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On January 2020, SARS-CoV-2 was identified as the causative 
agent of a new respiratory syndrome that was later named 
Corona Virus Disease 19 (COVID-19) (1). The virus has rapidly 
spread throughout the world, causing an ongoing pandemic, 
with millions of deaths (2). SARS-CoV-2 is a member of Coro-
naviridae, a family of enveloped, single-strand, positive-
sense RNA viruses (3). This family is composed of both hu-
man and animal pathogens, including two other emerging 
human pathogens (SARS-CoV and MERS-CoV) as well four 
endemic human viruses that are the second most common 
cause of the common cold (HCoV-OC43, 229E, NL63 and 
HKU1) (4). 

Upon entry into the host cell cytoplasm, the viral genome 
is translated into roughly 30 proteins. Of these, 16 are initially 
translated as two polyproteins that must be cleaved into the 

individual viral proteins for infection to proceed. This cleav-
age is mediated by two virally encoded proteases: the main 
viral protease, known as Mpro, 3CLpro or non-structural pro-
tein 5 (nsp5) and a second protease known as the papain-like 
protease, PLpro, a domain within nsp3 (3). There is interest 
in developing de-novo inhibitors to target these proteases (5–
10) but this is a lengthy process. 

While several vaccines received emergency use authoriza-
tion from health authorities world-wide and are being de-
ployed, it will take a long time to vaccinate the world 
population, and the emergence of viral escape mutants ren-
dering vaccines ineffective remains a possibility. Therefore, 
there is continued need for new treatment options for 
COVID-19, as well as for broad-spectrum antivirals that could 
be used against future emerging viruses. Remdesivir, an 
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There is an urgent need for antiviral agents that treat SARS-CoV-2 infection. We screened a library of 1,900 
clinically safe drugs against OC43, a human beta-coronavirus that causes the common cold and evaluated 
the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in vitro. 
Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent 
being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry 
show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then 
treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced 
lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, 
B.1.351 and P.1). 
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RNA-dependent RNA-polymerase inhibitor, has been re-
ported to shorten COVID-19 hospitalization times (11), but it 
failed a large clinical trial in hospitalized patients (12) and its 
efficacy is unclear. 

Drug-repurposing screens have been used to identify safe-
in-human drugs with potential anti- SARS-CoV-2 properties 
(9, 13, 14). Repurposed drugs that have existing clinical data 
on the effective dose, treatment duration, side effects and tox-
icity information could be rapidly translated into the treat-
ment of patients. 

We screened a library of 1,900 clinically used drugs, either 
approved for human use or with extensive safety data in hu-
mans (Phase 2 or 3 clinical trials), for their ability to inhibit 
infection of A549 cells by OC43. We chose OC43 as it is a hu-
man pathogen that belongs to the same clade of beta-corona-
viruses as SARS-CoV-2 and can be studied under “regular” 
biosafety conditions, as well as in an attempt to discover 
broad spectrum anti-coronavirus drugs that would be benefi-
cial against SARS-CoV-2 and future emerging coronaviruses. 
One day after plating, cells were infected at an MOI of 0.3, 
incubated at 33°C for 1 hour and drugs were added to a final 
concentration of 10μM. Cells were then incubated at 33°C for 
4 days, fixed and stained for the presence of the viral nucleo-
protein (Fig. 1A). We imaged the cells at day 0 (following drug 
addition) and day 4 (after staining) to determine the drugs 
effect on cell growth and OC43 infection. 

We repeated the screen twice and identified 108 drugs 
that significantly reduced OC43 infection (Fig. 1B and table 
S1). For further validation we looked at the top 35 hits, chose 
one drug in cases where it was tested in different formula-
tions (such as Erythromycin Cyclocarbonate and Erythromy-
cin estolate) and excluded drugs that were already evaluated 
against COVID19 and found ineffective (such as chloroquine) 
or that were withdrawn due to toxicity (such as Mesori-
dazine). We additionally included trimipramine, which was 
not present in our screen, because two closely related drugs 
(imipramine and clomipramine) were top hits. We deter-
mined the EC50 values (drug concentration required to re-
duce infection by 50%) of these 29 drugs against OC43 
infection (Fig. 1C and fig. S1) as well as their effect on cell 
proliferation (CC50; fig. S2). With the exception of erythro-
mycin, all drugs inhibited OC43 infection in a dose-depend-
ent manner, with EC50 values ranging from 0.17-7μM. 

We determined the EC50 values for 26 of these drugs 
against SARS-CoV-2 infection (excluding erythromycin that 
failed validation and tolertodine and imipramine that were 
weak inhibitors of OC43 infection). In a high biocontainment 
(BSL3) facility, A549 cells overexpressing the angiotensin-
converting enzyme 2 (ACE2) receptor were treated with the 
drugs for 2 hours, infected with SARS-CoV-2 (nCoV/Washing-
ton/1/2020) at an MOI of 0.5, incubated for 2 days, fixed, and 
stained for the viral spike protein (as a marker of SARS-CoV-

2 infection). After staining, the cells were imaged and the 
fraction of infected cells quantified. Of the 26 drugs tested, 
20 (77%) inhibited SARS-CoV-2 infection in a dose dependent 
manner (Fig. 2 and fig. S3). Interestingly, the most potent 
drugs against OC43 infection (elbavir and amphotericin B) 
did not inhibit SARS-CoV-2 infection. A comparison of the 
EC50 values obtained against OC43 and SARS-CoV-2, as well 
as the chemical structures of the drugs, is shown in table S2. 
Thus, our screen identified 20 safe-in-human drugs that are 
able to inhibit both OC43 and SARS-CoV-2 infection of A549 
cells. 

We next examined the drugs ability to inhibit SARS-CoV-
2 main protease, 3CL. 3CL is an attractive target for antiviral 
drugs, as it indispensable for viral replication and is well con-
served among coronaviruses (15). Drugs that target 3CL are 
also unlikely to be affected by mutations that may arise in the 
Spike protein due to immunological pressure after natural in-
fection or vaccination. We first tested the ability of the 20 
drugs that inhibited both viruses to inhibit 3CL activity in 
293T cells transfected with a FlipGFP reporter system (16) at 
a single concentration of 10μM. 8 drugs showed a statistically 
significant decrease in the percentage of GFP-expressing cells 
(Fig. 3A and fig. S4). 

Most potent was masitinib, which completely inhibited 
3CL activity in cells. Masitinib is an orally bioavailable c-kit 
inhibitor (17) that has been approved for treatment of mast-
cell tumors in dogs (18) and evaluated in phase 2 and 3 clini-
cal trials in humans for the treatment of cancer (19), asthma 
(20), Alzheimer’s (21), multiple sclerosis (22) and amyo-
trophic lateral sclerosis (23). 

We determined the IC50 value (the drug concentration 
that causes a 50% reduction in enzymatic activity) of 
masitinib inhibition of 3CL activity in cells using two distinct 
assays; the FlipGFP reporter assay described above and a lu-
ciferase reporter assay (24). These assays, performed inde-
pendently at the University of Chicago and Duke University, 
determined the IC50 value to be 2.5μM (Fig. 3, B and C), sim-
ilar to the EC50 values determined against OC43 (2.1μM; Fig. 
1C) and SARS-CoV-2 (3.2μM; Fig. 2) infections, suggesting 
that masitinib inhibition of coronavirus infection is achieved 
by inhibiting 3CL activity. As a positive control, we deter-
mined the ability of GRL-0496, a covalent inhibitor of 3CL 
(25) to inhibit 3CL activity and found it is similar to that of 
masitinib (Fig. 3C; IC50=3.8μM), in agreement with its previ-
ously reported IC50 in cells (5μM) (26). 

In agreement with this proposed mode-of-action (post-en-
try inhibition of viral replication), masitinib was effective in 
inhibiting SARS-CoV-2 infection when added to cells two 
hours after infection (fig. S5A) and dramatically reduced viral 
progeny production by both WT and several of the main cir-
culating variants of concern; B.1.1.7, B.1.351 and P.1 (fig. S5, B 
and C). 
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To obtain further mechanistic understating of the mode 
of inhibition we determined the high resolution structure of 
masitinib-bound 3CL using X-ray crystallography (Fig. 3, D 
and E). The structure indicates that masitinib binds non-co-
valently between domains I and II of 3CL and blocks the key 
catalytic residues at the two active sites in the dimer. 

Specifically, masitinib’s pyridine ring packs into the S1 
peptide recognition site of 3CL (27). Beside hydrophobic and 
Van der Waals interactions between the ring and its sur-
rounding pocket-forming residues, the nitrogen atom of the 
pyridine forms an H-bond (2.78 Å) with His163, located at the 
bottom of the S1 pocket. Masitinib’s aminothiazole ring forms 
two H-bonds with 3CL, one between its amine to His164 (3.09 
Å) and one between the thiazole’s nitrogen to the Sγ atom of 
Cys145 (3.38 Å), the key catalytic residue of 3CL. The hydro-
phobic toluene ring of masitinib occupies the S2 binding 
pocket of the protease, forming a nearly perfect π-π stacking 
with His41, the second residue in the protease catalytic dyad. 
The benzamide group of masitinib points away from the S4 
binding pocket of 3CL (which is used by the peptide sub-
strate). Besides an H-bond from its amide to a nearby water 
molecule that is a part of a hydrogen bond network, the ben-
zamide mainly interacts with the mainchain of the protease, 
between residues Cys44-Ser46. The last portion of masitinib 
(the N-methylpiperaze group) is outside of the protease bind-
ing site and is disordered, with no corresponding electron 
densities in the Fourier maps (fig. S6). 

Given that masitinib directly binds the catalytic residues 
of the protease (28), it likely acts as a competitive inhibitor. 
To test this, we measured the rate of 3CL enzymatic reaction 
in vitro using a fluorescence based enzyme activity assay (29). 
We measured the rate of 3CL activity in a range of substrate 
and inhibitor concentrations and fitted the data to equations 
describing different modes of inhibition using SigmaPlot En-
zyme Kinetics Module 1.3 (see methods). As expected, com-
petitive inhibition gave the best fit with the smallest Akaike 
Information Criterion corrections (AICc) value. The inhibi-
tion constant, Ki (inhibitor concentration needed to occupy 
half of the enzyme active sites) was determined to be 2.6μM, 
in good agreement with the IC50 values measured in the cel-
lular assays (2.5μM). In addition to the mathematical analysis 
of the data, competitive inhibition is also suggested from its 
visualization in a Dixon plot (30) (Fig. 3F), in which the con-
vergence of the regression lines above the x-axis is character-
istic of competitive inhibition, and their intersection denotes 
the Ki value. 

Lastly, we evaluated the effect of masitinib on the activity 
of PLpro, the other viral protease, and found it had no effect 
(fig. S7), supporting a specific role for masitinib in 3CL inhi-
bition. Taken together, our results show that masitinib is a 
competitive inhibitor of 3CL, able to bind to the active site of 
the enzyme and inhibit its catalytic activity, both in vitro and 

in live cells. 
The 3C proteases of picornaviruses (human pathogens 

that cause a range of diseases including the common cold, 
meningitis, hepatitis and poliomyelitis) have extensive struc-
tural homology and substrate specificity with 3CL (31). Using 
a luciferase reporter assay (32), we found that masitinib sig-
nificantly inhibited the activity of the 3C protease (fig. S8A). 
Masitinib was also effective in blocking the replication of 
multiple picornaviruses (fig. S8B) but not of other RNA vi-
ruses (fig. S8C). Thus, we conclude that masitinib is a rela-
tively broad-spectrum antiviral, able to inhibit multiple 
corona- and picorna- viruses, but not RNA viruses that do not 
rely on a 3CL-like protease to complete their life cycle. 

Before evaluating the effectiveness of masitinib as an an-
tiviral in vivo, we characterized the antiviral properties of its 
major metabolite, AB3280 (33). The structure of AB3280 is 
very similar to that of masitinib, missing only the terminal 
methyl group on the piperazine ring (which does not partici-
pate in binding 3CL; Fig. 3D). Indeed, we found that AB3280 
maintains its antiviral activity against both OC43 and SARS-
CoV-2, and binds to the 3CL active site in a similar manner 
(fig. S9). 

To evaluate the effect of masitinib on SARS-CoV-2 infec-
tion in mice, twenty K18-hACE2 transgenic mice (34) were 
intranasally infected with 2X104 PFU of SARS-CoV-2 
(nCoV/Washington/1/2020). Half were treated with PBS and 
half with masitinib (25 mg/kg) twice a day, starting 12 hours 
post infection and followed for 10 days (Fig. 4A). This dose 
was well tolerated, with minimal weight loss in uninfected 
mice (fig. S10A). 25 mg/kg is equivalent to 4 mg/kg/day in 
humans (35), within the safe doses used in human clinical 
trials. Most clinical trials in humans use 4.5-6 mg/kg/day 
with doses ranging up to 12 mg/kg/day (36). 5 animals from 
each group were sacrificed on day 6 to assess viral loads and 
lung pathology and the rest were used to analyze mice sur-
vival for up to 10 days (Fig. 4A). One mouse from the PBS 
treated group was excluded from analysis, as it showed no 
weight loss following infection (in contrast to the other 19 
mice in the study). 

Masitinib treatment resulted in over 2-logs reduction in 
viral titers in the lungs and nose on day 6 (Fig. 4, B and C). It 
further improved overall lung pathology (as blindly assessed 
by a veterinarian pathologist; Fig. 4, E and F) and signifi-
cantly reduced the levels of key pro-inflammatory cytokines 
(such as IL-1β and IFNγ) in the lungs (Fig. 4G). Further, we 
observed improvements in survival (Fig. 4D), weight loss (fig. 
S10B) and clinical scores (fig. S10C) with masitinib treatment. 
Taken together, our results show that masitinib is effective in 
reducing SARS-CoV-2 viral load in mice (reducing >99% of 
the viral load on day 6), reduced inflammatory signatures, 
and showed potential benefits for survival and clinical scores. 

In conclusion, we have shown that OC43, a BSL-2 
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pathogen that can be readily studied in most virological labs, 
is a good model system to screen for potential antiviral drugs 
against SARS-CoV-2 infection, since most drugs that inhib-
ited OC43 replication also inhibited SARS-CoV-2 in our meas-
urements. We identified 20 repurposed drugs that inhibited 
OC43 and SARS-CoV-2 replication, and identified masitinib 
as a very effective inhibitor of the viral protease 3CLpro. 

While the EC50 values for viral inhibition and the IC50 
values for protease inhibition are in excellent agreement, we 
did not directly demonstrate that the inhibition of viral rep-
lication is the result of the inhibition of the protease activity. 
A direct way to test this is through the continuous propaga-
tion of the virus in the presence of low drug concentrations 
and the identification of escape mutants. Our attempts to re-
cover such escape mutants with three different viruses 
(OC43, SARS-CoV-2 and CVB3) failed, suggesting a high bar-
rier for acquiring resistance to the drug. While an alternative 
explanation is that masitinib exerts its antiviral effect 
through inhibition of tyrosine kinases, two lines of evidence 
argue against it: first, our drug-repurposing screen included 
multiple other tyrosine kinase inhibitors that inhibit the 
same kinases with equal or better affinities than masitinib 
and which did not significantly inhibit OC43 infection (table 
S3). Second, multiple CRISPR-mediated screens showed that 
knock-out of these tyrosine kinases did not affect SARS-CoV-
2 and other coronaviruses infection (37–39). Nevertheless, it 
is possible that the inhibition of one or more tyrosine kinases 
by masitinib contributes to its antiviral activity. 

In addition to its direct antiviral effect described here, 
masitinib has been shown to decrease airway inflammation 
and improve lung functions in a feline model of asthma (40). 
Given that a main pathology of SARS-CoV-2 is ARDS (acute 
respiratory distress syndrome), the combined antiviral and 
anti-inflammatory properties of masitinib might prove bene-
ficial for treating COVID-19 patients. However, the timing of 
masitinib’s anti-inflammatory effects should be carefully 
studied, as it is not clear if a reduction in the inflammatory 
response would be desirable at the early phases of disease 
that is dominated by viral replication. 

Future efforts should evaluate the efficacy of masitinib in 
treating COVID-19 patients. While a phase 2 clinical trial has 
been registered with ClinicalTrials.gov (Identifier: 
NCT04622865) to test the effect of a combined treatment of 
masitinib and isoquercetin on hospitalized patients, our data 
suggests that masitinib would be most beneficial at early 
times after infection, when an antiviral is likely to have the 
biggest effect. Oral use of masitinib would make such early 
treatment feasible. Furthermore, future development of 
masitinib analogs with lower anti-tyrosine kinase activity 
would be beneficial to reduce its reported side effects. 
Masitinib is also interesting in that it is potent against mul-
tiple corona and picornaviruses in vitro and may have 

potential for treating other viral diseases. 
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  Fig. 1. A drug repurposing screen identifies multiple safe-in-human drugs that inhibit OC43 

infection. (A) Schematic of the screen. A549 cells expressing H2B-mRuby were infected with OC43 
(MOI 0.3), treated with drugs, incubated for 4 days at 33°C, and stained for the viral nucleoprotein. 
(B) Screen results showing the %OC43 staining of mock-infected cells (green), no-drug controls 
(black), drugs with no effect on OC43 infection (blue), and screen hits (red). Overall agreement 
between the two repeats is high (R2=0.81) (C) Dose response curves of remdesivir and the top hits 
from the screen, n = 3. Individual measurements are shown as semi-transparent circles (note that 
some circles overlap). Additional dose response curves are shown in fig. S1. 
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  Fig. 2. Discovery of repurposed drugs that inhibit SARS-CoV-2 in human lung cells. Of the 26 

drugs that inhibited OC43 and tested against SARS-CoV-2, 20 inhibited SARS-CoV-2 replication in a 
dose-dependent manner, showing good concordance between OC43 and SARS-CoV-2 inhibition. 
A549 cells overexpressing ACE2 were pre-treated with indicated drugs for 2 hours, infected with 
SARS-CoV-2 (MOI 0.5) and incubated for 2 days. Cells were stained for the presence of the spike 
protein and the % of infected cells was analyzed. Most of the drugs effective against OC43 showed 
similar effectivity against SARS-CoV-2, n=3. Individual measurements are shown as semi-
transparent circles (note that some circles overlap). Additional dose response curves are shown in 
fig. S3. 
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Fig. 3. Masitinib inhibits SARS-CoV-2 3CLpro enzymatic activity. (A) A FlipGFP reporter assay was 
performed to screen for potential inhibition of 3CL by the identified drugs at a single concentration 
(10μM). Shown are the drugs that showed a statistically significant reduction in 3CLpro activity (p-
value<0.05, one-tailed t test, FDR-corrected). n=6. The data for the remaining tested drugs is shown 
in fig. S4. Individual measurements are shown in circles. Bars depict mean ± s.e. (B) Dose-response 
curve for 3CL inhibition by masitinib using the FlipGFP reporter assay, n = 6. Individual measurement 
shown as circles. (C) Dose-response curve for 3CL inhibition by masitinib (yellow) and GRL-0496 
(red) using a luciferase reporter assay, n = 3. Induvial measurement shown as circles (masitinib) or 
squares (GRL-0496) (D) The dimer formation, domain structure, and masitinib binding site of SARS-
CoV-2 3CL. Domains I, II and III (D1-D3) of the monomer A of a 3CL dimer are colored in cyan, teal 
and light blue, respectively. The corresponding three domains of monomer B are colored in light pink, 
magenta and purple. In monomer A, masitinib is drawn in stick format, bound to the active site. The 
location of the three binding pockets S1, S2, and S4 are marked in red. (E) A ribbon diagram showing 
details of some interactions formed between masitinib and 3CL at the active site. Masitinib is drawn 
in stick format with its C atoms colored in yellow. Key pocket forming or interacting residues of 3CL 
are also presented in stick format with their C atoms colored in purple. Hydrogen bonds are drawn 
in black dashed lines. The sites of binding pockets S1 and S2 are marked in red. The two catalytic 
residues are marked by red stars. (F) Dixon plot, showing the rate of 3CL activity in the presence of 
different substrate and masitinib concentrations. n=3. 
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Fig. 4. Masitinib inhibits SARS-CoV-2 replication in mice. (A) Schematic diagram of experiment. 
(B and C) SARS-CoV-2 infectious virus measurements in the nose (B) and lungs (C) of PBS (black) 
or masitinib (blue) treated mice at day 6 post infection. n=5 mice per group. Red lines are the mean 
values. P-values shown in figure (one-tailed t test). (D) Kaplan-Meir curves assessing mice survival 
after PBS (black, n=4) or masitinib (blue, n=5) treatment post-infection. P-value shown in figure (log-
rank test). (E) Representative images of lung histology (H&E) stain at 6 days post infection. (F) Lung 
pathology score on day 6 post infection. Tissues were blindly scored on a scale of 0-4 by an expert 
veterinarian pathologist. n=5 mice per group. P-value shown in figure (one-tailed t test). (G) Cytokine 
levels in the lung of infected mice treated with PBS (black) or masitinib (blue) at day 6 post infection. 
n=5 mice per group. Red lines are the mean values. P-values shown in figure (one-tailed t test). 
Experiment was performed once. 
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