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I. SUPPLEMENTARY INFORMATION

A. Prediction of Aster and Bilayer Structure

We analytically match the microtubule intensity profile in asters and bilayers using only the intensity profile of
molecular motors and a measured length distribution of microtubules [Fig. 1(c)]. To do this, we model the microtubule
profile as arising from microtubules of various lengths attached to the kinesin by their ends. This is equivalent to the
convolution of the molecular motor profile with a probability distribution of microtubule length. We represent the
measured length distribution of stabilized microtubules with a log-normal distribution f(Λ):

f(Λ) =
1
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√

2π
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)
, (S1)

where Λ is the non-dimensionalized length L/L0, and M and S are fit parameters related to the dimensionless mean
µ/L0 and the variance σ2/L2

0 as:
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The probability that a microtubule has a dimensionless length greater than d/L0 is the integral of that distribution
from the length d/L0 out to infinity:
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)
, (S4)

where ν1d is a normalization factor that includes the conversion to fluorescent intensity. This equation represents the
normalized microtubule intensity profile of microtubules perpendicularly anchored on one side of a plane. The only
fit parameter is the normalization factor ν1d, as all other variables have been extracted from the measured length
distribution.

In order to predict the structure of a radially symmetric aster, it is helpful to extend this analysis to radial
coordinates. A radially oriented microtubule at a distance r from its kinesin anchor takes on the same form, but with
a factor 1/r:
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)
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where νr is a normalization factor adjusted for radial coordinates. Finally, we convolve this result with the imaging
point spread function fps, measured from 50 nm fluorescent colloids.

IasterMT = IasterK ∗ Ir ∗ fps (S6)

Convolving the distribution Ir(d) with the radial profile of kinesin intensity IasterK and the point spread function
fps creates the radial aster microtubule intensity profile IasterMT which closely matches the experimental microtubule
intensity profile as shown in Figure 1(e).

The equivalent calculation for the contracted bilayer’s microtubule profile, shown in Figure 2(f), can be reduced to
a one-dimensional problem. We construct the bilayer microtubule profile as microtubules perpendicularly anchored
on a plane and thus use the 1D model for I1d derived earlier. Convolving I1d with the z-profile of kinesin from the

bilayer IbilayerK in two directions, and then convolving that profile with point spread function fps creates the bilayer

microtubule z-profile IbilayerMT .
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B. Aster Segmentation

The aster data consists of 2-channel z-stacks with a distance of 0.65 µm between the imaging planes. The length
of a pixel is also 0.65 µm. To measure the volume and aspect ratio of asters [Fig. 1(f),(g)], we segment the kinesin
channel through a simple threshold. This binary data set is refined by a Chan-Vase active contour algorithm operating
on the original data set.

C. Sedimentation Height

The sedimentation height hMT is the height from the base of the chamber at which 1/5 of the total microtubule
fluorescence is encompassed. To calculate this height we define the cumulative microtubule density function D(h), an
integral of material from the floor of the chamber to height h, normalized by the total material in the chamber ρtot

D(h) =
1

ρtot

∫ h

0

ρ(y)dy. (S7)

The sedimentation height hMT is then the height at which D(hMT ) = 0.2. The density ρMT in Figure 3(e) is the
mean density of all material below the height hMT .

D. Orientational Order Parameter and Coherency

We calculate orientation fields from images by identifying the principal spatial derivatives using a structure tensor
[72, 73]. A structure tensor T of two-dimensional gradients is constructed from a 3D signal intensity field I as

T =

[
∂x∂xIxyz ∂x∂yIxyz
∂y∂xIxyz ∂y∂yIxyz

]
. (S8)

The eigenvalue λmin of T associated with the lowest intensity variation represents the vector ~vmin along which the
intensity gradients are smallest. The direction of ~vmin gives the scalar orientation field used to calculate the orien-
tation distribution function. The coherency C [Fig. 4(b)] is defined as the difference between the tensor eigenvalues
normalized by their sum:

C =
λmax − λmin

λmax + λmin
. (S9)

We calculate a field of local orientations θ from the local values of ~vmin. The contractions analyzed display negligible
bend in their structure, so we define a single average director θ̄ for the entire material as the mean value of θ:

θ̄ =
1

N

N∑
i=1

θi. (S10)

From this we calculate the orientational order parameter S, defined as:

S = 〈cos(2[θ − θ̄])〉. (S11)

At late times, microtubule bundles appear anchored normal to the surface. We exclude in the calculation of θ̄ and the
orientational order parameter S by using a mask. The mask is generated from a probability field Pin using iLastik
for pixel classification [74].

E. Surface Construction

To construct numerical surfaces, we start by acquiring confocal data such that each voxel is isotropic. These voxels
are classified as “inside” or “outside” the structure of interest by using iLastik to generate a probability field Pin.
Then a binary field F is generated from Pin using a morphological snake method. Next a polygonal surface S is
constructed from F using a marching cubes algorithm. Finally, the surface S is remeshed at a specified triangle size
using Meshlab [75]. Code for this process is available upon request.
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F. Normal-normal correlation C(r)

To determine the normal-normal correlation of a structure we first generate a surface for that structure as described
above. We then bisect the surface along the smallest moment of the material. This bisection is to exclude anticorre-
lations in C(r) due to the curvature of the surface. We calculate a normal vector n̂(r, t) at each point r on the two
surface halves at time t. The normal-normal correlation is calculated as

C(Λ, t) =
〈n̂(r, t) · n̂(r + Λ, t)〉
〈n̂(r, t) · n̂(r, t)〉

=
1

NiNΛ

Ni∑
i

NΛ∑
Λ

n̂(ri, t) · n̂(ri + Λ, t)

n̂(ri, t) · n̂(ri, t)
, (S12)

where angular brackets indicate a spatial average over all initial points i and all geodesic paths Λ. We calculate
geodesics on each half of the surface via a fast-marching mesh algorithm. Figure S9 shows the geodesic distance from
a point along a contracted surface and the normal vectors of that contracted surface. Binning by lengths of the path
Λ at a particular time t, we calculate C(r). At small length scales, the normal-normal correlation is reasonably well
fit by an exponential. The correlation length [Fig. 5(g), Fig. 6(d)] is defined as the inverse of the exponent to this fit.
Code to generate normals and calculate geodesic distances is available upon request.

G. Contraction Kinematics

If the mass of proteins is conserved, there are constraints relating shape change with protein flux. We consider
an enclosed network with a volume V and a boundary of area A. The total mass M is the sum of the areal surface
density ρA, plus the sum of the volumetric density ρV over the volume:

M =

∫
A

ρSdA+

∫
V

ρV dV. (S13)

Assuming mass conservation, the time derivative of this quantity is zero. That is,

0 = ∂tM =

∫
A

(∂tρA)dA+ 〈ρA〉∂tA+

∫
V

(∂tρV )dV + 〈ρV 〉∂tV, (S14)

where angular brackets indicate a spatial average. Given that protein is found only on the surface and in the bulk,
an increase in the first two terms would signal a flux of material from the bulk to the surface, whereas an increase in
the second two terms would signal a flux of material into the bulk. That is, the net flux of protein from the bulk V
to the surface S is

ΦV→S = A∂t〈ρA〉+ 〈ρA〉∂tA (S15)

while the net flux of protein from the surface to the bulk is

ΦS→V = V ∂t〈ρV 〉+ 〈ρV 〉∂tV. (S16)

H. Mean Network Speed and Velocity Correlation Length of K4 Driven Gels

The velocity field, v(r, t), of the extensile fluid phase was calculated using the velocimetry package PIVLab
[Fig. S10(a),(b)] [76]. From this data we calculated the the mean network speed 〈|V |〉 defined as

〈|V |〉 =
1

Tf − Ti

Tf∑
t=Ti

〈v(r, t)〉 (S17)

where Tf is the final time, and Ti indicates time shortly after the initial gel buckling instability. The average inside
the sum is over space as defined by the variable r. Titrating over kinesin concentration, we found that the mean
microtubule network speed 〈|V |〉 increased with kinesin concentration [Fig S10(c)].

We used the velocity field v(r, t) to generate a spatial velocity-velocity correlation Avel(r) defined as

Avel(r) =
1

T

T∑
t

〈A(r, t)〉 =

〈
〈v(r, t) · v(r′, t)〉
〈v(r′, t) · v(r′, t)〉

〉
=

2

TN(N − 1)

T∑
t

N∑
i

N∑
j<i

v(ri, t) · v(rj , t)

v(rj , t) · v(rj , t)
(S18)
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where T is the number of frames evaluated. Here the average inside the sum is over space as defined by the variable
r′. This correlation was evaluated in Fourier space to reduce computation time. We measured a correlation length
scale λ, defined as the length scale at which Avel(r) has decayed to half of its initial amplitude. In contrast to studies
of truncated kinesin-1, increasing kinesin-4 concentration increased the velocity-velocity correlation length scale λ
[Fig. S10(d)] [41].

I. Modifications of contraction phenomena due to boundary conditions

The dynamics and final structure of a global contraction are sensitive to microtubule concentration, kinesin con-
centration, initial microtubule alignment, and boundary conditions. When the material is pinned at the ends of the
chamber the resulting global contraction displays significant phenomenological differences from its unpinned form
[Fig. S13(a)]. First contracting material pinned at the ends of the chamber contract to a thin line. Then the line of
material buckles, and then the line of material straightens again. Finally, at long time scales, material accumulates
at intervals along the line of the contraction, forming large aster-like clumps. Similarly, non-specific adhering to the
chamber sides changed the form of the contraction [Fig. S13(b), (c)].

J. Limits of the kinesin concentration

“Outside the range of experiments shown, we were unable to consistently generate and study active systems. In
samples between 0-50 nM kinesin-4 the microtubule tended to remain homogeneous throughout the sample. Samples
above 300 nM kinesin-4 lost activity very, within a few minutes. Samples above 2% PEG showed little to no kinesin-
driven activity and resulted in slow bulk contractions with or without kinesin.”

II. SUPPLEMENTARY VIDEOS

• Video 1: At low microtubule concentrations, dynamic asters spontaneously assemble. This video shows orthog-
onal planes projected over 6.5 µm. Sample is created with 200 nM kinesin-4 (blue), 400 nM tubulin (black).

• Video 2: At intermediate microtubule density, networks of microtubules globally contract. This video shows
four fields of epifluorescent imaging of fluorescent microtubules stitched together. The sample is created with
50 nM kinesin-4 (blue), 1000 nM tubulin (black).

• Video 3: Sedimented asters do not merge and globally contract. This video shows a 3D projection from confocal
stacks, with two xy slices at indicated positions. These slices are z-projected over 6.5 µm. Sample is created in
a 300 µm chamber with 200 nM kinesin-4 (blue), 400 nM tubulin (black).

• Video 4: At high microtubule density, global contractions align and then roughen. This video shows a z-
projection from confocal data, along with xz and yz orthogonal slices projected over 6.5 µm. Starting at 110
min, a 3D surface (blue) generated from the dense surface of the condensate is displayed. This surface shows
the location of the orthogonal slices. Sample consisted of 10 µM tubulin (black) and 200 nM kinesin (blue).

• Video 5: At the highest microtubule density, kinesin-4 drives microtubule condensation and the subsequent
formation of an active foam. This video shows a 3D projection from confocal stacks of a 333x333x100 µm field
of view. Intermittent pauses in the video show the interior structure of the material during its development.
Sample contained 200 nM kinesin (blue), 40 µM tubulin (black).

• Video 6: Whole-chamber epifluorescent imaging of highest-density microtubule systems buckling, condensing,
and forming an active foam. Sample constituted from 200 nM kinesin (blue), 40 µM tubulin (black).

• Video 7: A series of videos shows a titration of microtubule concentrations in the presence of PEG, resulting
in a transition from extensile to contracting networks. All videos are epifluorescent imaging of fluorescent
microtubules.

• Video 8: Two videos of extensile networks transforming into bilayer structures. The first video is epifluorescent
imaging of fluorescent microtubules (black) and kinesin (blue). The second video is a max-z projection of
confocal imaging of a sample in a thin (30 µm) chamber.
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FIG. S1. The contraction time scale decreased with increasing microtubule number density. Plotted is the normalized width
Wn at five tubulin concentrations (200 nM kinesin). Dashed lines represent the exponential fit fc(t). Inset) Characteristic time
τ for each tubulin concentration.

III. SUPPLEMENTARY FIGURES
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FIG. S2. Replicate 2: Nematic alignment and surface roughening of a contracting network. (a) z-projected images demonstrate
that decreasing network volume leads to increasing nematic alignment. (b) z-projection of the microtubule nematic order. Hue
indicates the nematic director indicated by the color wheel, while intensity indicates coherency. (c) The microtubule nematic
order parameter increases during contraction and then decreases during roughening. (d) The contracting network’s volume
(solid purple) decreases continuously. Its surface area (dashed black) initially decreases but then increases. Sample composed
of 10 µM tubulin (black), 200 nM kinesin (blue).
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FIG. S3. Replicate 3: Nematic alignment and surface roughening of a contracting network. (a) z-projected images demonstrate
that decreasing network volume leads to increasing nematic alignment. (b) z-projection of the microtubule nematic order. Hue
indicates the nematic director indicated by the color wheel, while intensity indicates coherency. (c) The microtubule nematic
order parameter increases during contraction and then decreases during roughening. (d) The contracting network’s volume
(solid purple) decreases continuously. Its surface area (dashed black) initially decreases but then increases. Sample composed
of 10 µM tubulin (black), 200 nM kinesin (blue).
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FIG. S4. Replicate 2: A surface roughening accompanied by the formation of a surface-bound monolayer. (a) Time series
of a surface of a contracting network. (b) x-y slices of data corresponding to cuts shown in the previous panel. (c) x-z
slices show contracting cross-section and highlight the formation of a monolayer. (d) Changes of tubulin and kinesin density
within the interior of the contracting network. The sample rapidly contracted in the y-direction at +50 minutes, bringing a
different portion of the material into the field of view. This is indicated by a gray overlay in the data. (e) Tubulin and kinesin
density within 5 µm of the surface increase during the roughening phase. (f) The flux of microtubules from the interior to the
surface ΦV →S (black solid), the microtubule surface density A∂tρs (blue dashed) and the change in surface area ρs∂tA (purple
short-dashed) as a function of time. The red long-dashed line indicates the sum of all three terms. (g) Normal-normal spatial
correlations show faster decay as the material roughens. These correlations are calculated only on a bisected surface, to reduce
the influence of the overall surface curvature. Inset: Exponential fits to the normal-normal correlation decay between 10-20
µm. Sample consisted of 10 µM tubulin (black), 200 nM kinesin (blue).
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FIG. S5. Replicate 3: A surface roughening accompanied by the formation of a surface-bound monolayer. (a) Time series of a
surface of a contracting network. (b) x-y slices of data corresponding to cuts shown in the previous panel. (c) x-z slices show
contracting cross-section and highlight the formation of a monolayer. (d) Changes of tubulin and kinesin density within the
interior of the contracting network. (e) Tubulin and kinesin density within 5 µm of the surface increase during the roughening
phase. (f) The flux of microtubules from the interior to the surface ΦV →S (black solid), the microtubule surface density A∂tρs
(blue dashed) and the change in surface area ρs∂tA (purple short-dashed) as a function of time. The red long-dashed line
indicates the sum of all three terms. Fluxes are not calculated during a period where the sample was rapidly contracting along
the y-direction, this section is grayed out and indicated with black horizontal lines. (g) Normal-normal spatial correlations
show faster decay as the material roughens. These correlations are calculated only on a bisected surface, to reduce the influence
of the overall surface curvature. Inset: Exponential fits to the normal-normal correlation decay between 10-20 µm. Sample
consisted of 10 µM tubulin (black), 200 nM kinesin (blue).
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µM tubulin (black).
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FIG. S7. Replicate 3: Roughening at the highest microtubule concentrations. (a) Evolution of a contracting condensate surface
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a contracting condensate as a function of time. (d) The spatial correlation between surface normal vectors decay over time.
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FIG. S8. The mean curvature of the condensate surface shown in Fig. 6 at two points in time, the first after early monolayer
formation, the second at the onset of bilayer formation.
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of the material velocity in the previous panel, with overlaid arrows representing the velocity vector field ~v(r). (c) Mean speed
〈|V |〉 as a function of kinesin. The error bars are standard deviation (n=3). Inset) Spatially averaged speed U(t) = 〈~v(r, t)〉
plotted over time for the experiment shown in panel (a). (d) Time-averaged velocity autocorrelation A(r) as a function of
kinesin. Inset) Length scale λ at which 2A(λ) = A(0). Error bars are standard deviation (n=3).
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FIG. S11. Low magnification imaging shows the slight buckling and splay of microtubules into monolayer envelopes, followed
by the deformation of monolayers into an active bilayer foam.
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FIG. S12. At high MT concentrations, the mixture coarsens into an active foam. (a) Maximum intensity projection over 10 µm
in z of an entire chamber of foam. (b) zoom in (c) Z-stack of 6.5 µm z-projection slices with an additional 6.5 µm in between
each slice, showing the 3D structure of a bilayer foam.
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FIG. S13. The behavior of a globally contracting system is influenced by the conditions at the borders of the chamber. (a) A
contracting material pinned at the ends of the chamber many millimeters away. This material first contracts but then buckles
at 15 min, followed by straightening again at 20 min. (b) A global contraction with some sticking at the parafilm chamber
edges. This sample forms an active bilayer foam as its end state. (c) A global contraction loses the symmetry imparted on it
by the chamber.
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[53] T. Surrey, F. Nédélec, S. Leibler, and E. Karsenti, Physical properties determining self-organization of motors and micro-
tubules, Science 292, 1167 (2001).

[54] K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto, Asters, vortices, and rotating spirals in active gels of polar
filaments, Physical review letters 92, 78101 (2004).

[55] K. Husain and M. Rao, Emergent structures in an active polar fluid: Dynamics of shape, scattering, and merger, Physical
review letters 118, 078104 (2017).

[56] I. Maryshev, D. Marenduzzo, A. B. Goryachev, and A. Morozov, Kinetic theory of pattern formation in mixtures of
microtubules and molecular motors, Physical Review E 97, 022412 (2018).

[57] I. Maryshev, A. Morozov, A. B. Goryachev, and D. Marenduzzo, Pattern formation in active model c with anchoring:
bands, aster networks, and foams, Soft Matter 16, 8775 (2020).

[58] E. Hannak and R. Heald, Investigating mitotic spindle assembly and function in vitro using xenopus laevis egg extracts,
Nature protocols 1, 2305 (2006).

[59] A. Thawani, H. A. Stone, J. W. Shaevitz, and S. Petry, Spatiotemporal organization of branched microtubule networks,
Elife 8, 43890 (2019).

[60] J. F. Pelletier, C. M. Field, S. Fürthauer, M. Sonnett, and T. J. Mitchison, Co-movement of astral microtubules, organelles
and f-actin by dynein and actomyosin forces in frog egg cytoplasm, Elife 9, e60047 (2020).

[61] F. Verde, J.-M. Berrez, C. Antony, and E. Karsenti, Taxol-induced microtubule asters in mitotic extracts of xenopus eggs:
requirement for phosphorylated factors and cytoplasmic dynein, The Journal of cell biology 112, 1177 (1991).

[62] J. M. Scholey, G. Civelekoglu-Scholey, and I. Brust-Mascher, Anaphase b, Biology 5, 51 (2016).
[63] M. I. Anjur-Dietrich, C. P. Kelleher, and D. J. Needleman, Mechanical mechanisms of chromosome segregation, Cells 10,

465 (2021).
[64] C. H. Yu, S. Redemann, H. Y. Wu, R. Kiewisz, T. Y. Yoo, W. Conway, R. Farhadifar, T. Müller-Reichert, and D. Needle-



20

man, Central-spindle microtubules are strongly coupled to chromosomes during both anaphase a and anaphase b, Molecular
Biology of the Cell 30, 2503 (2019).

[65] J. Hannabuss, M. Lera-Ramirez, N. I. Cade, F. J. Fourniol, F. Nédélec, and T. Surrey, Self-organization of minimal
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