCCGCGATGCGAGCCCCTAAG<br>AAAAAGCGGAAGGTGGGCGGCGCCCCTGT<br>GGCATCAGC-3' | Cloning RBM15 NLS-<br>SPOC into CMV10<br>N3XFLAG                 |
|----------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|
| RBM15_SPOC_XbaI_rv         | 5'-<br>GCTCTAGATTATATCTGAAAACCAAACCCA<br>CGG-3'                                        | Cloning RBM15 NLS-<br>SPOC into CMV10<br>N3XFLAG                 |
| SPOC_DIDO_NcoI_dow<br>n    | 5'-<br>CGTGCGCCATGGGCACCCTCTTTTTGTCTCG<br>ACTCAGC-3'                                   | Cloning DIDO SPOC into<br>pET M11                                |
| SPOC_DIDO_XhoI_up          | 5'-<br>GCCTCGAGTCAACTGTTTGCGGGACGTTTG<br>A-3'                                          | Cloning DIDO SPOC into<br>pET M11                                |
| SHARP_SPOC_NcoI_do<br>wn   | 5'-<br>CGTGCGCCATGGGCGTGGATATGGTTCAAC<br>TTCTGAAGAAG-3'                                | Cloning SHARP SPOC<br>into pET M11                               |
| SHARP_SPOC_XhoI_up         | 5'-<br>GCCTCGAGTCACACGGAGGCAATGACAATC<br>-3'                                           | Cloning SHARP SPOC<br>into pET M11                               |
| RBM15_SPOC_NcoI_do<br>wn   | 5'-<br>CGTGCGCCATGGGCGCCCCTGTGGCATCAG<br>CCTC-3'                                       | Cloning RBM15 SPOC<br>into pET M11                               |
| RBM15_SPOC_XhoI_up         | 5'-<br>GCCTCGAGTCATATCTGAAAACCAAACCCA<br>CGGACAATGATCATGACC-3'                         | Cloning RBM15 SPOC<br>into pET M11                               |
| SPOCD1_SPOC_NcoI_d<br>own  | 5'-<br>CGTGCGCCATGGGCACAAAGGCCCTGCCCT<br>GC-3'                                         | Cloning SPOCD1 into<br>pET M11                                   |
| SPOCD1_SPOC_XhoI_u<br>p    | 5'-<br>GCCTCGAGTCATGCTGTGTCTGGAAGCCCT<br>TC-3'                                         | Cloning SPOCD1 into<br>pET M11                                   |
| DIDO_R1096A_down           | 5'-<br>GGGATCGCACCGAAGACAGTTTGGGATTAT<br>GTTGGCAAACTCAAGT-3'                           | Site directed mutagenesis                                        |
| DIDO_R1096A_up             | 5'-<br>TCTTCGGTGCGATCCCCCACCAATGTGAA<br>TTGTGTCAGGCAAATC-3'                            | Site directed mutagenesis                                        |
| SHARP_R3552A_down          | 5'-<br>CAGGCGATGCGGCTGGAGGCAACGCAGCT<br>GGAAGGGGTTGCCCGAA-3'                           | Site directed mutagenesis                                        |
| SHARP_R3552_up             | 5'-<br>CCAGCCGCATCGCCTGGGCGATCCTTAGTG<br>GGGGCCCTCCTTCAGA-3'                           | Site directed mutagenesis                                        |
| RBM15_R834A_down           | 5'-<br>CAGGCTCTCCGTTTGGACCAGCCCAAGTTG<br>GATGAAGTAACTCGAC-3'                           | Site directed mutagenesis                                        |
| RBM15_R834A_up             | 5'-<br>CCAAACGGAGAGCCTGAGTGATCTTGAGCT<br>GGGCCACTTTGCCTCC-3'                           | Site directed mutagenesis                                        |
| SHARP_3left_fw             | 5'-<br>CACCTGACGTCTACCACCATGGCACCACCA<br>TG-3'                                         | Cloning repair template for SHARP-GFP                            |
| SHARP_3left_rev            | 5'-<br>GACCGCTCGACGACACGGAGGCAATGACA<br>ATCATG-3'                                      | Cloning repair template for SHARP-GFP                            |
| SHARP 3right_fw            | 5'-<br>GCCCGGTGCCTGAGCCACTGAGTGGTTATC<br>AC-3'                                         | Cloning repair templates<br>for SHARP-GFP and<br>SHARP △SPOC-GFP |

| SHARP 3right_rev         | 5'-<br>GTTCTTTCCTGCGACAGTTTCATAAATTAAT<br>AAGTGTTAGG-3'                                         | Cloning repair templates<br>for SHARP-GFP and<br>SHARP △SPOC-GFP |
|--------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| SHARP SPOCleft_fw        | 5'-<br>CACCTGACGTCTAGTCTGTTGGGCATGTGC<br>TTG-3'                                                 | Cloning repair template for SHARP ∆SPOC-GFP                      |
| SHARP SPOCleft_rev       | 5'-<br>GACCGCTCGACGAGGGTCTCTGGGAAGTCA<br>G-3'                                                   | Cloning repair template for SHARP ΔSPOC-GFP                      |
| vector 3SHARP_fw         | 5'-<br>TTTATGAAACTGTCGCAGGAAAGAACATGT<br>GAG-3'                                                 | Cloning repair templates<br>for SHARP-GFP and<br>SHARP △SPOC-GFP |
| vector 3SHARP_rev        | 5'-<br>GGTGCCATGGTGGTAGACGTCAGGTGGCAC<br>TTTTC-3'                                               | Cloning repair template for SHARP-GFP                            |
| vector<br>SPOC_SHARP_rev | 5'-<br>ATGCCCAACAGACTAGACGTCAGGTGGCAC<br>TTTTC-3'                                               | Cloning repair template for SHARP ΔSPOC-GFP                      |
| SHARP 3GFP_fw            | 5'-<br>CATTGCCTCCGTGTCGTCGAGCGGTCCCTC<br>G-3'                                                   | Cloning repair template for SHARP-GFP                            |
| SHARP 3GFP_rev           | 5'-<br>ACCACTCAGTGGCTCAGGCACCGGGCTTGC<br>G-3'                                                   | Cloning repair templates<br>for SHARP-GFP and<br>SHARP △SPOC-GFP |
| SHARP SPOC_GFP_fw        | 5'-<br>TTCCCAGAGACCCTCGTCGAGCGGTCCCTC<br>G-3'                                                   | Cloning repair template for SHARP ΔSPOC-GFP                      |
| DIDO SPOCleft_fwd        | 5'-TAGAAAGTGCTTCTCATCCAAATGT-3'                                                                 | Cloning repair template for DIDO $\triangle$ SPOC                |
| DIDO SPOCleft_rev        | 5'-<br>CGAGCTGTACAAGTAAATAACTTCGTATAA<br>TGTATGCTATACGAAGTTATAGTAGAAAGC<br>CTTTTTTTTTT          | Cloning repair template for<br>DIDO ΔSPOC                        |
| DIDO SPOCright_fwd       | 5'-<br>TCTTTTATTTTATCGGATAACTTCGTATAGC<br>ATACATTATACGAAGTTATTTTGAAATTCTC<br>ATTGCACAGAGAGAC-3' | Cloning repair template for DIDO $\triangle$ SPOC                |
| DIDO SPOCright_rev       | 5'-TTCTTCTTGCTCCTCCAGCT-3'                                                                      | Cloning repair template for DIDO $\triangle$ SPOC                |
| vector SPOC_DIDO_fwd     | 5'-<br>GAGACAGCTGGAGGAGCAAGAAGAAGAA<br>ATTAGGTGGAGTTCAG-3'                                      | Cloning repair template for<br>DIDO ΔSPOC                        |
| vector SPOC_DIDO_rev     | 5'-<br>ACATTTGGATGAGAAGCACTTTCTATCGTA<br>CGATGGGTTTTGTTTC-3'                                    | Cloning repair template for<br>DIDO ΔSPOC                        |
| RBM15 SPOCleft_fwd       | 5'-<br>CCTATCAAAATTGGTTATGGTAAAGCTACA-<br>3'                                                    | Cloning repair template for RBM15 ΔSPOC                          |
| RBM15 SPOCleft_rev       | 5'-<br>CGAGCTGTACAAGTAAATAACTTCGTATAA<br>TGTATGCTATACGAAGTTATCTATGTCCCCC<br>CATCCTGTT-3'        | Cloning repair template for RBM15 ∆SPOC                          |
| RBM15 SPOCright_fwd      | 5'-<br>TCTTTTATTTTATCGGATAACTTCGTATAGC<br>ATACATTATACGAAGTTATTGGTTATAGTG<br>GTGTCCCTA-3'        | Cloning repair template for RBM15 ∆SPOC                          |
| RBM15 SPOCright_rev      | 5'-<br>ACCGGAGCCAATTCCATAACTTCGTATAGC<br>ATACATTATACGAAGTTATTGGTTATAGTG<br>GTGTCCCTA-3'         | Cloning repair template for RBM15 ΔSPOC                          |

| vector<br>SPOC_RBM15_fwd | 5'-<br>CTCACACAGCTTAAGAGTAGCTGTCAGACA<br>TTAGGTGGAGTTCAG-3'  | Cloning repair template for<br>RBM15 ΔSPOC             |
|--------------------------|--------------------------------------------------------------|--------------------------------------------------------|
| vector<br>SPOC_RBM15_rev | 5'-<br>CTTTACCATAACCAATTTTGATAGGTCGTAC<br>GATGGGTTTTGTTTC-3' | Cloning repair template for RBM15 ΔSPOC                |
| resistance cassette_fwd  | 5'-CGAAGTTATTTACTTGTACAGCTCG-3'                              | Cloning repair template for<br>DIDO and RBM15<br>ΔSPOC |
| resistance cassette_rev  | 5'-CGAAGTTATCCGATAAAATAAAAGA-3'                              | Cloning repair template for<br>DIDO and RBM15<br>ΔSPOC |
| BEX5_fw1                 | 5'-GTGCAGCCGATTTCAAGGCT-3'                                   | ChIP-qPCR                                              |
| BEX5_rev1                | 5'-TTCTCCTGCACTCAACTCGG-3'                                   | ChIP-qPCR                                              |
| BEX5_fw2                 | 5'-GTGCCCAATAGGCTTGTCG-3'                                    | ChIP-qPCR                                              |
| BEX5_rev2                | 5'-GGTCCCCTATAAGAATGCGC-3'                                   | ChIP-qPCR                                              |
| HOXA5_fw1                | 5'-TACGGCTACGGCTACAATGG-3'                                   | ChIP-qPCR                                              |
| HOXA5_rev1               | 5'-ATCGGGCTGAGGAGAGTGCG-3'                                   | ChIP-qPCR                                              |
| HOXA5_fw2                | 5'-TCCCTGCTCATGACCCAAGC-3'                                   | ChIP-qPCR                                              |
| HOXA5_rev2               | 5'-CAGCTCCAGGGTCTGGTAGC-3'                                   | ChIP-qPCR                                              |
| XIST_fw1                 | 5'-CCCATCGGGGTGACGG-3'                                       | ChIP-qPCR                                              |
| XIST_rev2                | 5'-AAAAGCACCGATGGGCGATG-3'                                   | ChIP-qPCR                                              |
| XIST_fw2                 | 5'-TGTCACGTGGACATCATGGC-3'                                   | ChIP-qPCR                                              |
| XIST_rev2                | 5'-GGCTGTGATCAATTCCACCC-3'                                   | ChIP-qPCR                                              |
| XIST_fw3                 | 5'-ACACACAGCTCAACCTATCTGA-3'                                 | ChIP-qPCR                                              |
| XIST rev3                | 5'-CAGGAACCGGGACAAACA-3'                                     | ChIP-qPCR                                              |



**Supplementary Fig. 1: Domain organization of human SPOC proteins.** SPOC – Spen orthologue and paralogue C-terminal domain, RRM – RNA recognition motif, RID – receptor interaction domain, PHD – plant homeodomain, TLD – transcription factor IIS-like domain.



Supplementary Fig. 2: Crystal structure of the RBM15 SPOC domain and SEC-MALS analysis of the oligomeric state of SPOC domains. **a**, Ribbon model of the crystal structure of RBM15 SPOC. **b** Overlay of RBM15 SPOC ribbon model and electrostatic surface potential. Conserved lysine and arginine residues of the basic patch are indicated. Electrostatic surface potential was calculated using the Coulombic Surface Coloring tool in UCSF Chimera and is depicted ranging from -10 (red) to +10 (blue) kcal/(mol\*e). **c** Overlay of SPOC structures from RBM15 (7Z27), SHARP (2RT5), PHF3 (6Q2V) and FPA (5KXF) showed an average RMSD of 1.075 Å over 99 pruned C $\alpha$  atoms between RBM15 and SHARP SPOC (6.645 Å over all 159 pairs), an average RMSD of 1.075 Å over 72 pruned C $\alpha$  atoms between RBM15 and PHF3 SPOC (5.531 Å over all 145 pairs) and an average RMSD of 0.913 Å over 53 pruned C $\alpha$  atoms between RBM15 and FPA SPOC (5.531 Å over all 118 pairs). The alignment was generated using the Matchmaker tool in UCSF Chimera. **d-g** Size exclusion chromatography (SEC)-multiangle light scattering (MALS) profiles of SPOC domains in 25 mM Tris-HCl pH 7.4, 25 mM NaCl, 1 mM DTT, yielding molecular weights of **d** 21.3 kDa ± 18.4% (monomer, 70.4%) and 42.2 kDa ± 55.1% (dimer/trimer, 29.6%) for PHF3 SPOC (expected monomeric Mw 17.8 kDa), **e** 21.7 kDa ± 6.2% (monomer, 100%) for DIDO SPOC (expected monomeric Mw 17.8 kDa) and **g** 21.0 kDa ± 5.9% (monomer, 98.1%) and 46.5 kDa ± 1.8% (dimer, 1.9%) for RBM15 SPOC.



Supplementary Fig. 3: PHF3 SPOC-CTD binding assays. Fluorescence anisotropy measurements of PHF3 SPOC with CTD peptides phosphorylated on a serine-5, b serine-7, c tyrosine-1 and d threonine-4. Fluorescence anisotropy is plotted as a function of protein concentration. Data points and error bars represent the mean  $\pm$  standard deviation from 3 independent experiments. Source data are provided as a Source Data file.



**Supplementary Fig. 4: DIDO SPOC-CTD binding assays.** Fluorescence anisotropy measurements of DIDO SPOC with CTD peptides phosphorylated on **a** serine-5, **b** serine-7, **c** tyrosine-1 and **d** threonine-4. Fluorescence anisotropy is plotted as a function of protein concentration. Data points and error bars represent the mean  $\pm$  standard deviation from 3 independent experiments. Source data are provided as a Source Data file.



Supplementary Fig. 5: SPOCD1 SPOC-CTD binding assays. Fluorescence anisotropy measurements of SPOCD1 SPOC with a unphosphorylated CTD peptide or CTD peptides phosphorylated on b tyrosine-1, c serine-2, d threonine-4, e serine-5 and f serine-7. Fluorescence anisotropy is plotted as a function of protein concentration. Data points and error bars represent the mean  $\pm$  standard deviation from 3 independent experiments. Source data are provided as a Source Data file.



Supplementary Fig. 6: SHARP SPOC-CTD binding assays. Fluorescence anisotropy measurements of SHARP SPOC with CTD peptides phosphorylated on a serine-2, b serine-7, c tyrosine-1 and d threonine-4. Fluorescence anisotropy is plotted as a function of protein concentration. Data points and error bars represent the mean  $\pm$  standard deviation from 3 independent experiments. Source data are provided as a Source Data file.



Supplementary Fig. 7: RBM15 SPOC-CTD and RBM15 SPOC-ZC3H13 binding assays. a-d Fluorescence anisotropy measurements of RBM15 SPOC with CTD peptides phosphorylated on a serine-2, b serine-7, c tyrosine-1 and d threonine-4. e Fluorescence anisotropy measurements of RBM15 SPOC with ZC3H13 peptides. Fluorescence anisotropy in a-e is plotted as a function of protein concentration. Data points and error bars represent the mean  $\pm$  standard deviation from 3 independent experiments. Source data are provided as a Source Data file.



Supplementary Fig. 8: Generation of endogenously tagged SHARP-GFP and PHF3-GFP cell lines. a CRISPR/Cas9 strategy and PCR validation of endogenous tagging of SHARP with GFP at the C-terminus (SHARP-GFP) and deletion of the SPOC domain with simultaneous C-terminal GFP-tagging (SHARP  $\Delta$ SPOC-GFP). The experiment was performed once. Genotyping is shown for two individual SHARP  $\Delta$ SPOC-GFP clones. **b** CRISPR/Cas9 strategy and PCR validation of endogenous tagging of PHF3  $\Delta$ SPOC with GFP at the C-terminus (PHF3  $\Delta$ SPOC-GFP). The experiment was performed once. The PHF3  $\Delta$ SPOC cell line had been generated and validated before. **c** GFP-IP of endogenous SHARP-GFP and SHARP  $\Delta$ SPOC-GFP. The experiment was performed once. Four individual clones are shown for SHARP-GFP. **d** GFP-IP of endogenous PHF3-GFP and PHF3  $\Delta$ SPOC-GFP. The experiment was performed once. Source data are provided as a Source Data file.



Supplementary Fig. 9: Interactome of endogenous SHARP-GFP. Volcano plots of SHARP-GFP interactors identified by mass spectrometry **a** compared to an untagged control cell line and **b** compared to SHARP  $\Delta$ SPOC-GFP. The experiments were performed in three replicates. Statistical tests were performed using the LIMMA package<sup>1</sup>.



Supplementary Fig. 10: Generation of DIDO  $\triangle$ SPOC and DIDO KO cell lines. a CRISPR/Cas9 strategy for generation of DIDO  $\triangle$ SPOC. b PCR genotyping strategy and results for DIDO  $\triangle$ SPOC generation. c Validation of DIDO  $\triangle$ SPOC by Sanger sequencing. d Validation of DIDO KO by Sanger sequencing. e Western Blot of DIDO WT, KO and  $\triangle$ SPOC. The experiments in b and e were performed once. Source data are provided as a Source Data file.



Supplementary Fig. 11: Generation of RBM15 KO and RBM15  $\triangle$ SPOC cell lines. a CRISPR/Cas9 strategy for generation and genotyping of RBM15 KO and RBM15  $\triangle$ SPOC cell lines. Genotyping PCR products are indicated with dashed (RBM15 KO) or dotted (RBM15  $\triangle$ SPOC) lines. b, c Genotyping PCR products for b RBM15 KO and c RBM15  $\triangle$ SPOC. d Western blot of RBM15 WT,  $\triangle$ SPOC and KO. e, f Validation of e RBM15 WT and KO and f RBM15  $\triangle$ SPOC by Sanger sequencing. The experiments in b-d were performed once. Source data are provided as a Source Data file.

а RNA-seq log2 PHF3 KO / WT >1 (p<0.05) CELL\_CELL\_SIGNALING RESPONSE\_TO\_CYTOKINE CELL\_PROJECTION\_ORGANIZATION TRANSMEMBRANE\_TRANSPORT NEURONAL\_SIGNAL\_TRANSDUCTION SYNAPTIC\_SIGNALING FILOPODIUM ASSEMBLY GENERATION\_OF\_SEMBLT GENERATION\_OF\_NEURONS REGULATION\_OF\_CELL\_POPULATION\_PROLIFERATION REGULATION\_OF\_REPRODUCTIVE\_PROCESS 6 ó 5 2 3 -log<sub>10</sub> FDR q-value b RNA-seq log2 PHF3 ∆SPOC / WT >1 (p<0.05) CELL\_CELL\_SIGNALING ION\_TRANSPORT REGULATION OF CELL POPULATION PROLIFERATION NEGATIVE\_REGULATION\_OF\_OELL\_POPULATION\_ROLIFERATION ION\_TRANSMEMBRANE\_TRANSPORT TRANSMEMBRANE\_TRANSPORT REGULATION OF MULTICELLULAR ORGANISMAL DEVELOPMENT REGULATION\_OF\_CELL\_DEVELOPMENT SYNAPTIC\_SIGNALING REGULATION\_OF\_NERVOUS\_SYSTEM\_DEVELOPMENT ò 5 6 2 3 4 -log<sub>10</sub> FDR q-value С RNA-seq log2 DIDO KO / WT <-1 (p<0.05) REGULATION\_OF\_CELL\_POPULATION\_PROLIFERATION CELL ADHESION CELL\_ADHEGION GENERATION\_OF\_NEUROBEN NEUROGENESIS CELL\_MOTULTY RESPONSE\_TO\_GROWTH\_FACTOR REGULATION\_OF\_INTRACELLULAR\_SIGNAL\_TRANSDUCTION URETER\_DEVELOPMENT BECILI ATION\_OF\_INTRACELLULAR\_SIGNAL\_TRANSDUCTION URETER\_DEVELOPMENT POSITIVE REGULATION OF INTRACELLULAR SIGNAL TRANSDUCTION ENZYME\_LINKED\_RECEPTOR\_PROTEIN\_SIGNALING\_PATHWAY ò 4 5 -log FDR q-value d RNA-seq log2 DIDO  $\triangle$ SPOC / WT <-1 (p<0.05) GENERATION\_OF\_NEURONS BEHAVIOR REGULATION\_OF\_TRANSPORT NEUROGENESIS REGULATION\_OF\_ION\_TRANSPORT TISSUE\_DEVELOPMENT HOMEOSTATIC\_PROCESS METAL\_ION\_TRANSPORT ANIMAL ORGAN MORPHOGENESIS ò 4 3 -log<sub>10</sub> FDR q-value е RNA-seq log2 RBM15 KO / WT <-1 (p<0.05) TISSUE\_DEVELOPMENT CELL\_ADHESION RESPONSE\_TO\_ENDOGENOUS\_STIMULUS NEGATIVE\_REGULATION\_OF\_RNA\_METABOLIC\_PROCESS NEGATIVE\_REGULATION\_OF\_NUCLEOBASE\_CONTAINING\_COMPOUND\_METABOLIC\_PROCESS CELLULAR\_RESPONSE\_TO\_ENDOGENOUS\_STIMULUS NEGATIVE\_REGULATION\_OF\_BIOSYNTHETIC\_PROCESS NEGATIVE\_REGULATION\_OF\_BIOSYNTHETIC\_PROCESS NEGATIVE\_REGULATION\_OF\_BIOSYNTHETIC\_PROCESS RESPONSE\_TO\_ENDOGENOUS\_STIMULUS ANIMAL ORGAN MORPH 5 6 7 NEGATIVE\_REGULATION\_OF\_TRANSCRIPTION\_BY\_RNA\_POLYMERASE\_I ά 2 -log<sub>10</sub> FDR q-value f RNA-seq log2 RBM15  $\Delta$ SPOC / WT <-1 (p<0.05) CELL\_ADHESION CELL\_CELL\_ADHESION POSITIVE\_REGULATION\_OF\_PROTEIN\_MODIFICATION\_PROCESS CELL\_CELL\_ADHESION\_VIA\_PLASMA\_MEMBRANE\_ADHESION\_MOLECULES GENERATION\_OF\_NEURONS REPRODUCTION TISSUE\_DEVELOPMENT POSITIVE\_REGULATION\_OF\_PROTEIN\_METABOLIC\_PROCESS RESPONSE TO ENDOPLASMIC RETICULUM STRESS ō 3 4 -log<sub>10</sub> FDR q-value g RNA-seq log2 SHARP ASPOC / WT <-1 (p<0.05) RNA-seq log2 SHARP A NERVOUS\_SYSTEM\_PROCESS SENSORY\_PERCEPTION\_OF\_LIGHT\_STIMULUS EMBRYONIC\_ORGAN\_DEVELOPMENT EMBRYONIC\_ORGAN\_MORPHOGENESIS ANTERIOR\_POSTERIOR\_PATTERN\_SPECIFICATION SENSORY PERCEPTION EMBRYONIC\_SKELETAL\_SYSTEM\_MORPHOGENESIS CELL\_ADHESION REGIONALIZATION PATTERN\_SPECIFICATION\_PROCESS 0 3

1 2 -log<sub>10</sub> FDR q-value

Supplementary Fig. 12: GO analysis of RNA-seq deregulated genes in KO and  $\Delta$ SPOC HEK293T cells. a Upregulated genes in PHF3 KO, b upregulated genes in PHF3  $\Delta$ SPOC, c downregulated genes in DIDO KO, d downregulated genes in DIDO  $\Delta$ SPOC, e downregulated genes in RBM15 KO, f downregulated genes in RBM15  $\Delta$ SPOC and g downregulated genes in SHARP  $\Delta$ SPOC. GSEA Biological processes tool was used. Top 150 deregulated genes were analysed. FDR q-values were computed by GSEA based on Subramanian et al<sup>2</sup>.

8



**Supplementary Fig. 13: ChIP-seq analysis of the changes in chromatin occupancy upon loss of the SPOC domain in PHF3 and SHARP in HEK293T cells. a,c** Relationship between ChIP-seq body fold change and ChIP-seq TSS fold change for a PHF3 ΔSPOC-GFP vs PHF3-GFP WT (N=3) and c SHARP ΔSPOC-GFP vs SHARP-GFP WT (N=2). Blue and red dots indicate genes with reduced or increased genomic occupancy respectively. **b,d** Relationship between RNA-seq fold change and ChIP-seq body fold change for **b** PHF3 ΔSPOC vs PHF3 WT and **d** SHARP ΔSPOC vs SHARP WT. Blue and red dots indicate genes with reduced or increased RNA-seq gene expression levels respectively.

20



Supplementary Fig. 14: Isolation of mRNA for m<sup>6</sup>A mass spectrometry analysis. a,b Representative Fragment Analyzer profiles of a total RNA and b isolated mRNA.



**Supplementary Fig. 15: Gating strategy for FACS sorting during cell line generation.** Singlet population was defined by forward versus side scatter (FSC vs. SSC) gating. Within the singlet population, three populations were gated based on their FITC/GFP fluorescence: GFP- (negative), GFP+ low (endogenous GFP expression) and GFP+ high (exogenous GFP expression). Histograms depict the distribution of cells over the GFP-groups. Exemplary plots are shown for **a** negative control (untransfected HEK293T cells), **b** HEK293T cells transfected with a pX458 Cas9-EGFP plasmid (GFP+ high cells were sorted), **c** HEK293T cells transfected for endogenous GFP-tagging (GFP+ low cells were sorted) and **d** HEK293T cells 1 week after transfection with a pX458 plasmid (GFP- cells were sorted). 2000 events are depicted in each plot.

### **Supplementary References**

- 1 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic acids research* **43**, e47, doi:10.1093/nar/gkv007 (2015).
- 2 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences of the United States of America* **102**, 15545-15550, doi:10.1073/pnas.0506580102 (2005).