Supporting Information

A Computational Study on the Interaction of NSP10 and NSP14: Unraveling the RNA Synthesis Proofreading Mechanism in SARS-CoV-2, SARS-CoVand MERS-CoV

Himakshi Sarma^{*1} and G. Narahari Sastry^{*1,2}

¹Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and

Technology, Jorhat, Assam, India

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

Corresponding Author

* E-mail: gnsastry@gmail.com; gnsastry@neist.res.in; himakshi.acdsd19@gmail.com

MERS-CoV	SQIVTGLFKDCSRETSGLSPAYAPTYVSVDDKYKTSDELCVNLNLPANVPYSRVISRMGF	60
SARS-CoV-2	SMLFKDCSKVITGLHPTQAPTHLSVDTKFKTEGLCVDIPGIPKDMTYRRLISMMGF	56
SARS-CoV	AENVTGLFKDCSKIITGLHPTQAPTHLSVDIKFKTEGLCVDIPGIPKDMTYRRLISMMGF : *****: :** *: ***::*** ::*** ::***	60
MERS-CoV	KLDATVPGYPKLFITREEAVRQVRSWIGFDVEGAHASRNACGTNVPLQLGFSTGVNFVVQ	120
SARS-CoV-2	KMNYQVNGYPNMFITREEAIRHVRAWIGFDVEGCHATREAVGTNLPLQLGFSTGVNLVAV	116
SARS-CoV	KMNYQVNGYPNMFITREEAIRHVRAWIGFDVEGCHATRDAVGTNLPLQLGFSTGVNLVAV *:: * ***::*******:*:*****************	120
MERS-CoV	PVGVVDTEWGNMLTGIAARPPPGEQFKHLVPLMHKGAAWPIVRRRIVQMLSDTLDKLSDY	180
SARS-CoV-2	PTGYVDTPNNTDFSRVSAKPPPGDQFKHLIPLMYKGLPWNVVRIKIVQMLSDTLKNLSDR	176
SARS-CoV	PTGYVDTENNTEFTRVNAKPPPGDQFKHLIPLMYKGLPWNVVRIKIVQMLSDTLKGLSDR *.* *** :: : *:****:****************	180
MERS-CoV	CTFVCWAHGFELTSASYFCKIGKEQKCCMCNRRAAAYSSPLQSYACWTHSCGYDYVYNPF	240
SARS-CoV-2	VVFVLWAHGFELTSMKYFVKIGPERTCCLCDRRATCFSTASDTYACWHHSIGFDYVYNPF	236
SARS-CoV	VVFVLWAHGFELTSMKYFVKIGPERTCCLCDKRATCFSTSSDTYACWNHSVGFDYVYNPF .** ******** .** *** *:.**:**:** ::********	240
MERS-CoV	FVDVQQWGYVGNLATNHDRYCSVHQGAHVASNDAIMTRCLAIHSCFIER 289	
SARS-CoV-2	MIDVQQWGFTGNLQSNHDLYCQVHGNAHVASCDAIMTRCLAVHECFVKR 285	
SARS-CoV	MIDVQQWGFTGNLQSNHDQHCQVHGNAHVASCDAIMTRCLAVHECFVKR 289 ::******:.*** :*** :*** :**** **********	

Figure S1. Amino acid sequence alignment of NSP14 of SARS-CoV-2, SARS-CoV and MERS-CoV obtained from Clustal Omega server. Conserved residues among all the three coronaviruses are depicted as '*'

SARS-CoV-2	AGNATEVPANSTVLSFCAFAVD	AAKAYKDYLASGGQPITNCVKMLCTHTGTGQAITVTPE	60
SARS-CoV	AGNATEVPANSTVLSFCAFAVD	PAKAYKDYLASGGQPITNCVKMLCTHTGTGQAITVTPE	60
MERS-CoV	AGSNTEFASNSSVLSLVNFTVD **. **. :**:***: *:**	PQKAYLDFVNAGGAPLTNCVKMLTPKTGTGIAISVKPE	60
SARS-CoV-2	ANMDQESFGGASCCLYCRCHID	HPNPKGFCDLKGKYVQIPTTCANDPVGFTLKNTVCTVC	120
SARS-CoV	ANMDQESFGGASCCLYCRCHID	HPNPKGFCDLKGKYVQIPTTCANDPVGFTLRNTVCTVC	120
MERS-CoV	STADQETYGGASVCLYCRAHIE	HPDVSGVCKYKGKFVQIPAQCVRDPVGFCLSNTPCNVC	120
SARS-CoV-2	GMWKGYGCSCDQLREPMLQ-	139	
SARS-CoV	GMWKGYGCSCDQLREPLMQ-	139	
MERS-CoV	QYWIGYGCNCDSLRQAALPQ * **** ** **	140	

Figure S2. Amino acid sequence alignment of NSP10 SARS-CoV-2, SARS-CoV and MERS-CoV obtained from Clustal Omega server. Conserved residues among all the three coronaviruses are depicted as '*'

Figure S3. Representation of hydrophobicity map of average structure (from last 20 ns)SARS-CoV-2 (a), SARS-CoV (b) and (c) MERS-CoV NSP14-NSP10 PPI complex in three different forms. Yellow colour depiction is for NSP10, Brown colour is NSP14. The nonpolar (orange), polar (blue) and neutral regions aredepicted for the NSP14.

Figure S4. Radius of gyration (Rg) graphs (a) - (c) of NSP14-NSP10 complexes of SARS-CoV-2, SARS-CoV, MERS-CoV (left side) and SARS-CoV-2 NSP14^{mutant} complexes (right side) along the three sets of 100 ns MD simulation. Triple mutant (in red, in the left plots) is the combination of the three (F233L, P203, L177F) mutations.

Figure S5. Superimposed average structures (extracted from the last 20 ns MD trajectories of three sets of MD simulation) of SARS-CoV-2 NSP14-NSP10 complex with SARS-CoV and MERS-CoV (a)-(c). On the left side is the NSP14 RMSF plot depicts the C-terminal fluctuating residues encircled in red (from residue 245-268) in replica 1 (a) and 2 (b). The middle square box represents the corresponding fluctuating residue (245-268).

Figure S6 Superimposed average structures(from last 20 ns) of (a) NSP10 SARS-CoV-2(light brown), SARS-CoV (cyan) and MERS-CoV (pink) from the three (b)-(d) sets of MD simulation. Left side represents the RMSF of NSP10 from the three sets of MD simulation (b)-(d). In the middle, superimposed NSP10 3D structure of the three viruses is depicted. On the right side in a square boxfluctuating N-terminal region has been focusedranging from 113-131, shows a conformational change from coil to beta strand in case of SARS-CoV (cyan) in all the three sets (b)-(d) of MD simulations.

Figure S7. (a) - (c) On the left side, representation of superimposed SARS-CoV-2 mutant average structures (from last 20 ns) of NSP14-NSP10from all the three sets of MD simulations. In a square box in the middle, represented the C terminal fluctuation ranging from residue 113-131 in the NSP10 when it is in complex with mutated NSP14. (a) In case of replica 1, NSP10 with NSP14 (P203L) mutant, shows a conformational change from coil to beta strand. (b) In replica 2, NSP10 with NSP14 (Triple) mutant, shows a conformational change from coil to beta strand. (c) In replica 3, in the right side RMSF plot, does not show much fluctuation as compared to replica 1 and 2, therefore there are no conformational changes observed at position 113-131 (in the middle figure in a square box of replica 3).

Figure S8. Solvant Accessible Surface Area (SASA) graphs of (a)-(c) SARS-CoV-2, SARS-CoV, MERS-CoV (left side) and SARS-CoV-2 NSP14^{mutant} complexes (right side) along the three sets of 100 ns MD simulation.

Figure S9.Comparison of the electrostatic surface and charge distribution of NSP14 initial (a)-(c)and average structure (extracted from last 20 ns) (e)-(g) of SARS-CoV-2, SARS-CoV and MERS-CoV. Three views are shown for each PPI complexes. NSP10 secondary structure is depicted in yellow and NSP14 presented in multicolor ribbon and electrostatic charge distribution depicting interface region of NSP14 is shown with positive (blue), negative (red) surface.

(a) Wild type average NSP14-NSP10 PPI complex structure

Figure S10. Electrostatic surfaces and charge distribution of the NSP14:comparison of the electrostatic surface of the average structure (extracted from last 20 ns) of wild type NSP14 (a) in comparison withdifferent mutant structures (b)-(e). Three views are shown for each PPI complexes. The encircled area (b) in NSP14 (presented in multicolor as ribbon) is the binding interface region for NSP10 (NSP10 is depicted in yellow ribbon, extreme left side).

Figure S11. Cartoon view of the NSP14-NSP10 complex of SARS-CoV-2, common interacting interface hotspot residues among the three viruses (SARS-CoV-2, SARS-CoV and MERS-Co) represented in spheres. The NSP14 is represented in brown, NSP10 in yellow. Hotspot residues are represented in brown spheres (in NSP14), yellow spheres (in NSP10). The represented structure is the average conformer extracted from last 20 ns MD trajectory.

PBC Box	SARS-C	CoV-2		SARS-C	CoV		MERS-CoV			
information	Х	у	z	х	у	z	Х	у	z	
Box vectors/size (nm)	7.80	5.94	6.63	8.16	5.76	5.65	7.83	6.28	6.02	
Box volume (nm ³)	279.28			265.63			292.33			

Table S1. PBC cubic box information for SARS-CoV-2, SARS-CoV and MERS-CoV

Human CoVs	Time	Protein chains #Interface In PPI residues an complexes		Interface area (Ă ²)	#Salt bridge s	# H- bonds	# non- bonded contacts	
	Initial structure	NSP14 (A)	50	2135	1	22	313	
		NSP10 (B)	45	2320	1		515	
SARS-CoV-2	Average structure from	NSP14 (A)	36	1847	1	12	171	
	last 20 ns	NSP10(B)	35	1994				
SARS-CoV-2 ^{F233L}		NSP14 (A)	38	1983	1	17	165	
		NSP10(B)	37	2042	1	17	105	
SARS-CoV-2 ^{P203L}		NSP14 (A)	36	1898	1	12	162	
	Average structure from	NSP10(B)	35	1970	1	15	102	
SARS-CoV-2 ^{L177F}	last 20 ns	NSP14 (A)	32	1585	1	10	125	
		NSP10(B)	29	1683	1	10	125	
Tuinla mutant		NSP14 (A)	39	2036	1	17	170	
SARS-CoV-2 ^{mple-mutant}		NSP10(B)	40	2099	1	17	178	
			42	2004				
	Initial structure	NSP14 (A)	42	2004	1	14	217	
SARS CoV		NSPI0 (B)	39	2182				
SAK5-CUV	Average structure from	NSP14 (A)	39	2062	1	17	175	
	last 20 ns	NSP10 (B)	39	2026				
MEDS C-V	Initial structure	NSP14 (A)	42	1797	2	8	575	
		NSP10 (B)	39	1989				
MERS-COV	Average NSP14 30 1594		1	10	125			
	last 20 ns	NSP10 (B)	26	1630				

Table S2. Comparison of interface statistics of the initial NSP14-NSP10 complexes (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV with the average complex structures extracted from last 20 ns from 100 ns MD trajectory of replica 1. For each complex, interface statistics obtained from PDBsum server.

Human Protein # non-#Salt # Hchains **#Interface** Interface CoVs Time bonded PPI area (\breve{A}^2) residues bridges bonds contacts complexes NSP14 50 2135 (A) 1 22 313 Initial structure NSP10 (B) 45 2320 SARS-CoV-2 NSP14 Average 31 1907 **(A)** 19 162 structure from last 20 ns **NSP10(B)** 32 1994 NSP14 35 1942 SARS-CoV-2^{F233L} (A) 14 165 NSP10(B) 2019 35 NSP14 42 2016 SARS-CoV-2P203L (A) 1 15 186 Average NSP10(B) 35 2126 structure from last 20 ns NSP14 38 2020 SARS-CoV-2^{L177F} (A) 1 14 181 NSP10(B) 37 2113 NSP14 2061 40 SARS-CoV-2^{Triple-} (A) 1 16 178 mutant NSP10(B) 38 2137 NSP14 42 2004 (A) Initial structure 1 14 217 NSP10 (B) 39 2182 SARS-CoV NSP14 1984 37 Average **(A)** 1 17 166 structure from NSP10 last 20 ns 37 1913 **(B)** NSP14 42 1797 (A) Initial structure 2 8 575 NSP10 (B) 39 1989 MERS-CoV NSP14 28 1689 Average **(A)** 1 11 129 structure from NSP10 last 20 ns 31 1690 **(B)**

Table S3. Comparison of interface statistics of the initial NSP14-NSP10 complexes (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV with the average complex structures extracted from last 20 ns from 100 ns MD trajectory of replica 2. For each complex, interface statistics obtained from PDBsum server.

Table S4. Comparison of interface statistics of the initial NSP14-NSP10 complexes (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV with the average complex structures extracted from last 20 ns from 100 ns MD trajectory of replica 3. For each complex, interface statistics obtained from PDBsum server.

Human		Protein					# non-	
CoV	Time	chains PPI	#Interface residues	Interface area (Ă ²)	#Salt bridges	# H- bonds	bonded	
		complexes			·····8···		contacts	
	Initial atmusture	NSP14 (A)	50	2135	1	22	212	
	mittai suucture	NSP10 (B)	45	2320	1	22	515	
SARS-CoV-2	Average	NSP14 (A)	38	1937		10	1.	
	structure from last 20 ns	rom NSP10(B) 34 2042		-	13	156		
SARS-CoV-2 ^{F233L}		NSP14 (A)	39	1998	1	17	174	
		NSP10(B)	36	2079	1	17	1/4	
SARS-CoV-2 ^{P203L}	Average	NSP14 (A)	37	1975	1	12	151	
	structure from	NSP10(B)	31	2120	1	15	1.51	
SARS-CoV-2 ^{L177F}	last 20 hs	NSP14 (A)	32	1772	1	8	127	
		NSP10(B)	28	1907	1	0	127	
SARS-CoV-2 ^{Triple-mutant}		NSP14 (A)	39	1993	1	15	170	
	T 1	NSP14 (A)	42	2004	1	14	017	
	Initial structure	NSP10 (B)	39	2182	1	14	217	
SARS-CoV	Average	NSP14 (A)	36	2074			100	
	structure from last 20 ns	NSP10 (B)	42	1972	1	17	190	
	Initial structures	NSP14 (A)	42	1797	2	0	575	
	initial structure	NSP10 (B)	39	1989	2	0	575	
MEKS-COV	Average NSP14 (A) 32 1639		•	11	140			
	structure from last 20 ns	NSP10 (B)	32	1724	2	11	140	

Sl. no.	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Distance
1	72	0	LEU	7	А	4567	N	GLU	6	В	3.28
2	123	OD1	ASP	10	А	4510	N	ALA	1	В	2.63
3	290	0	THR	21	А	5833	N	GLY	94	В	3.04
4	564	0	CYS	39	А	5132	N	LEU	45	В	2.88
5	589	OD1	ASP	41	А	5317	OG1	THR	58	В	2.69
6	590	OD2	ASP	41	А	5875	ОН	TYR	96	В	2.72
7	910	N	LYS	61	А	4703	OG	SER	15	В	3.3
8	1017	N	ASN	67	А	4970	OG	SER	33	В	3.03
9	1051	ОН	TYR	69	А	4910	OD2	ASP	29	В	2.67
10	1938	0	THR	127	А	5827	NZ	LYS	93	В	2.77
11	3154	N	ILE	201	А	4767	0	PHE	19	В	3.07
12	3172	0	ILE	201	А	4778	N	VAL	21	В	2.88

Table S5. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.

Sl.	Atom	Atom name	Res. Name	Res.	Atom Chain	Atom	Atom name	Res. Name	Res.	Atom Chain	Distance
1	54	N	LEU	7	A	4581	0	GLU	6	В	3.25
2	72	0	LEU	7	A	4567	N	GLU	6	В	3.05
3	92	0	PHE	8	А	4553	N	THR	5	В	3.07
4	92	0	PHE	8	А	4559	OG1	THR	5	В	2.78
5	115	N	ASP	10	А	4542	0	ASN	3	В	3.31
6	290	0	THR	21	А	5833	N	GLY	94	В	3.31
7	338	OG1	THR	25	А	4566	0	THR	5	В	2.67
8	346	N	HIS	26	А	5065	0	ASN	40	В	3.07
9	346	N	HIS	26	А	5060	OD1	ASN	40	В	3.06
10	363	N	LEU	27	А	5060	OD1	ASN	40	В	3.22
11	554	N	CYS	39	А	5114	0	LYS	43	В	2.98
12	564	0	CYS	39	А	5132	N	LEU	45	В	2.81
13	910	N	LYS	61	А	4703	OG	SER	15	В	2.96
14	1017	N	ASN	67	А	4970	OG	SER	33	В	2.97
15	1051	ОН	TYR	69	А	4910	OD2	ASP	29	В	2.88
16	1976	ND2	ASN	130	А	5748	0	GLY	88	В	2.90
17	1987	OG1	THR	131	А	5620	ND1	HIS	80	В	3.00
18	3154	N	ILE	201	А	4767	0	PHE	19	В	3.06
19	3172	0	ILE	201	А	4778	N	VAL	21	В	2.99

Table S6. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.

Sl.	Atom	Atom	Res.	Res.	Atom Chain	Atom	Atom	Res.	Res.	Atom Chain	Distance
шо.	110.	name		110.	Chain	110.	name		шо.	Chan	Distance
1	33	N	THR	5	А	4581	0	GLU	6	В	2.85
2	115	N	ASP	10	А	4542	0	ASN	3	В	2.93
3	126	0	ASP	10	А	4529	N	ASN	3	В	2.86
4	331	0	PRO	24	А	5501	OG	SER	72	В	2.68
5	338	OG1	THR	25	А	4566	0	THR	5	В	2.87
6	346	N	HIS	26	А	5065	0	ASN	40	В	2.98
7	554	N	CYS	39	А	5114	0	LYS	43	В	2.94
8	564	0	CYS	39	А	5132	N	LEU	45	В	2.82
9	910	N	LYS	61	А	4703	OG	SER	15	В	3.03
10	1017	N	ASN	67	А	4970	OG	SER	33	В	3.09
11	1051	ОН	TYR	69	А	4910	OD2	ASP	29	В	2.67
12	3154	N	ILE	201	А	4767	0	PHE	19	В	2.94
13	3172	0	ILE5	201	А	4778	N	VAL	21	В	2.82

Table S7. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.

Sl. no.	Atom no.	Atom name	Res. Name	Res. no.	Chain NSP14	Atom no.	Atom name	Res. Name	Res. no.	Chain NSP10	Distance
1	2246	OG1	THR	25	Α	57	0	THR	5	В	2.84
2	1951	0	THR	5	А	58	N	GLU	6	В	3.26
3	1938	N	THR	5	А	72	0	GLU	6	В	2.79
4	2844	0	LYS	61	А	194	OG	SER	15	В	2.81
5	5065	N	ILE	201	А	258	0	PHE	19	В	2.94
6	5083	0	ILE	201	А	269	Ν	VAL	21	В	2.89
7	2964	ОН	TYR	69	А	405	OD2	ASP	29	В	2.69
8	2930	N	ASN	67	А	465	OG	SER	33	В	3.1
9	2254	N	HIS	26	А	560	0	ASN	40	В	3.06
10	2467	N	CYS	39	А	609	0	LYS	43	В	2.88
11	2477	0	CYS	39	А	627	Ν	LEU	45	В	2.8
12	2503	OD2	ASP	41	А	812	OG1	THR	58	В	2.77
13	3877	0	ASN	129	А	1264	N	CYS	90	В	2.87
14	3831	OD1	ASP	126	А	1322	NZ	LYS	93	В	2.64
15	3848	0	THR	127	А	1322	NZ	LYS	93	В	2.75
16	2198	0	THR	21	А	1328	N	GLY	94	В	3
17	2502	OD1	ASP	41	А	1370	OH	TYR	96	В	2.66

Table S8. Total number of H-bond involved in the average conformer of SARS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.

Table S9. Total number of H-bond involved in the average conformer of SARS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.

Sl.	Atom	Atom name	Res. Name	Res.	Atom Chain	Atom	Atom name	Res. Name	Res.	Atom Chain	Distance
1			TUD	-		22.45		TUD	110.	D	
1	57	0	THR	5	A	2245	OGI	THR		В	2.81
2	72	0	GLU	6	А	1937	Ν	THR		В	2.88
3	194	OG	SER	15	А	2888	OH	TYR		В	3.17
4	258	0	PHE	19	А	5064	N	ILE		В	2.96
5	269	N	VAL	21	А	5082	0	ILE		В	3.00
6	405	OD2	ASP	29	А	2963	ОН	TYR		В	2.66
7	465	OG	SER	33	А	2929	N	ASN		В	2.96
8	560	0	ASN	40	А	2253	N	HIS		В	2.88
9	609	0	LYS	43	А	2466	N	CYS		В	3.21
10	627	N	LEU	45	А	2476	0	CYS		В	2.80
11	979	N	ALA	71	А	2197	0	THR		В	3.02
12	996	OG	SER	72	А	2238	0	PRO		В	2.77
13	1264	N	CYS	90	А	3876	0	ASN		В	2.84
14	1322	NZ	LYS	93	А	3830	OD1	ASP		В	2.89
15	1322	NZ	LYS	93	А	3847	0	THR		В	2.78
16	1322	NZ	LYS	93	А	3890	0	ASN		В	3.09
17	1328	N	GLY	94	А	2209	OE1	GLN		В	2.86

Sl.	Atom	Atom name	Res. Name	Res.	Atom Chain		Atom	Atom name	Res. Name	Res.	Atom Chain	Distance
110.	110.	name	Ttame	110.	Cham		110.	name		110.		Distance
1	2028	OD2	ASP	10	A	-	1	N	ALA	1	В	2.54
2	2019	Ν	ASP	10	А		33	0	ASN	3	В	2.93
3	1996	0	PHE	8	А		44	N	THR	5	В	2.90
4	2245	OG1	THR	25	А		57	0	THR	5	В	2.67
5	5064	N	ILE	201	А		258	0	PHE	19	В	3.09
6	5082	0	ILE	201	А		269	N	VAL	21	В	2.84
7	2963	ОН	TYR	69	А		405	OD2	ASP	29	В	2.68
8	2929	N	ASN	67	А		465	OG	SER	33	В	3.07
9	2253	N	HIS	26	А		560	0	ASN	40	В	3.03
10	2466	N	CYS	39	А		609	0	LYS	43	В	2.90
11	2476	0	CYS	39	А		627	N	LEU	45	В	2.80
12	2197	0	THR	21	А		979	N	ALA	71	В	3.24
13	2238	0	PRO	24	А		996	OG	SER	72	В	2.69
14	3891	Ν	THR	131	А		1243	0	GLY	88	В	3.19
15	3830	OD1	ASP	126	А		1322	NZ	LYS	93	В	2.65
16	3847	0	THR	127	А		1322	NZ	LYS	93	В	2.81
17	2209	OE1	GLN	22	А		1328	N	GLY	94	В	2.90

Table S10. Total number of H-bond involved in the average conformer of SARS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.

SI.	Atom	Atom	Res.	Res.	Atom	Atom	Atom	Res.	Res.	Atom	
no.	no.	name	Name	no.	Chain	no.	name	Name	no.	Chain	Distance
1	306	0	ALA	21	А	5697	N	GLY	94	В	3.07
2	366	N	TYR	26	А	4912	0	ASN	40	В	2.97
3	590	N	CYS	40	А	4961	0	LYS	43	В	2.95
4	600	0	CYS	40	А	4979	N	LEU	45	В	2.8
5	921	N	LYS	61	А	4538	OG	SER	15	В	3.09
6	1919	OD2	ASP	126	А	5691	NZ	LYS	93	В	2.54
7	1935	0	THR	127	А	5691	NZ	LYS	93	В	2.82
8	1974	0	TRP	129	А	5621	N	CYS	90	В	2.9
9	1991	ND2	ASN	131	А	5484	ND1	HIS	80	В	3.04
10	3097	N	ILE	201	A	4610	0	PHE	19	В	2.94

Table S11. Total number of H-bond involved in the average conformer of MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.

Sl.	Atom	Atom name	Res. Name	Res.	Atom Chain	Atom	Atom	Res. Name	Res.	Atom Chain	Distance
110.	110.	name		110.	Chain	110.	name	Tame	110.	Chan	Distance
1	306	0	ALA	21	А	5697	Ν	GLY	94	В	2.99
2	379	OH	TYR	26	А	4940	N	LYS	43	В	3.03
3	590	N	CYS	40	А	4961	0	LYS	43	В	3.03
4	600	0	CYS	40	А	4979	N	LEU	45	В	2.81
5	921	N	LYS	61	А	4538	OG	SER	15	В	3.13
6	1048	ОН	TYR	69	А	4765	OD2	ASP	29	В	2.65
7	1974	0	TRP	129	А	5621	N	CYS	90	В	2.83
8	1990	OD1	ASN	131	А	5539	NE2	HIS	83	В	2.84
9	1991	ND2	ASN	131	А	5512	0	ILE	81	В	2.95
10	3097	Ν	ILE	201	А	4610	0	PHE	19	В	2.84
11	3115	0	ILE	201	А	4625	N	VAL	21	В	2.86

Table S12. Total number of H-bond involved in the average conformer of MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.

Sl.	Atom	Atom	Res.	Res.	Atom	Atom	Atom	Res.	Res.	Atom	
no.	no.	name	Name	no.	Chain	no.	name	Name	no.	Chain	Distance
1	306	0	ALA	21	А	5697	N	GLY	94	В	3.10
2	590	N	CYS	40	А	4961	0	LYS	43	В	3.23
3	600	0	CYS	40	А	4979	N	LEU	45	В	2.83
4	869	NH1	ARG	57	А	5476	0	ALA	79	В	3.19
5	921	N	LYS	61	А	4538	OG	SER	15	В	2.91
6	1935	0	THR	127	А	5691	NZ	LYS	93	В	2.80
7	1974	0	TRP	129	А	5621	N	CYS	90	В	3.03
8	1981	0	GLY	130	А	5691	NZ	LYS	93	В	3.02
9	1991	ND2	ASN	131	А	5512	0	ILE	81	В	3.00
10	3097	N	ILE	201	А	4610	0	PHE	19	В	3.15
11	3115	0	ILE	201	А	4625	N	VAL	21	В	2.92

Table S13. Total number of H-bond involved in the average conformer of MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.

Sl No.	Atom no.	Atom name	Res. name	Res no.	Chain NSP12	Atom no.	Atom name	Res. name	Res no.	Chain NSP8	Distance
1	290	0	THR	21	А	5834	N	GLY	94	В	3.08
2	564	0	CYS	39	А	5133	N	LEU	45	В	2.83
3	910	N	LYS	61	А	4704	OG	SER	15	В	3.04
4	1017	N	ASN	67	А	4971	OG	SER	33	В	2.99
5	1051	OH	TYR	69	А	4911	OD2	ASP	29	В	2.67
6	1922	OD2	ASP	126	А	5828	NZ	LYS	93	В	2.77
7	1938	0	THR	127	А	5828	NZ	LYS	93	В	2.77
8	1966	0	ASN	129	А	5770	N	CYS	90	В	2.94
9	3155	N	ILE	201	А	4768	0	PHE	19	В	3.05
10	3173	0	ILE	201	A	4779	N	VAL	21	В	2.82

Table S14. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{L177F}mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.

Sl. no.	Atom no.	Atom name	Res. Name	Res.	Atom Chain	Atom	Atom name	Res. Name	Res.	Atom Chain	Distance
1	33	N	THR	5	A	4582	0	GLU	6	В	2.86
2	115	Ν	ASP	10	А	4543	0	ASN	3	В	2.89
3	126	0	ASP	10	А	4530	N	ASN	3	В	2.92
4	564	0	CYS	39	А	5133	N	LEU	45	В	2.86
5	589	OD1	ASP	41	А	5318	OG1	THR	58	В	3.03
6	590	OD2	ASP	41	А	5876	ОН	TYR	96	В	3.10
7	910	N	LYS	61	А	4704	OG	SER	15	В	3.06
8	1017	N	ASN	67	А	4971	OG	SER	33	В	2.94
9	1051	OH	TYR	69	А	4910	OD1	ASP	29	В	2.96
10	1922	OD2	ASP	126	А	5828	NZ	LYS	93	В	2.89
11	1966	0	ASN	129	А	5770	N	CYS	90	В	2.97
12	1962	ND2	ASN	129	А	5833	0	LYS	93	В	3.22
13	3155	Ν	ILE	201	А	4768	0	PHE	19	В	3.06
14	3173	0	ILE	201	А	4779	N	VAL	21	В	3.00

Table S15. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{L177F}mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.

Sl. no.	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Distance
1	338	OG1	THR	25	А	4567	0	THR	5	В	2.80
2	346	N	HIS	26	А	5061	OD1	ASN	40	В	2.95
3	554	N	CYS	39	А	5115	0	LYS	43	В	3.16
4	564	0	CYS	39	А	5133	N	LEU	45	В	2.79
5	910	N	LYS	61	А	4704	OG	SER	15	В	3.00
6	1017	N	ASN	67	А	4971	OG	SER	33	В	2.93
7	3155	N	ILE	201	А	4768	0	PHE	19	В	3.07
8	3173	0	ILE	201	А	4779	N	VAL	21	В	2.91

Table S16. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{L177F}mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.

Sl. No	Atom no.	Atom name	Res. name	Res no.	Chain NSP14	Atom no.	Atom name	Res. name	Res no.	Chain NSP10	Distance
1	290	0	THR	21	А	5838	N	GLY	94	В	3.07
2	331	0	PRO	24	А	5506	OG	SER	72	В	2.71
3	338	OG1	THR	25	А	4571	0	THR	5	В	2.73
4	346	Ν	HIS	26	А	5070	0	ASN	40	В	2.97
5	554	Ν	CYS	39	А	5119	0	LYS	43	В	3.05
6	564	0	CYS	39	А	5137	N	LEU	45	В	2.81
7	590	OD2	ASP	41	А	5880	OH	TYR	96	В	3.2
8	910	Ν	LYS	61	А	4708	OG	SER	15	В	3.06
9	1017	Ν	ASN	67	А	4975	OG	SER	33	В	2.96
10	1051	OH	TYR	69	А	4915	OD2	ASP	29	В	2.65
11	1966	0	ASN	129	А	5774	N	CYS	90	В	3.02
12	3154	N	ILE	201	А	4772	0	PHE	19	В	3.08
13	3172	0	ILE	201	А	4783	N	VAL	21	В	2.94

Table S17. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{P230L}mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.

SI.	Atom	Atom	Res.	Res.	Atom	Atom	Atom	Res.	Res.	Atom	
no.	no.	name	Name	no.	Chain	no.	name	Name	no.	Chain	Distance
1	33	N	THR	5	А	4586	0	GLU	6	В	2.84
2	115	N	ASP	10	А	4547	0	ASN	3	В	3.01
3	126	0	ASP	10	А	4534	N	ASN	3	В	2.96
4	290	0	THR	21	А	5838	N	GLY	94	В	3.19
5	338	OG1	THR	25	А	4571	0	THR	5	В	2.73
6	346	N	HIS	26	А	5070	0	ASN	40	В	3.10
7	353	ND1	HIS	26	А	5098	N	LYS	43	В	3.33
8	554	N	CYS	39	А	5119	0	LYS	43	В	2.88
9	564	0	CYS	39	А	5137	N	LEU	45	В	2.79
10	590	OD2	ASP	41	А	5880	OH	TYR	96	В	2.94
11	910	N	LYS	61	А	4708	OG	SER	15	В	3.03
12	1017	N	ASN	67	А	4975	OG	SER	33	В	3.03
13	1051	ОН	TYR	69	А	4915	OD2	ASP	29	В	2.65
14	3154	N	ILE	201	А	4772	0	PHE	19	В	2.97
15	3172	0	ILE	201	А	4783	Ν	VAL	21	В	2.86

Table S18. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{P230L}mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server

SI.	Atom	Atom	Res.	Res.	Atom	Atom	Atom	Res.	Res.	Atom	
no.	no.	name	Name	no.	Chain	no.	name	Name	no.	Chain	Distance
1	33	N	THR	5	А	4586	0	GLU	6	В	2.84
2	115	N	ASP	10	А	4547	0	ASN	3	В	2.96
3	126	0	ASP	10	А	4534	N	ASN	3	В	2.83
4	290	0	THR	21	А	5838	N	GLY	94	В	3.09
5	338	OG1	THR	25	А	4564	OG1	THR	5	В	2.78
6	389	OG	SER	28	А	4564	OG1	THR	5	В	2.83
7	564	0	CYS	39	А	5137	N	LEU	45	В	2.92
8	589	OD1	ASP	41	А	5880	OH	TYR	96	В	2.93
9	910	N	LYS	61	А	4708	OG	SER	15	В	3.00
10	1051	ОН	TYR	69	А	4914	OD1	ASP	29	В	2.66
11	1922	OD2	ASP	126	А	5832	NZ	LYS	93	В	2.71
12	3154	N	ILE	201	А	4772	0	PHE	19	В	3.02
13	3172	0	ILE	201	А	4783	N	VAL	21	В	3.20

Table S19. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{P230L}mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server

Sl No.	Atom no.	Atom name	Res. name	Res no.	Chain NSP14	Atom no.	Atom name	Res. name	Res no.	Chain NSP10	Distance
1	33	N	THR	5	А	4580	0	GLU	6	В	2.89
2	115	Ν	ASP	10	А	4541	0	ASN	3	В	3.16
3	126	0	ASP	10	А	4528	N	ASN	3	В	3.3
4	290	0	THR	21	А	5832	N	GLY	94	В	3.11
5	331	0	PRO	24	А	5500	OG	SER	72	В	2.72
6	338	OG1	THR	25	А	4565	0	THR	5	В	2.89
7	346	Ν	HIS	26	А	5064	0	ASN	40	В	3.04
8	554	Ν	CYS	39	А	5113	0	LYS	43	В	3.11
9	564	0	CYS	39	А	5131	Ν	LEU	45	В	2.82
10	589	OD1	ASP	41	А	5316	OG1	THR	58	В	3.26
11	590	OD2	ASP	41	А	5874	OH	TYR	96	В	3.16
12	910	N	LYS	61	А	4702	OG	SER	15	В	3.00
13	1017	Ν	ASN	67	А	4969	OG	SER	33	В	3.00
14	1051	OH	TYR	69	А	4909	OD2	ASP	29	В	2.67
15	1921	OD1	ASP	126	А	5826	NZ	LYS	93	В	2.69
16	3154	N	ILE	201	А	4766	0	PHE	19	В	3.03
17	3172	0	ILE	201	A	4777	N	VAL	21	В	2.93

Table S20. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{F233L} mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.

Sl. no.	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Distance
1	33	N	THR	5	A	4580	0	GLU	6	В	3.09
2	92	0	PHE	8	А	4558	OG1	THR	5	В	2.83
3	115	N	ASP	10	А	4541	0	ASN	3	В	2.91
4	331	0	PRO	24	А	5500	OG	SER	72	В	2.71
5	338	OG1	THR	25	А	4565	0	THR	5	В	2.68
6	346	N	HIS	26	А	5064	0	ASN	40	В	2.90
7	363	N	LEU	27	А	5059	OD1	ASN	40	В	3.29
8	554	N	CYS	39	А	5113	0	LYS	43	В	2.88
9	564	0	CYS	39	А	5131	N	LEU	45	В	2.83
10	910	N	LYS	61	А	4702	OG	SER	15	В	3.01
11	1017	N	ASN	67	А	4969	OG	SER	33	В	3.04
12	1051	ОН	TYR	69	А	4908	OD1	ASP	29	В	2.66
13	3154	N	ILE	201	А	4766	0	PHE	19	В	2.97
14	3172	0	ILE	201	A	4777	N	VAL	21	В	2.82

Table S21. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{F233L} mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.

Sl no.	Atom no.	Atom name	Res name	Res no.	Atom Chain	Atom no.	Atom name	Res. name	Res. no.	Atom Chain	Distance
1.	33	N	THR	5	А	4580	0	GLU	6	В	3.04
2.	115	Ν	ASP	10	А	4541	0	ASN	3	В	2.94
3.	126	0	ASP	10	А	4528	Ν	ASN	3	В	2.84
4.	290	0	THR	21	А	5832	Ν	GLY	94	В	3.11
5.	338	OG1	THR	25	А	4565	0	THR	5	В	2.73
6.	346	N	HIS	26	А	5059	OD1	ASN	40	В	3.26
7.	554	N	CYS	39	А	5113	0	LYS	43	В	3.21
8.	564	0	CYS	39	А	5131	N	LEU	45	В	2.91
9.	590	OD2	ASP	41	А	5874	ОН	TYR	96	В	3.07
10.	910	N	LYS	61	А	4702	OG	SER	15	В	3.09
11.	1017	N	ASN	67	А	4969	OG	SER	33	В	3.00
12.	1051	ОН	TYR	69	А	4909	OD2	ASP	29	В	2.71
13.	1921	OD1	ASP	126	А	5826	NZ	LYS	93	В	2.90
14.	1922	OD2	ASP	126	А	5826	NZ	LYS	93	В	2.81
15.	1966	0	ASN	129	А	5768	Ν	CYS	90	В	2.88
16.	3154	N	ILE	201	A	4766	0	PHE	19	В	3.03
17.	3172	0	ILE	201	A	4777	N	VAL	21	В	2.92

Table S22. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{F233L} mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.

Sl No.	Atom no.	Atom name	Res. name	Res no.	Chain NSP12	Atom no.	Atom name	Res. name	Res no.	Chain NSP8	Distance
1	33	N	THR	5	А	4586	0	GLU	6	В	2.91
2	92	0	PHE	8	А	4564	OG1	THR	5	В	3.18
3	115	N	ASP	10	А	4547	0	ASN	3	В	2.88
4	126	0	ASP	10	А	4534	Ν	ASN	3	В	2.9
5	290	0	THR	21	А	5838	Ν	GLY	94	В	3.13
6	331	0	PRO	24	А	5506	OG	SER	72	В	2.7
7	338	OG1	THR	25	А	4571	0	THR	5	В	2.72
8	346	Ν	HIS	26	А	5070	0	ASN	40	В	3
9	554	N	CYS	39	А	5119	0	LYS	43	В	3.1
10	564	0	CYS	39	А	5137	N	LEU	45	В	2.85
11	910	N	LYS	61	А	4708	OG	SER	15	В	2.98
12	1017	N	ASN	67	А	4975	OG	SER	33	В	2.99
13	1051	OH	TYR	69	А	4914	OD1	ASP	29	В	2.67
14	1922	OD2	ASP	126	А	5832	NZ	LYS	93	В	2.89
15	1976	ND2	ASN	130	А	5753	0	GLY	88	В	2.95
16	3155	N	ILE	201	А	4772	0	PHE	19	В	3.01
17	3173	0	ILE	201	А	4783	Ν	VAL	21	В	2.86

Table S23. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{Triple} mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.

Sl.	Atom	Atom	Res.	Res.	Atom		Atom	Atom	Res.	Res.	Atom	D: (
no.	no.	name	Name	no.	Chain		no.	name	Name	no.	Chain	Distance
1	33	Ν	THR	5	А		4586	0	GLU	6	В	2.93
2	92	0	PHE	8	А	-	4564	OG1	THR	5	В	3.27
3	115	N	ASP	10	А		4547	0	ASN	3	В	2.92
4	126	0	ASP	10	А		4534	N	ASN	3	В	2.85
5	290	0	THR	21	А		5838	N	GLY	94	В	3.24
6	338	OG1	THR	25	А		4571	0	THR	5	В	2.76
7	346	N	HIS	26	А		5070	0	ASN	40	В	2.98
8	564	0	CYS	39	А		5137	N	LEU	45	В	2.82
9	589	OD1	ASP	41	А		5322	OG1	THR	58	В	2.63
10	590	OD2	ASP	41	А		5880	OH	TYR	96	В	2.69
11	910	N	LYS	61	А		4708	OG	SER	15	В	3.04
12	1017	N	ASN	67	А		4975	OG	SER	33	В	3.04
13	1051	ОН	TYR	69	А		4915	OD2	ASP	29	В	2.67
14	1922	OD2	ASP	126	А		5832	NZ	LYS	93	В	2.69
15	3155	N	ILE	201	А		4772	0	PHE	19	В	2.93
16	3173	0	ILE	201	А		4783	Ν	VAL	21	В	2.85

Table S24.Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{Triple} mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.

Sl no.	Atom no.	Atom name	Res name	Res no.	Atom Chain	Atom no.	Atom name	Res. name	Res. no.	Atom Chain	Distance
1.	33	N	THR	5	А	4586	0	GLU	6	В	2.89
2.	115	N	ASP	10	А	4547	0	ASN	3	В	2.92
3.	126	0	ASP	10	А	4534	N	ASN	3	В	2.82
4.	290	0	THR	21	А	5838	N	GLY	94	В	3.29
5.	338	OG1	THR	25	А	4571	0	THR	5	В	2.72
6.	346	N	HIS	26	А	5065	OD1	ASN	40	В	2.99
7.	363	N	LEU	27	А	5065	OD1	ASN	40	В	3.30
8.	554	N	CYS	39	А	5119	0	LYS	43	В	2.93
9.	564	0	CYS	39	А	5137	N	LEU	45	В	2.80
10.	910	N	LYS	61	А	4708	OG	SER	15	В	3.02
11.	1017	N	ASN	67	А	4975	OG	SER	33	В	2.98
12.	1051	OH	TYR	69	А	4914	OD1	ASP	29	В	2.65
13.	1922	OD2	ASP	126	А	5832	NZ	LYS	93	В	2.64
14.	3155	N	ILE	201	А	4772	0	PHE	19	В	3.00
15.	3173	0	ILE	201	А	4783	N	VAL	21	В	2.96

Table S25. Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14^{Triple} mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.

Sl. no.	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Distance
1	16	N	THR	5	А	2337	0	GLU	6	М	3.04
2	38	0	PHE	8	А	2332	OG1	THR	5	М	2.76
3	54	NZ	LYS	9	А	2308	0	ALA	1	М	2.79
4	55	N	ASP	10	А	2317	0	ASN	3	М	2.82
5	58	0	ASP	10	А	2314	N	ASN	3	М	2.84
6	146	0	THR	21	А	2988	N	GLY	94	М	2.84
7	176	OG1	THR	25	А	2330	0	THR	5	М	2.64
8	178	N	HIS	26	А	2590	0	ASN	40	М	2.94
9	281	N	CYS	39	А	2611	0	LYS	43	М	3.06
10	284	0	CYS	39	А	2625	N	LEU	45	М	2.75
11	300	OD1	ASP	41	А	3012	OH	TYR	96	М	2.6
12	463	N	LYS	61	А	2403	OG	SER	15	М	2.94
13	486	OD1	ASN	63	А	2381	OG1	THR	12	М	2.63
14	516	N	ASN	67	А	2547	OG	SER	33	М	2.82
15	539	OH	TYR	69	А	2516	OD2	ASP	29	М	2.61
16	984	OD1	ASP	126	А	2881	ND1	HIS	80	М	2.81
17	989	0	THR	127	А	2987	NZ	LYS	93	М	2.48
18	1008	N	ASN	130	А	2945	0	GLY	88	М	3.17
19	1015	ND2	ASN	130	А	2907	ND1	HIS	83	М	2.85
20	1558	NZ	LYS	196	А	2424	0	ALA	18	М	2.9
21	1598	N	ILE	201	А	2429	0	PHE	19	М	2.93
22	1601	0	ILE	201	А	2442	N	VAL	21	М	2.92

Table S26. Total number of H-bond involved in the initial structure (before MD) of SARS-CoV-2 NSP14-NSP10 PPI complex interface obtained from PDBsum server

Sl.	Atom	Atom	Res.	Res.	Atom	Atom	Atom	Res.	Res.	Atom	
no.	no.	name	Name	no.	Chain	no.	name	Name	no.	Chain	Distance
1	1028	NZ	LYS	9	А	4	0	ALA	1	В	2.54
2	1032	0	ASP	10	А	10	Ν	ASN	3	В	3.06
3	1029	Ν	ASP	10	А	13	0	ASN	3	В	2.86
4	1143	OG1	THR	25	А	26	0	THR	5	В	3.05
5	990	N	THR	5	А	33	0	GLU	6	В	2.63
6	1415	0	PHE	60	А	99	OG	SER	15	В	2.85
7	2543	Ν	ILE	201	А	125	0	PHE	19	В	3.14
8	2546	0	ILE	201	А	138	Ν	VAL	21	В	2.89
9	1145	Ν	HIS	26	А	281	0	ASN	40	В	3.19
10	1249	N	CYS	39	А	302	0	LYS	43	В	3.04
11	1935	OD1	ASP	126	А	572	ND1	HIS	80	В	2.66
12	1956	0	ASN	129	А	648	N	CYS	90	В	3.34
13	1347	OH	TYR	51	Α	678	NZ	LYS	93	В	2.96
14	1940	0	THR	127	Α	678	NZ	LYS	93	В	2.65

Table S27. Total number of H-bond involved in the initial structure (before MD) of SARS-CoV NSP14-NSP10 PPI complex interface obtained from PDBsum server

Table S28. Total number of H-bond involved in the initial structure (before MD) of MERS-CoV NSP14-NSP10 PPI complex interface obtained from PDBsum server

Sl. no.	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Distance
1	164	ОН	TYR	22	А	2886	0	LYS	93	В	3.16
2	182	OG1	THR	25	А	2500	0	ASN	40	В	3.23
3	303	0	CYS	40	А	2535	N	LEU	45	В	3.2
4	390	OH	TYR	51	А	2891	NZ	LYS	93	В	1.75
5	451	0	GLY	59	А	2289	OG	SER	11	В	3.3
6	984	0	TRP	129	А	2860	N	CYS	90	В	2.98
7	1559	0	ILE	201	А	2356	OG1	THR	20	В	2.73
8	1576	NZ	LYS	203	Α	2430	OD2	ASP	29	В	3.23

Table S29. Salt bridge involved in the initial structure (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV of NSP14-NSP10 PPI complex. The salt bridges atom-atom interaction at PPI interface obtained from PDBsum server

	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Atom no.	Atom name	Res. Name	Res. no.	Atom Chain	Distance
SARSCoV-2	984	OD1	ASP	126	А	2881	ND1	HIS	80	В	2.81
SARS-CoV	1935	OD1	ASP	126	А	572	ND1	HIS	80	В	2.66
MERS-CoV	963	OD1	ASP	126	А	2793	NE2	HIS	80	В	3.13
	1576	NZ	LYS	203	А	2430	OD2	ASP	29	В	3.23

Table S30. Salt bridge involved in the average conformer (from last 20 ns trajectory) of SARS-CoV-2, SARS-CoV and MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory from all the three sets of MD simulations. The salt bridge atom-atom interactions across protein-protein interface results are obtained from PDBsum server. In SARS-CoV-2 MD simulation replica 2 and 3, and SARS-CoV-2^{F233L} replica 2 does not form salt bridges.

Coronaviruses	Atom	Atom	Res.	Res.	Atom	Atom	Atom	Res.	Res.	Atom	
	no.	name	Name	no.	Chain	no.	name	Name	no.	Chain	Distance
SARS-CoV-2 replica1	1921	OD1	ASP	126	А	5827	NZ	LYS	93	В	3.2
SARS-CoV- replica 1	3831	OD1	ASP	126	А	1322	NZ	LYS	93	В	2.64
SARS-CoV replica 2	1322	NZ	LYS	93	А	3830	OD1	ASP	126	В	2.89
SARS-CoV replica 3	3830	OD1	ASP	126	А	1322	NZ	LYS	93	В	2.65
MERS-CoV replica 1	1919	OD2	ASP	126	А	5691	NZ	LYS	93	В	2.54
MERS-CoV replica 2	1918	OD1	ASP	126	А	5691	NZ	LYS	93	В	2.98
MEDS CoV raplice 2	1919	OD2	ASP	126	А	5488	NE2	HIS	80	В	3.50
WERS-COV Teplica 5	1918	OD2	ASP	126	А	5691	NZ	LYS	93	В	3.22
SARS-CoV-2 ^{L177F} replica 1	1922	OD2	ASP	126	А	5832	NZ	LYS	93	В	3.05
SARS-CoV-2 ^{F233L} replica 1	1921	OD1	ASP	126	А	5826	NZ	LYS	93	В	2.69
SARS-CoV-2 ^{P203L} replica 1	1922	OD2	ASP	126	А	5828	NZ	LYS	93	В	2.77
SARS-CoV-2 ^{Triple mut} replica 1	1922	OD2	ASP	126	А	5832	NZ	LYS	93	В	2.89
SARS-CoV-2 ^{L177F} replica 2	1922	OD2	ASP	126	А	5828	NZ	LYS	93	В	2.89
SARS-CoV-2 ^{F233L} replica 2	No salt l	oridge									
SARS-CoV-2 ^{P203L} replica 2	1921	OD2	ASP	126	А	5832	NZ	LYS	93	В	3.02
SARS-CoV-2 ^{Triple mut} replica 2	1922	OD2	ASP	126	А	5832	NZ	LYS	93	В	2.69
SARS-CoV-2 ^{L177F} replica 3	1922	OD2	ASP	126	А	5828	NZ	LYS	93	В	3.23
SARS-CoV-2 ^{F233L} replica 3	1922	OD2	ASP	126	А	5826	NZ	LYS	93	В	2.81
SARS-CoV-2 ^{P203L} replica 3	1922	OD2	ASP	126	А	5832	NZ	LYS	93	В	2.71
SARS-CoV-2 ^{Triple-mut} replica 3	1922	OD2	ASP	126	Α	5832	NZ	LYS	93	В	2.64

Table S31. List of interacting residues at protein-protein interacting interface of SARS-CoV-2 NSP14 (Chain A) and NSP10 (Chain B), interface hotspot residues are predicted using three computational methods implemented in KFC, DrugScore^{PP1} and Robetta web server. The per-residue energy decomposition analysis was <u>carried out using the last 20 ns MD trajectory</u>.

Desideres	VEC	Robetta	DrugScore PPI	Per-residue energy
Residues	KFC	$\Delta\Delta G$ (kcal/mol)	$\Delta\Delta \vec{G}$ (kcal/mol)	contribution (kJ/mol)
GLY-6 A				-0.89
LEU-7A	HS	0.71	0.65	-6.5
PHE-8A	HS	2.88	1.08	-15.76
ASP-10A			2.02	-3.97
SER-12A				-2.93
VAL-14A				-1.62
HIS-19A		0.86		-4.03
PRO-20A	HS			-3.58
THR-21A	HS	1.16	0.54	-9.06
GLN-22A	HS		0.02	-2.67
ALA-23A	HS			-0.37
PRO-24A	HS			-9.07
THR-25A		0.80		-5.22
HIS-26A				-2.24
LEU-27A				-8.93
LEU-38A		1.30		-10.78
CYS-39A	HS	-0.12		-3.45
VAL-40A				-5.72
ASP-41A	HS	3.81	3.49	14.47
PHE-60A	HS	1.53	0.56	-9.73
LYS-61A				-1.11
MET-62A	HS	1.11	0.46	-10.24
TYR-64A		1.14	1.27	-7.46
VAL-66A	HS	1.58	1.89	-11.93
ASN-67A				-1.54
TYR-69A		2.69	2.33	-8.95
Met72	HS		0.12	
ASP-126A		1.01		0.65
THR-127A				-3.3
PRO-128A				-0.19
ASN-129A				-6.45
ASN-130A	HS	0.36	1.03	1.58
THR-131A	HS	0.60	0.45	5.11
LEU-192A				-0.24
LYS-196A				-1.31
LYS-200A				-21.5
ILE-201A	HS	1.61	2.03	-6.71
PHE-217A				-2.06
ALA-1B				94.63
ASN-3B		1.83	-0.35	3.34
ALA-4B	HS			-2.41

THR-5B	HS	1.38	0.44	-5.48
GLU-6B				-56.88
SER-11B				4.98
THR-12B				-2.33
LEU-14B	HS		0.23	-2.78
SER-15B	HS		0.51	-1.62
PHE-16B	HS	3.23	1.07	-16.49
ALA-18B	HS			-2.51
PHE-19B	HS	4.55	1.34	-4.03
ALA-20B				-5.32
VAL-21B		1.19	1.21	-13.16
ALA-26B				-2.62
ASP-29B			1.13	-49.77
TYR-30B				-4.16
SER-33B		1.31	0.53	1.16
VAL-42B	HS	1.48	1.12	-11.8
LYS-43B				31.59
MET-44B		1.25	0.55	-14.07
LEU-45B				-7.81
THR-58B				-2.85
PRO-59B				-2.55
GLY-69B	HS			-1.97
ALA-71B	HS			-5.37
SER-72B	HS	-0.15		-1.1
ARG-78B	HS	0.32	0.84	47.97
CYS-79B	HS		0.08	-2.59
HIS-80B	HS	1.47	0.17	-1.83
ILE-81B				3.24
HIS-83B				-3.18
CYS-90B				-4.54
LYS-93B	HS	3.49	1.55	88.01
GLY-94B				-2.46
LYS-95B				38.03
TYR-96B	HS	5.34	3.07	-5.54

*HS: Hotspot; Predicted HS depicted in red; H-bond forming residues depicted in blue

Residues	KFC	Robetta	DrugScore PPI	Per-residue energy
		$\Delta\Delta G$ (kcal/mol)	$\Delta\Delta G$ (kcal/mol)	contribution (kJ/mol)
ASN-3A				1.07
VAL-4A		1.05	1.28	-11.36
THR-5A	HS	1.04	0.41	-9.63
GLY-6A				-2.1
LEU-7A	HS	2.07	1.31	-16.56
PHE-8A	HS	2.10	0.62	-13.63
LYS-9A				-0.22
ASP-10A				5.68
PRO-20A	HS			-4.06
THR-21A	HS	0.74	0.45	-10.65
GLN-22A				-5.36
ALA-23A	HS			-0.41
PRO-24A	HS			-9.81
THR-25A	HS	2.49	0.85	-14.09
HIS-26A				-6.44
LEU-27A				-10.71
SER-28A	HS	0.93	0.24	-2.87
VAL-29A				-4.49
LEU-38A		1.29	1.13	-14.12
CYS-39A	HS	-0.13	0.31	-5.37
VAL-40A				-6.85
ASP-41A		1.25	3.52	23.56
TYR-51A			0.60	-2.52
ILE-55A	HS	0.64	0.93	-4.54
PHE-60A	HS	0.82	0.29	-2.3
LYS-61A				-6.75
MET-62A	HS	1.14	0.53	-11.56
TYR-64A		0.92	0.91	-9.21
VAL-66A	HS	1.58	1.94	-15.78
ASN-67A				-1.25
TYR-69A	HS	3.35	2.54	-10.15
ASP-126A	HS	0.72	0.61	12.15
THR-127A				-4.58
GLU-128A				-16.74
ASN-129A				-5.47
ASN-130A				-9.01
THR-131A	HS	0.73	0.38	6.76
LYS-196A	HS	-0.21	0.25	9.88
LYS-200A				
ILE-201A	HS	0.70	0.94	-5.61
PHE-217A				-3.79
ALA-1B				51.51

Table S32. List of interacting residues at protein-protein interacting interface of SARS-CoV NSP14 (Chain A) and NSP10 (Chain B), interface hotspot residues are predicted using three computational methods implemented in KFC, DrugScore^{PPI} and Robetta web server. The per-residue energy decomposition analysis was carried out using the last 20 ns MD trajectory.

ASN-3B				1.41	
ALA-4B				-5.82	
THR-5B	HS	0.02	0.34	-4.02	
GLU-6B	HS	7.92	-0.61	-18.3	
PRO-8B				-10.07	
SER-11B	HS	-0.07	0.24	4.78	
LEU-14B	HS	0.27	0.27	-5.3	
SER-15B	HS	0.76	0.37	-0.7	
PHE-16B	HS	3.16	1.03	-20.09	
PHE-19B	HS	3.40	1.02	-27.66	
ALA-20B	HS			-4.92	
VAL-21B	HS	1.46	2.08	-17.08	
ALA-26B	HS			-3.62	
ASP-29B		1.37	1.51	-28.04	
TYR-30B				-5.05	
SER-33B				0.85	
ASN-40B	HS	1.78	0.32	1.56	
CYS-41B				-2.5	
VAL-42B	HS	1.87	1.98	-18.43	
LYS-43B				3	
MET-44B		1.21	0.51	-18.26	
LEU-45B				-9.55	
THR-58B				-3.17	
PRO-59B				-2.87	
GLY-69B	HS			-3.78	
ALA-71B	HS			-7.95	
SER-72B	HS	-0.16	0.33	-4.35	
ARG-78B	HS	2.54	0.91	10.65	
CYS-79B	HS	-0.02	0.15	-0.21	
HIS-80B	HS	1.28	0.08	-0.36	
ILE-81B				4.22	
GLY-88B				1.48	
PHE-89B				-9.28	
CYS-90B				1.26	
LYS-93B	HS	2.28	2.04	61.15	
GLY-94B				-2.44	
LYS-95B				-8.57	
TYR-96B	HS	2.38	2.84	-5.52	

*HS: Hotspot; Predicted HS depicted in red; H-bond forming residues depicted in blue

Desidues	VEC	Robetta	DrugScore PPI	Per-residue energy
Residues	KFC	ΔΔG (kcal/mol)	$\Delta\Delta G$ (kcal/mol)	contribution (kJ/mol)
LEU-7A		1.27		-4.56
PHE-8A	HS	2.53		-8.75
PRO-20A	HS			-1.44
ALA-21A	HS			-6.87
TYR-22A		1.07	1.91	-6.21
ALA-23A	HS			-0.22
PRO-24A	HS			-4.72
THR-25A				-2.29
TYR-26A				-3.89
VAL-29A				-1.24
LEU-39A		1.37	1.11	-7.69
CYS-40A	HS	-0.11	0.24	-3.1
ASN-42A				-0.02
PHE-60A				-5.47
LYS-61A				15.15
LEU-62A	HS	1.43	0.89	-5.71
ALA-64A				-0.51
VAL-66A	HS	1.23	0.93	-5.68
PRO-67A				-2.2
TYR-69A		1.92	1.00	-1.77
LEU-72A				-1.27
ASP-126A	HS	0.77	1.22	-5.98
THR-127A				-2.43
GLU-128A				-19.1
TRP-129A				-2.7
ASN-131A	HS	1.88	0.65	-1.17
CYS-199A				0.89
LYS-200A		1.34	0.84	-6.64
ILE-201A	HS	0.85	1.47	-3.82
TYR-217A				-1.3
SER-15B	HS	0.81	0.59	-0.43
LEU-16B	HS	1.01	0.33	-6 99
ASN-18B		1.01	0.000	-2.9
PHF.19R	HS	3 85	1 20	-14.02
THR-20B	HS	0.82	0.38	-1 39
VAL-21R	HS	1.49	1.67	-9.46
ALA-26R			,	-0.39
PHE-30B				-4.38
ALA-33B				-1.4

Table S33. List of interacting residues at protein-protein interacting interface of MERS-CoV NSP14 (Chain A) and NSP10 (Chain B), interface hotspot residues are predicted using three computational methods implemented in KFC, DrugScore^{PPI} and Robetta web server. The per-residue energy decomposition analysis was carried out using the last 20 ns MD trajectory.

ASN-40B				-3.43
VAL-42B	HS	1.84	1.37	-9.37
LYS-43B				-6.92
MET-44B		1.29	0.50	-8.23
LEU-45B				-5.79
GLY-69B	HS	-		-1.77
ALA-71B	HS			-4.71
SER-72B				-1.55
ARG-78B				11.63
ALA-79B	HS			-1.71
HIS-80B	HS	2.47	0.29	-3.07
ILE-81B				1.65
VAL-89B				-3.5
CYS-90B				0.19
LYS-93B	HS	1.43	1.30	40.99
GLY-94B				-2.77
LYS-95B				8.6
PHE-96B		1.11	0.54	-4.03

*HS: Hotspot; Predicted HS depicted in red; H-bond forming residues depicted in blue

	Table of content	Page no.
Figure S1.	Amino acid sequence alignment of NSP14 of SARS-CoV-2, SARS-CoV and MERS-CoV obtained from Clustal Omega server. Conserved residues among all the three coronaviruses	S 1
Figure S2.	are depicted as Amino acid sequence alignment of NSP10 SARS-CoV-2, SARS-CoV and MERS-CoV obtained from Clustal Omega server. Conserved residues among all the three coronaviruses are depicted as '*'	S2
Figure S3.	Representation of hydrophobicity map of average structure (from last 20 ns) SARS-CoV-2 (A), SARS-CoV (B) and (C) MERS-CoV NSP14-NSP10 PPI complex in three different forms. Yellow colour depiction is for NSP10, Brown colour is NSP14. The nonpolar (orange), reden (blue) and neutral regime are depicted for the NSP14.	S 3
Figure S4.	Figure S4. Radius of gyration (Rg) graphs (a) $-$ (c) of NSP14-NSP10 complexes of SARS-CoV-2, SARS-CoV, MERS-CoV (left side) and SARS-CoV-2 NSP14mutant complexes (right side) along the three sets of 100 ns MD simulation. Triple mutant (in red, in the left	S4
Figure S5.	plots) is the combination of the three (F233L, F203, L17/F) mutations. Superimposed average structures (extracted from the last 20 ns MD trajectories of three sets of MD simulation) of SARS-CoV-2 NSP14-NSP10 complex with SARS-CoV and MERS-CoV (a)-(c). On the left side is the NSP14 RMSF plot depicts the C-terminal fluctuating residues encircled in red (from residue 245-268) in replica 1 (a) and 2 (b). The middle square box represents the corresponding fluctuating residue (245-268)	S5
Figure S6.	Superimposed average structures (from last 20 ns) of (a) NSP10 SARS-CoV-2 (light brown), SARS-CoV (cyan) and MERS-CoV (pink) from the three (b)-(d) sets of MD simulation. Left side represents the RMSF of NSP10 from the three sets of MD simulation (b)-(d). In the middle, superimposed NSP10 3D structure of the three viruses is depicted. On the right side in a square box fluctuating N-terminal region has been focused ranging from 113-131, shows a conformational change from coil to beta strand in case of SARS-CoV (cyan) in all the three sets (b)-(d) of MD simulations.	S6
Figure S7.	(a) $-$ (c) On the left side, representation of superimposed SARS-CoV-2 mutant average structures (from last 20 ns) of NSP14-NSP10 from all the three sets of MD simulations. In a square box in the middle, represented the C terminal fluctuation ranging from residue 113-131 in the NSP10 when it is in complex with mutated NSP14. (a) In case of replica 1, NSP10 with NSP14 (P203L) mutant, shows a conformational change from coil to beta strand. (b) In replica 2, NSP10 with NSP14 (Triple) mutant, shows a conformational change from coil to beta strand. (c) In replica 3, in the right side RMSF plot, does not show much fluctuation as compared to replica 1 and 2, therefore there is no conformational changes observed at position 113-131 (in the middle figure in a square box of replica 3).	S7
Figure S8.	Solvant Accessible Surface Area (SASA) graphs of (a)-(c) SARS-CoV-2, SARS-CoV, MERS-CoV (left side) and SARS-CoV-2 NSP14mutant complexes (right side) along the three sets of 100 ns MD simulation	S 8
Figure S9.	Comparison of the electrostatic surface and charge distribution of NSP14 initial (a)-(c) and average structure (extracted from last 20 ns) (e)-(g) of SARS-CoV-2, SARS-CoV and MERS-CoV. Three views are shown for each PPI complexes. NSP10 secondary structure is depicted in yellow and NSP14 presented in multicolor ribbon and electrostatic charge distribution depicting interface region of NSP14 is shown with positive (blue), negative (red) surface.	S9
Figure S10.	Electrostatic surfaces and charge distribution of the NSP14: comparison of the electrostatic surface of the average structure (extracted from last 20 ns) of wild type NSP14 (a) in comparison with different mutant structures (b)-(e). Three views are shown for each PPI complexes. The encircled area (b) in NSP14 (presented in multicolor as ribbon) is the binding interface region for NSP10 (NSP10 is depicted in vellow ribbon extreme left side).	S10
Figure S11.	Cartoon view of the (a) NSP14-NSP10 complex of SARS-CoV-2, common interacting interface hotspot residues among the three viruses (SARS-CoV-2, SARS-CoV and MERS-Co) represented in spheres. The NSP14 is represented in brown, NSP10 in yellow. Hotspot residues are represented in brown spheres (in NSP14), yellow spheres (in NSP10). The represented structure is the average conformer extracted from last 20 ns MD trajectory.	S11

Table S1.	PBC Cubic box information for SARS-CoV-2, SARS-CoV and MERS-CoV	S12
Table S2.	Comparison of interface statistics of the initial NSP14-NSP10 complexes (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV with the average complex structures extracted from last 20 ns from 100 ns MD trajectory of replica 1. For each complex, interface statistics obtained from PDBsum server.	S13
Table S3.	Comparison of interface statistics of the initial NSP14-NSP10 complexes (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV with the average complex structures extracted from last 20 ns from 100 ns MD trajectory of replica 2. For each complex, interface statistics obtained from PDBsum server	S14
Table S4.	Comparison of interface statistics of the initial NSP14-NSP10 complexes (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV with the average complex structures extracted from last 20 ns from 100 ns MD trajectory of replica 3. For each complex, interface statistics obtained from PDBsum server	S15
Table S5.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.	S16
Table S6.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.	S17
Table S7.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.	S18
Table S8.	Total number of H-bond involved in the average conformer of SARS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.	S19
Table S9.	Total number of H-bond involved in the average conformer of SARS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.	S20
Table S10	Total number of H-bond involved in the average conformer of SARS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.	S21
Table S11	Total number of H-bond involved in the average conformer of MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server	S22
Table S12	Total number of H-bond involved in the average conformer of MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.	S23
Table S13.	Total number of H-bond involved in the average conformer of MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.	S24
Table S14.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{L177F} mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.	S25
Table S15.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{L177F} mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.	S26
Table S16.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{L177F} mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.	S27
Table S17	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{P230L} mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.	S28
Table S18.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{P230L} mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface	S29

	H-bond results obtained from PDBsum server	
Table S19.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{P230L} mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server	S30
Table S20.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{F233L} mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond	S 31
Table S21	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{F233L} mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond	S32
Table S22	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{F233L} mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server	S33
Table S23.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{Triple} mutant complex extracted from last 20 ns MD trajectory of replica 1. The interface H-bond results obtained from PDBsum server.	S34
Table S24.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{Triple} mutant complex extracted from last 20 ns MD trajectory of replica 2. The interface H-bond results obtained from PDBsum server.	S35
Table S25.	Total number of H-bond involved in the average conformer of SARS-CoV-2 NSP14 ^{Triple} mutant complex extracted from last 20 ns MD trajectory of replica 3. The interface H-bond results obtained from PDBsum server.	S36
Table S26.	Total number of H-bond involved in the initial structure (before MD) of SARS-CoV-2 NSP14-NSP10 PPI complex interface obtained from PDBsum server	S37
Table S27.	Total number of H-bond involved in the initial structure (before MD) of SARS-CoV NSP14- NSP10 PPI complex interface obtained from PDBsum server	S38
Table S28	Total number of H-bond involved in the initial structure (before MD) of MERS-CoV NSP14- NSP10 PPI complex interface obtained from PDBsum server	S39
Table S29	Salt bridge involved in the initial structure (before MD) of SARS-CoV-2, SARS-CoV and MERS-CoV of NSP14-NSP10 PPI complex. The salt bridges atom-atom interaction at PPI interface obtained from PDBsum server	S40
Table S30	Salt bridge involved in the average conformer of SARS-CoV-2, SARS-CoV and MERS-CoV NSP14-NSP10 complex extracted from last 20 ns MD trajectory from all the three sets of MD simulations. The salt bridge atom-atom interactions across protein-protein interface results are obtained from PDBsum server. In SARS-CoV-2 MD simulation replica 2 and 3, and SARS-CoV-2 ^{F233L} replica 2 does not form salt bridges.	S41
Table S31	List of interacting residues at protein-protein interacting interface of SARS-CoV-2 NSP14 (Chain A) and NSP (Chain B), interface hotspot residues are predicted using three computational methods implemented in KFC, DrugScore ^{PPI} and Robetta web server. The per- residue energy decomposition analysis was carried out using the last 20 ns MD trajectory.	S42-43
Table S32	List of interacting residues at protein-protein interacting interface of SARS-CoV NSP14 (chain A) and NSP10 (chain B), interface hotspot residues are predicted using three computational methods implemented in KFC, DrugScore ^{PPI} and Robetta web server. The per-	S44-45
Table S33	List of interacting residues at protein-protein interacting interface of MERS-CoV NSP14 (chain A) and NSP8 (chain B), interface hotspot residues are predicted using three computational methods implemented in KFC, DrugScore ^{PPI} and Robetta web server. The per- residue energy decomposition analysis was carried out using the last 20 ns MD trajectory.	S46-47