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6. Supplementary Material

6.1. Human evaluation
In our human evaluation study, we asked the following 15

questions for each CXR:
1. Please provide your diagnosis for Cardiomegaly. Answers:

Negative, mild, positive, not sure.
2. (Only assessment) Do you agree with the AI system as-

sessment for Cardiomegaly? Answers: yes, no
3. (Only assessment) I understand how the AI system made

the above assessment for Cardiomegaly. Answers: 5-point
Likert scale.

4. (Assessment + SM) The heat-map is highlighting <blank>
important/relevant regions for Cardiomegaly. Answers:
all, most, some, a few, none.

5. (Assessment + SM) I understand how the AI system made
the above assessment for Cardiomegaly. Answers: 5-point
Likert scale.
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6. (Assessment + cycleGAN) The changes in the video are
related to Cardiomegaly. Answers: 5-point Likert scale.

7. (Assessment + cycleGAN) I understand how the AI sys-
tem made the above assessment for Cardiomegaly. An-
swers: 5-point Likert scale.

8. (Assessment + cycleGAN) Images in the video look like a
chest x-ray. Answers: 5-point Likert scale.

9. (Assessment + cycleGAN) The images in the video look
like the chest x-ray from the subject. Answers: 5-point
Likert scale.

10. (Assessment + ours) The changes in the video are related
to Cardiomegaly. Answers: 5-point Likert scale.

11. (Assessment + ours) Changes in the anatomy in the high-
lighted regions in the heat-map will change the assessment
of Cardiomegaly. Answers: 5-point Likert scale.

12. (Assessment + ours) I understand how the AI system made
the above assessment for Cardiomegaly. Answers: 5-point
Likert scale.

13. (Assessment + ours) Images in the video look like a chest
x-ray. Answers: 5-point Likert scale.

14. (Assessment + ours) The images in the video look like
the chest x-ray from the subject. Answers: 5-point Likert
scale.

15. Which explanation helped you the most in understand-
ing the assessment made by the AI system Answers:
Explanation-1: Heat-map highlighting important regions
for assessment, Explanation-2: A video showing the trans-
formation from negative to positive decision, Explanation-
3: Two images at the two extreme ends of the decision
(positive and negative), none.

Next, we present the UI for different questions,

Fig. 11. Question 2-3 showing the query CXR and the classifier’s decision.

6.2. Summarizing the notation
Table. 4 summarizes the notation used in the manuscript.

6.3. Dataset
We focus on explaining classification models based on deep

convolution neural networks (CNN); most state-of-the-art per-
formance models fall in this regime. We used large, pub-
licly available datasets of chest x-ray (CXR) images, MIMIC-
CXR (Johnson et al., 2019). MIMIC-CXR dataset is a multi-
modal dataset consisting of 473K CXR, and 206K reports from

Fig. 12. Question 4-5 showing the query CXR, the classifier’s decision and
the saliency map explanation.

Fig. 13. Question 6-9 showing the query CXR, the classifier’s decision and
the cycleGAN explanation.

63K patients. We considered only frontal (posteroanterior PA
or anteroposterior AP) view CXR. The datasets provide image-
level labels for fourteen radio-graphic observations. These la-
bels are extracted from the radiology reports associated with the
x-ray exams using an automated tool called the Stanford CheX-
pert labeler (Irvin et al., 2019). The labeller first defines some
thoracic observations using a radiology lexicon (Hansell et al.,
2008). It extracts and classifies (positive, negative, or uncertain
mentions) these observations by processing their context in the
report. Finally, it aggregates these observations into fourteen
labels for each x-ray exam. For the MIMIC-CXR dataset, we
extracted the labels ourselves, as we have access to the reports.

6.4. Classification Model

To train the classifier, we considered the uncertain mention
as a positive mention. We crop the original images to have the
same height and width, then downsample them to 256 × 256



Sumedha Singla et al. /Medical Image Analysis (2022) 17

Table 4. Summarizing the notation
Notation Description
X Input image space
x ∈ X Input image
f : X → Y Pre-trained classification function
f (x)[k] ∈ [0, 1] Classifier’s output for kth class
c The condition used in cGAN, the desired classifier’s output for kth class
xc Explanation image
f (xc) Classifier’s output for the explanation image
I f (x, c) Explanation function
E(·) Image encoder
z Latent representation of the input image
C(c) Discretizing function that maps c to an integer
G(z, c) Generator of cGAN
D(x, c) Discriminator of cGAN
pdata(x) Real image data distribution
q(x) Learned data distribution by cGAN
r(x) Loss term of cGAN that measures similarity between real and learned data distribution
r(c|x) Loss term of cGAN that evaluates correspondence between generated images and condition
ϕ(x) Image feature extractor; part of the discriminator function

Fig. 14. Question 10-14 showing the query CXR, the classifier’s decision
and our counterfactual explanation.

pixels. The intensities were normalized to have values between
0 and 1. Following the approach in prior work (Rajpurkar et al.,
2017; Rubin et al., 2018; Irvin et al., 2019) on diagnosis classi-
fication, we used DenseNet-121 (Huang et al., 2016) architec-
ture as the classification model. In DenseNet, each layer im-
plements a non-linear transformation based on composite func-
tions such as Batch Normalization (BN), rectified linear unit
(ReLU), pooling, or convolution. The resulting feature map at
each layer is used as input for all the subsequent layers, leading
to a highly convoluted multi-level multi-layer non-linear con-
volutional neural network. We aim to explain such a model
post-hoc without accessing the parameters learned by any layer
or knowing the architectural details. Our proposed approach

can be used for explaining any DL based neural network.

6.5. Explanation Function

The explanation function is a conditional GAN with an en-
coder. We used a ResNet (He et al., 2016) architecture for
the Encoder, Generator, and Discriminator. The details of the
architecture are given in Table 5. For the encoder network,
we used five ResBlocks with the standard batch normaliza-
tion layer (BN). In encoder-ResBlock, we performed down-
sampling (average pool) before the first conv of the ResBlock
as shown in Fig. 16.a. For the generator network, we follow
the details in (Miyato et al., 2018) and replace the BN layer
in encoder-ResBlock with conditional BN (cBN) to encode the
condition (see Fig. 16.b.). The architecture for the generator has
five ResBlocks; each ResBlock performed up-sampling through
the nearest neighbour interpolator. For the discriminator, we
used spectral normalization (SN) (Miyato and Koyama, 2018)
in Discriminator-ResBlock and performed down-sampling after
the second conv of the ResBlock as shown in Fig. 16.c. For the
optimization, we used Adam optimizer (Kingma and Ba, 2015),
with hyper-parameters set to α = 0.0002, β1 = 0, β2 = 0.9 and
updated the discriminator five times per one update of the gen-
erator and encoder.

For creating the training dataset, we divide the posterior dis-
tribution for the target class, f (x) ∈ [0, 1] into N equally-sized
bins. The cGAN is then trained on N conditions. For efficient
training, cBN requires class-balanced batches. A smaller value
for δ results in more conditions for training cGAN, increasing
cGAN complexity and training time. Also, we have to increase
the batch size to ensure each condition is well represented in
a batch. Hence, the GPU memory size bounds the high value
for N. A small N is equivalent to fewer conditions, resulting
in a coarse transformation which leads to abrupt changes across
explanation images. In our experiments, we used N = 10, with
a batch size of 32. We experimented with different values of N
and selected the largest N, which created a class-balanced batch
that fits in GPU memory and resulted in stable cGAN training.
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Table 5. Explanation Model (cGAN) Architecture
(a) Encoder

Grayscale image x ∈ R256×256×1

BN, ReLU, 3×3 conv 64
Encoder-ResBlock down 128
Encoder-ResBlock down 256
Encoder-ResBlock down 512
Encoder-ResBlock down 1024
Encoder-ResBlock down 1024

(b) Generator
Latent code z ∈ R1024

Generator-ResBlock up 1024, y
Generator-ResBlock up 512, y
Generator-ResBlock up 256, y
Generator-ResBlock up 128, y
Generator-ResBlock up 64, y

BN, ReLU, 3×3 conv 1
Tanh

(c) Discriminator
Grayscale image x ∈ R256×256×1

Discriminator-ResBlock down 64
Discriminator-ResBlock down 128
Discriminator-ResBlock down 256
Discriminator-ResBlock down 512

Discriminator-ResBlock down 1024
Discriminator-ResBlock 1024

ReLU, Global Sum Pooling (GSP) | Embed(y)
Inner Product (GSP, Embed(y))→ R1

Add(SN-Dense(GSP)→ R1, Inner Product)

6.6. Semantic Segmentation

We adopted a 2D U-Net (Ronneberger et al., 2015) to per-
form semantic segmentation, to mark the lung and the heart
contour in a CXR. The network optimizes a multi-categorical
cross-entropy loss function, defined as,

Lθ :=
∑

s

∑
i

1(yi = s) log(pθ(xi)), (13)

where 1 is the indicator function, yi is the ground truth label for
i-th pixel. s is the segmentation label with values (background,
the lung or the heart). pθ(xi) denotes the output probability for
pixel xi and θ are the learned parameters. The network is trained
on 385 CXRs and corresponding masks from Japanese Society
of Radiological Technology (JSRT) (van Ginneken et al., 2006)
and Montgomery (Jaeger et al., 2014) datasets.

6.7. Object Detection

We trained an object detector network to identify medical de-
vices in a CXR. For the MIMIC-CXR dataset, we pre-processed
the reports to extract keywords/observations that correspond to
medical devices, including pacemakers, screws, and other hard-
ware. Such foreign objects are easy to identify in a CXR and
do not requires expert knowledge for manual labelling. Using
the CheXpert labeller, we extracted 300 CXR images with pos-
itive mentions for each observation. The extracted x-rays are
then manually annotated with bounding box annotations mark-
ing the presence of foreign objects using the LabelMe (Wada,
2016) annotation tool. Next, we trained an object detector based
on fFast Region-based CNN (Ren et al., 2015), which used
VGG-16 model (Simonyan and Zisserman, 2014), trained on
the MIMIC-CXR dataset as its foundation. We used this object
detector to enforce our novel context-aware reconstruction loss
(CARL).

Fig. 15. The costophrenic angle (CPA) on a CXR is marked as the angle
formed by, (a) costophrenic angle point, (b) hemidiaphragm point and (c)
lateral chest wall point, as shown by Maduskar et al.in (Maduskar et al.,
2016)

We trained similar detectors for identifying normal and ab-
normal CP recess regions in a CXR. We associated an abnormal
CP recess with the radiological finding of a blunt CP angle as
identified by the positive mention for “blunting of costophrenic
angle” in the corresponding radiology report. For the normal-
CP recess, we considered images with a positive mention for
“lungs are clear” in the reports. We extracted 300 CXR im-
ages with positive mention of respective terms for normal and
abnormal CP recess to train the object detector.
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Fig. 16. Architecture of the ResBlocks used in all experiments.

Please note that the object detector for CP recess is only used
for evaluation purposes, and they were not used during the train-
ing of the explanation function. In literature, the blunting of
CPA is an indication of pleural effusion (Maduskar et al., 2013,
2016). The angle between the chest wall and the diaphragm arc
is called the costophrenic angle (CPA). Marking the CPA an-
gle on a CXR requires an expert to mark the three points, (a)
costophrenic angle point, (b) hemidiaphragm point and (c) lat-
eral chest wall point and then calculate the angle as shown in
Fig. 15. Learning automatic marking of CPA angle requires ex-
pert annotation and is prone to error. Hence, rather than mark-
ing the CPA angle, we annotate the CP region with a bounding
box which is a much simpler task. We then learned an object
detector to identify normal or abnormal CP recess in a CXR and
used the Score for detecting a normal CP recess (SCP) as our
evaluation metric.

6.8. xGEM
We refer to work by Joshi et al. (Joshi et al., 2019) for the

implementation of xGEM. xGEM iteratively traverses the input
image’s latent space and optimizes the traversal to flip the clas-
sifier’s decision to a different class. Specifically, it solves the
following optimization

x̃ = Gθ(arg min
z∈Rd
L(x,Gθ(z)) + λℓ( f (Gθ(z)), y

′

)) (14)

where the first terms is an ℓ2 distance loss for comparing real
and generated data. The second term ensures that the classifi-
cation decision for the generated sample is in favour of class y

′

and y
′

, y is a class other than original decision. Unless explic-
itly imposed, the explanation image does not look realistic. The
explanation image is generated from an updated latent feature,
and the expressiveness of the generator limits its visual quality.
xGEM adopted a variational autoencoder (VAE) as the gener-
ator. VAE uses a Gaussian likelihood (ℓ2 reconstruction), an
unrealistic assumption for image data. Hence, vanilla VAE is
known to produce over-smoothed images (Huang et al., 2018).
The VAE used is available at https://github.com/LynnHo/VAE-
Tensorflow. All settings and architectures were set to default

values. The original code generates an image of dimension
64x64. We extended the given network to produce an image
with dimensions 256×256.

6.9. cycleGAN

We refer to the work by Narayanaswamy et
al. (Narayanaswamy et al., 2020) and DeGrave et al. (DeGrave
et al., 2020) for the implementation details of cycleGAN.
The network architecture for cycleGAN is replicated from
the GitHub repository https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix.

For training cycleGAN, we consider two sets of images. The
first set comprises 2000 images from the MIMIC-CXR dataset
such that the classifier has a positive prediction for the presence
of a target disease i.e., f (x) > 0.9, and the second set has the
same number of images but with strong negative prediction i.e.,
f (x) < 0.1. We train one such model for each target disease.

6.10. Extended results for identity preservation

A FO is critical in identifying the patient in an x-ray. FO’s
disappearance may lead to a false conclusion that removing FO
resulted in the changed classification decision.

Input Image Perturbed image with 
pacemaker removed

Fig. 17. An example of input image before and after removing the pace-
maker.

https://github.com/LynnHo/VAE-Tensorflow
https://github.com/LynnHo/VAE-Tensorflow
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Fig. 18. The plot of desired outcome, f (x) + δ, against actual response of the classifier on generated explanations, f (xδ). Each line represents a set of input
images with classification prediction f (x) in a given range. Dashed line represents y = x line.

6.10.1. Ablation study over pacemaker
We performed an ablation study to investigate if a pacemaker

is influencing the classifier’s prediction for cardiomegaly. We
consider 300 subjects that are positively predicted for car-
diomegaly and have a pacemaker. We used our pre-trained ob-
ject detector to find the bounding-box annotations for these im-
ages. Using the bounding-box, we created a perturbation of
the input image by masking the pacemaker and in-filling the
masked region with the surrounding context. An example of
the perturbation image is shown in Fig. 17. We passed the per-
turbed image through the classifier and calculated the difference
in the classifier’s prediction before and after removing the pace-
maker. The average change in prediction was negligible (0.03).
Hence, pacemaker is not influencing classification decisions for
cardiomegaly.

Table 6. The latent-space closeness (LSC) score for our model with and
without the context-aware reconstruction loss (CARL).

Foreign LSC score
Object CARL better than ℓ1

Pacemaker 0.79
Hardware 0.87

6.10.2. Latent space closeness (LCS)
We compared the explanations generated using CARL

against those generated using simple ℓ1 reconstruction loss on

their similarity with the input images. To quantify the similar-
ity between the explanation images and the query image in a
latent space, we used latent-space closeness (LSC) score. LSC
score is the fraction of the images where explanation image de-
rived using CARL (xCARL

c ) is closest to the query image x as
compared to explanations generated using ℓ1 loss i.e., xℓ1c . We
calculated similarity as the euclidean distance between the em-
bedding for the query and explanation images. LSC score is
defined as,

LS C =
∑

x∈X,c

1

(
⟨E(x), E(xCARL

c )⟩ < ⟨E(x), E(xℓ1c )⟩
)

where E(·) is a pre-trained feature extractor based on the In-
ception v3 network. Table 6 presents our results. A high LSC
score, together with a high CV score (Fig. 19) shows that the
query and counterfactual images are fundamentally same but
differs only in features that are sufficient to flip the classifica-
tion decision.

6.11. Extended classifier consistency results
Our explanation framework gradually perturbs the input im-

age to traverse the classification boundary from one extreme
(negative) to another (positive). We quantify the consistency
between our explanations and the classification model at every
step of this transformation. We divided the prediction range
[0, 1] into ten equally sized bins. For each bin, we generated an
explanation image by choosing an appropriate, c ∈ [0, 1]. We
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further divided the input image space into five groups based on
their initial prediction i.e., f (x). In Fig. 18, we represented each
group as a line and plotted the average response of the classifier
i.e., f (xc) for explanations in each bin against the expected out-
come i.e., c. For xGEM, we generated multiple, progressively
changing explanations by traversing the latent space. For each
input image, we generated ten explanation images. For cycle-
GAN, we can generate only images at the two extreme ends of
the decision boundary.

Fig. 18 shows our results. It an extension of the results in
Fig. 5. The positive slope of the line-plot, parallel to y = x line
confirms that starting from images with low f (x), our model
creates fake images such that f (xc) is high and vice-versa.
Thus, our model creates explanations that successfully flips
the classification decision and, hence, represents the decision-
making process of the classifier. In contrast, for cycleGAN
model, if f (x) ∈ [0.0, 0.4] (blue line-plot), the resulting expla-
nations have f (xc) < 0.5, hence, cycleGAN model fails to flip
the classification decision, as also evident in low CV score in
Table. 1.

6.12. Evaluating class discrimination

In multi-label settings, multiple labels can be true for a given
image. A multi-label setting is common in CXR diagnosis. For
example, cardiomegaly and pleural effusion are associated with
cardiogenic edema and frequently co-occur in a CXR. Please
note that our classification model is also trained in a multi-label
setting where the fourteen radiological findings may co-occur in
a CXR. In this evaluation, we demonstrate the sensitivity of our
generated explanations to the task being explained. We consid-
ered three diagnosis tasks, cardiomegaly, pleural effusion, and
edema. For each task, we trained one explanation model. Ide-
ally, an explanation model trained to explain a given task should
produce explanations consistent with the query image on all the
other classes besides the given task. Fig. 19 plots the fraction
of the generated explanations, that have flipped in other classes
as compared to the query image. Ideally, the fraction should be
maximum for the given task and small for the rest of the classes.
In Fig. 19, each column represents one task, and each row is one
run of our method to explain a given task. The diagonal values
also represent the counterfactual validity (CV) score reported in
Table. 1.

6.13. Ablation Study

Eq. 1 shows our final loss function: We have three types of
loss functions: adversarial loss from cGAN LcGAN(D,G), KL
loss L f (D,G), and CARL reconstruction loss Lidentity(E,G).
The three losses enforce the three properties of our proposed
explanation function: data consistency, classifier consistency,
and context-aware self-consistency, respectively. In the abla-
tion study, we quantify the importance of each of these compo-
nents by training different models, where on hyper-parameter
is set to zero while rest are equivalent (λ1 = 1, λ2 = 1 and
λ3 = 0.5). For data consistency, we evaluate Fréchet Incep-
tion Distance (FID). FID score measures the visual quality of
the generated explanations by comparing them with the real

images. We examined real and synthetic (i.e., generated ex-
planations) images on the two extreme of the decision bound-
ary, i.e., a normal group ( f (x) < 0.2) and an abnormal group
( f (x) > 0.8). For classifier consistency, we reported results on
counterfactual validity (CV) score. CV score is the fraction of
counterfactual explanations that successfully flipped the clas-
sification decision i.e., if the input image is negative (normal)
then the generated explanation is predicted as positive (abnor-
mal) for the specific classification task. For self consistency,
we calculated the FO preservation (FOP) score. FOP score is
the fraction of real images, with successful detection of FO, in
which FO was also detected in the corresponding explanation
image xδ. Table 7 summarizes our results. In the absence of
adversarial loss from cGAN (λ1 = 0), FID score is very high
and the FOP score is low as the generated images looks very
different from the real CXR images. When KL loss for clas-
sifier consistency is missing (λ2 = 0), the CV score is poor as
the generated explanations are derived without considering the
classification function and hence they failed to flip the classi-
fication decision. In the absence of CARL loss (λ3 = 0), the
generated explanations are no longer for the same patient as in
query CXR, hence FO in query CXR are absent in generated
explanations, resulting in low FOP score.

6.14. Extended results for saliency maps

Our method doesn’t produce a saliency map by default. We
approximated a saliency map as an absolute difference map be-
tween the explanations generated for the two extremes (normal
with f (xc) < 0.2 and abnormal f (xc) > 0.8) of the decision
function f . We show an example of saliency map generated by
our method in Fig. 8. Fig. 21 shows our extended results.

We also compared the saliency maps generated by our model
with popular gradients based methods. For quantitative evalua-
tion, we consider the deletion evaluation metric (Petsiuk et al.,
2018). The metric quantifies how the probability of the target-
class changes as important pixels are removed from an image.
To remove pixels from an image, we tried selectively impaint-
ing the region based on its surroundings. In Fig. 20, we show
an example of deletion-by-impainting. For generating results
in Table. ??, we plot the deletion curve for 500 images, and
calculated area under the deletion curve (AUDC) for each.

Please note that, as more pixels are removed, the modified
images become unrealistic and visually appear different from a
CXR. The behavior of the classifier on such images is inconsis-
tent. Low AUDC demonstrates that all the methods are success-
ful in localizing the important regions for classification. How-
ever, unlike saliency-based methods, our counterfactual expla-
nation provides extra information on what image features in
those relevant regions for classification and how those image
features should be modified to flip the decision.

6.15. Disease-specific evaluation

For quantitative analysis, we randomly sample two groups of
real images (1) a real-normal group defined as Xn = {x; f (x) <
0.2}. It consists of real CXR images that are predicted as normal
by the classifier f . (2) A real-abnormal group defined as Xp =

{x; f (x) > 0.8}. ForXn, we generated a counterfactual group as,
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Fig. 19. Each cell is the fraction of the generated explanations, that have flipped in a class as compared to the query image. The x-axis shows the classes in
a multi-label setting, and the y-axis shows the target class for which an explanation is generated. Note: This is not a confusion matrix.

Table 7. FID score quantifies the visual appearance of the explanations. CV score is the fraction of explanations that have an opposite prediction
compared to the input image. FOP score is the fraction of real images with FO, in which FO was also detected in the corresponding explanation image.
In configuration with λ1 = 0 there is no adversarial loss from cGAN, in λ2 = 0 there is no KL -loss for classifier consistency and in λ3 = 0 there is no
context-aware self reconstruction loss.

Cardiomegaly Pleural Effusion Edema
Baseline λ1 = 0 λ2 = 0 λ3 = 0 Baseline λ1 = 0 λ2 = 0 λ3 = 0 Baseline λ1 = 0 λ2 = 0 λ3 = 0

FID score
Normal 166 200 174 160 146 210 150 149 149 169 153 155

Abnormal 137 189 138 140 122 178 120 130 102 170 109 120
Counterfactual Validity (CV) Score

Real ( f (x) ∈ [0, 1]) 0.91 0.89 0.43 0.92 0.97 0.93 0.43 0.97 0.98 0.95 0.45 0.91
Foreign Object Preservation (FOP) score

Pacemaker 0.52 0.2 0.55 0.19

X
p
c = {x ∈ Xn; f (I f (x, c)) > 0.8}. Similarly for Xp, we derived

a counterfactual group as Xn
c = {x ∈ Xp; f (I f (x, c)) < 0.2}.

Next, we quantify the differences in real and counterfactual
groups by performing statistical tests on the distribution of clin-
ical metrics such as cardiothoracic ratio (CTR) and the Score of
normal Costophrenic recess (SCP). Specifically, we performed
the dependent t-test statistics on clinical metrics for paired sam-
ples (Xn and Xp

c ), (Xp and Xn
c) and the independent two-sample

t-test statistics for normal (Xn, Xn
c) and abnormal (Xp, Xp

c )
groups. The two-sample t-tests are statistical tests used to com-
pare the means of two populations. A low p-value < 0.0001
rejects the null hypothesis and supports the alternate hypothesis
that the difference in the two groups is statistically significant
and that this difference is unlikely to be caused by sampling
error or by chance. For paired t-test, the mean difference cor-
responds to the average causal effect of the intervention on the
variable under examination. In our setting, intervention is a do
operator on input image (x), before intervention, resulting in a
counterfactual image (xc), after intervention.

Table 8 provides the extended results for the Fig. 9. Patients
with cardiomegaly have higher CTR as compared to normal
subjects. Hence, one should expect CTR(Xn) < CTR(Xp

c ) and
likewise CTR(Xp) > CTR(Xn

c). Consistent with clinical knowl-
edge, in Table. 8, we observe a negative mean difference of -

0.03 for CTR(Xn) − CTR(Xp
c ) (a p-value of < 0.0001) and a

positive mean difference of 0.14 for CTR(Xp) − CTR(Xn
c) (with

a p-value of ≪ 0.0001). On a population-level CTR was suc-
cessful in capturing the difference between normal and abnor-
mal CXRs. Specifically in un-paired differences, we observe a
low mean CTR values for normal subjects i.e., mean CTR(Xn)
= 0.46 as compared to mean CTR for abnormal patients i.e.,
mean CTR(Xp) = 0.56. The low p-values supports the alternate
hypothesis that the difference in the two groups is statistically
significant.

Further, in Fig 21.A, we show samples from input images that
were predicted as negative for cardiomegaly (Xn). In their coun-
terfactual abnormal images (third column), we observe small
changes in CTR are sufficient to flip the classification deci-
sion. This is consistent with a small mean difference CTR(Xn)
- CTR(Xa

c) = −0.03. In contrast, when we generate counterfac-
tual normal (sixth column) from real abnormal images (positive
for cardiomegaly, Fig 21.B), significant changes in CTR lead to
flipping of the prediction decision. This observation is consis-
tent with a large mean difference CTR(Xa) - CTR(Xn

c) = 0.14.

By design, the object detector assigns a low SCP to any indi-
cation of blunting CPA or abnormal CP recess. Hence, SCP(Xn)
> SCP(Xp

c ) and likewise SCP(Xp) < SCP(Xn
c). Consistent with

our expectation, in Table. 8, we observe a positive mean dif-
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(a) (b) (c)

Fig. 20. Deletion-by-impainting: (a) input image. (b) transformation of the input image as important pixels are deleted, and the resulting patches are
in-filled base on the surrounding context. The importance is derived from the saliency map produced from our (top-row) and gradient-based (bottom-row)
method. The top label shows the fraction of removed pixels. The bottom label shows the classification outcome for a target class. (c) The plot shows the
change in classification prediction as a function of the fraction of removed pixels.

Table 8. Results of independent t-test. We compared the difference distribution of cardiothoracic ratio (CTR) for cardiomegaly and the
Score for normal Costophrenic recess (SCP) for pleural effusion.

Target Paired Differences
Disease Real Counterfactual 95% Confidence Interval

Group Group Mean Difference Std Lower Upper t df p-value
Cardiomegaly Xn X

n→p
c -0.03 0.07 -0.03 -0.01 -4.4 304 < 0.0001

(CTR) Xp X
p→n
c 0.14 0.12 0.13 0.15 24.7 513 ≪ 0.0001

Pleural effusion Xn X
n→p
c 0.13 0.22 0.06 0.13 5.9 217 ≪ 0.0001

(SCP) Xp X
p→p
c -0.19 0.27 -0.18 -0.09 -6.7 216 ≪ 0.0001

Un-Paired Differences
Mean Mean 95% Confidence Interval

Real Group Counterfactual Group Lower Upper t df p-value
Cardiomegaly Xn X

p→n
c 0.46 0.42 0.02 0.06 5.2 817 < 0.0001

(CTR) Xp X
n→p
c 0.56 0.50 0.04 0.07 9.9 817 ≪ 0.0001

Pleural effusion Xn X
p→n
c 0.69 0.61 0.18 0.27 9.3 433 ≪ 0.0001

(SCP) Xp X
n→p
c 0.42 0.56 -0.32 -0.21 -9.7 433 ≪ 0.0001

ference of 0.13 for SCP(Xn) − SCP(Xp
c ) (with a p-value of

≪ 0.0001) and a negative mean difference of -0.19 for SCP(Xp)
− SCP(Xn

c) (with a p-value of ≪ 0.0001). On a population-
level SCP was successful in capturing the difference between
normal and abnormal CXR for pleural effusion. Specifically
in un-paired differences, we observe a high mean SCP values
for normal subjects i.e., mean SCP(Xn) = 0.69 as compared to
mean SCP for abnormal patients i.e., mean SCP(Xp) = 0.42.
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A. Input Image
(Negative Cardiomegaly)Normal Abnormal

|Normal –
Abnormal| Normal Abnormal

|Normal –
Abnormal|

B.  Input Image
(Positive Cardiomegaly)

CTR = 0.40 CTR = 0.32 ∆ = 0.08 CTR = 0.42

CTR = 0.42 CTR = 0.33 ∆ = 0.09 CTR = 0.44CTR = 0.25 CTR = 0.20 CTR = 0.25 ∆=0.00

CTR = 0.24 CTR = 0.21 CTR = 0.27 ∆=0.03 

Fig. 21. Extended results for explanation produced by our model for Cardiomegaly. For each image, we generate a normal and an abnormal explanation
image. We show pixel-wise difference of the two generated images as the saliency map. In column A.(B.), we show input images negatively (positively)
classified for Cardiomegaly. The yellow contour shows the heart boundary learned by a segmentation network. CTR is the cardiothoracic ratio. For
column A, we observe a relatively minor change in CTR (∆) between real and counterfactual images than in column B.
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