

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Inpatient and post-discharge mortality among young infants in rural Kenya.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067482
Article Type:	Original research
Date Submitted by the Author:	18-Aug-2022
Complete List of Authors:	Talbert, Alison; KEMRI-Wellcome Trust Research Programme Ngari, Moses; KEMRI-Wellcome Trust Research Programme Obiero, Christina; KEMRI-Wellcome Trust Research Programme; University of Amsterdam, Department of Global Health Nyaguara, A.; KEMRI-Wellcome Trust Research Programme Mwangome, MK; KEMRI-Wellcome Trust Research Programme Mturi, Neema; KEMRI-Wellcome Trust Research Programme Ouma, Nelson; KEMRI-Wellcome Trust Research Programme Otiende, M.; KEMRI-Wellcome Trust Research Programme Berkley, James ; KEMRI-Wellcome Trust Research Programme University of Oxford, Centre for Tropical Medicine & Global Health
Keywords:	Epidemiology < TROPICAL MEDICINE, PAEDIATRICS, NEONATOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Inpatient and post-discharge mortality among young infants in rural
2	Kenya.
3	Alison Talbert MRCP ¹ , Moses Ngari PhD ^{1,2} , Christina Obiero MPH ^{1,3} , Amek Nyaguara PhD ¹ ,
4	Martha Mwangome PhD ^{1, 2} , Neema Mturi MRCP ¹ , Nelson Ouma BSc ¹ , Mark Otiende MSc ¹ , and
5	James A Berkley FRCPCH ^{1, 2, 4}
6	Institutions of affiliation
7	
8	1. KEMRI/Wellcome Trust Research Programme, Centre for Geographic Medicine Research
9	-Coast, PO Box 230 - 80108, Kilifi, Kenya.
10	2. The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
11	3. Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands
12	4. Center for Tropical Medicine & Global Health, University of Oxford, Oxford, UK.
12	
	Corresponding authory Alicon Talbert Emails ATalbert@komri.wollooma.org
	Corresponding author: Alison Talbert Email: <u>ATalbert@kemri-wellcome.org</u>
15	P.O Box 230,Kilifi, 80108 Kenya Phone: +254 729 218993
16	
17	Word count 3810
	1
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

BMJ Open

1 2	
2	
ך ג	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
10	
20	
20	
22	
23	
24	
25	
26	
27	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 23 24 25 26 27 28 29 30	
29	
30	
31	
32	
 33 34 35 36 37 	
34	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Abstract 18

19 **Objectives:** to describe admission trends and measure inpatient and post-discharge mortality 20 and its associated exposures, among young infants (YI) admitted to a county hospital in Kenya 21 **Design:** retrospective cohort study Setting: secondary level hospital 22 Participants: YI aged less than 60 days admitted to hospital January 2009 to December 2019: 23 24 12,271 admissions in 11,877 individuals. YI who were resident within a health and demographic surveillance system (KHDSS); were followed up for 1 year after discharge. 25 Primary and secondary outcome measures: Inpatient and 1 year post-discharge mortality 26 27 Results: Of 12,271 YI admissions, 4,421 (36%) were KHDSS-resident. Neonatal sepsis, preterm 28 complications and birth asphyxia accounted for 83% of admissions. The proportion of YI among under-fives admissions increased from 19% in 2009 to 34% in 2019 (P_{trend} =0.02). Inpatient case 29 30 fatality was 16%, with 66% of deaths occurring within 48 hours of admission. The introduction of free maternity care in 2013 was not associated with a change in admissions or inpatient 31 32 mortality among YI. During 1-year post-discharge, 208/3625 (5.7%) YI died, 64.3 (95%CI 56.2-33 73.7) per 1,000 infant-years; 49% of post-discharge deaths occurred within one month of discharge, and 49% of post-discharge deaths occurred at home. Both inpatient and post-34 35 discharge deaths were associated with low weight. Inpatient mortality was associated with clinical signs of disease severity, while post-discharge mortality was associated with length of 36 hospitalization, leaving against advice and referral to a specialized hospital. 37

2 3 4	38
5 6 7	39
7 8 9	40
10 11 12	41
13 14	42
15 16	43
17 18 19 20 21	44
22 23	45
24 25	46
26 27 28	47
29 30 31	48
32 33 34	49
35 36 37	50
38 39	51
40 41 42	52
43 44 45	53
46 47 48	54
49 50 51	55
52 53 54	56
54 55 56 57 58 59 60	57
50	

1 С

> Conclusions: Young infants accounted for an increasing proportion of paediatric admissions and inpatient deaths. The post-discharge mortality rate of YI is more than twice that of children aged 2-59 months. The proportion of deaths occurring post-discharge is lower than among older children, but similarly, almost half of post-discharge deaths occur in the first month, and half occurred at home.

- Key words
- Young infant; mortality; inpatient; post-discharge; Africa; Kenya
- .nt; post-disch.
- 290 words

losses to follow
most
4
most

70 Background

The United Nations Sustainable Development Goal 3 aims to ensure healthy living and promote wellbeing for all ages, with all countries aiming to reduce neonatal and under-five mortality to below 12 and 25 per 1,000 live births by 2030 respectively. In sub-Saharan Africa, child mortality has declined by ~58% in the last 30 years. However, the estimated neonatal and under-five mortality rates in sub-Saharan Africa remained high in 2019 (27 and 76 per 1,000 live births respectively) with a similar neonatal mortality rate of 27 per 1,000 live births in Kenya.(1) Combined neonatal and post-neonatal infant mortality accounts for over three quarters of all under-five deaths in Kenyan children.(2)

Young infants aged <60 days old (YI) comprise around half of hospital admissions in sub-Saharan Africa and continue to face high risk of in-hospital mortality and long-term neuro-disability.(3-6) Post-discharge mortality is emerging as a major problem in children in low- and middle-income countries (LMICs),(7) however, there are limited data among YI. A systematic review of paediatric post-discharge mortality in developing countries included 24 studies published up to July 2017 with 19 from Africa.(8) Four studies included YI. Although young age was reported as a risk factor of mortality, no studies specifically identified deaths among infants aged <60 days. We have previously demonstrated excess post-discharge mortality among all hospitalised children, suggesting that hospitalisation itself selects vulnerable children with a sustained increased risk of dying over the longer term.(7, 9)

Better understanding of YI deaths occurring during hospitalisation and after discharge from hospital is vital for development and use of targeted interventions aimed at improving survival.

This analysis aimed to describe admission trends and measure inpatient and post-discharge mortality and its associated exposures, including the introduction of free maternity care, among YI admitted to Kilifi County Hospital (KCH), Kenya and followed up through the Kilifi Health and nce System (Demographic Surveillance System (KHDSS).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

96 Methods

 97 Study participants and design

98 KCH is a secondary-level referral hospital situated in Kilifi county along the Kenyan coast. It serves 99 a rural and peri-urban population. It has a maternity unit. with approximately 6,000 deliveries 100 per year, a general paediatric ward with a newborn unit for babies aged less than 1 month, and 101 a paediatric High Dependency Unit (HDU) that also admits YIs. The year 2009 was selected as a 102 starting point, because a previous analysis of mortality among YI covered admissions from 1990 103 to 2008(10). Free maternity care was introduced by the Kenyan government on 1st June 2013 and 104 led to a marked increase in health facility births.(11)

The KHDSS, established in 2002, covers a population of 279,158 within an area of 900km² centred
 on KCH.(12) Census rounds visit each household every four months to ascertain vital status and
 migration in and out of the hospital catchment area.

We conducted a retrospective cohort study of YIs resident within the KHDSS who were admitted to KCH between January 1st, 2009 and December 31st, 2019. Children discharged alive and followed up in KHDSS census rounds until March 2021 were eligible for analyses of post-discharge mortality. During the study period, there were 9 health workers' strikes with the last nurses' strike lasting for 150 days (5 June to 2 November 2017).(13) Supplementary Table S1. For comparison, we also examined admissions aged 60 days to 59 months during the same period.

53 114

Procedures

BMJ Open

	116	At admission, standardised medical history, and clinical examination, including anthropometric
0	117	measurements were obtained by trained clinical staff. Blood samples were systematically taken
1 2 3	118	for complete blood count, slide for malaria microscopy, and clinical chemistry, Human
3 4 5	119	Immunodeficiency Virus (HIV) antibody test and blood culture at hospital admission, as described
6 7	120	previously.(14) A lumbar puncture for cerebrospinal fluid (CSF) analysis was done at admission in
8 9 0	121	infants in whom sepsis was suspected and deferred in those seriously ill or with other
0 1 2	122	contraindications. Clinical and laboratory data were recorded in real time on a ward surveillance
3 4	123	database linked to the KHDSS database. Empiric antibiotics were initiated according to national
5 6 7	124	guidelines(15) with ampicillin/benzylpenicillin plus gentamicin as first-line intravenous therapy.
8 9	125	Second-line and subsequent antimicrobial therapy was guided by blood culture results and
0 1 2 3	126	clinical progress. Mechanical ventilation was not available at KCH.
2 3 4 5 6	127	Statistical methods

128 Study variables

Outcomes of interest were death in hospital and during 1 year after discharge. Exposures of
interest were demographic, nutritional, clinical features, and haematological, biochemical, and
microbiological findings at the time of admission. De-identified study data were deposited in the
Harvard Dataverse depository.(16)

2 3 4	135	
5 6 7	136	Weight at admission and mid-upper arm circumference (MUAC) were categorised as shown on
8 9	137	Table 1 . Because approximately 40% of the YI were underweight (<2.5kg), and 60% were aged \leq 2
10 11 12	138	days at admission, admission weights rather than anthropometric Z scores using WHO standards
13 14	139	were reported. Furthermore, most YI who were born at home or in other hospitals and referred
15 16 17	140	to KCH were missing gestational age estimates and birth weight to be able to estimate gestational
18 19 20	141	age at birth using the INTERGROWTH 21st Newborn Size Standards (INSS).
21 22	142	Prematurity was defined as gestation age <37 weeks and LBW as birth weight <2500 grams for
23 24 25	143	YIs born at KCH. Admission blood glucose was categorized into <2·6, 2·6 to 7·0 and ≥7·0 mmol/l
26 27	144	representing low, normal and high levels respectively.(15) Missing data were not assumed to be
28 29 30	145	missing at random. We, therefore, created categorical variables and added a missing category
31 32	146	which was included in the regression analysis.
33 34 35	147	Demographic, anthropometric, and clinical data are presented as frequencies and proportions
36 37 38	148	for categorical variables and means (standard deviation (sd)) or median (interquartile range
39 40	149	(IQR)) for continuous variables depending on the underlying distribution. Proportions of missing
41 42 43	150	data for each variable are shown on Supplementary Table S2.
44 45 46	151	Monthly admissions and case fatality were plotted against time (month of admission) to visually
47 48	152	inspect the trend from 2009 to 2019 and the predicted trend line superimposed on the curves.
49 50 51	153	We used the Augmented Dickey Fuller test (ADF test) to test if the time series were stationary
52 53	154	(no trend or seasonal effects). We also presented annual absolute admissions, proportion of YI
54 55 56	155	among all admissions <60 months and case fatality. Monthly admissions and case fatality were
57 58		9
59		For peer review only - http://bmiopen.hmi.com/site/about/guidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open

2	
3	
4	-
5	
6 7	
7	
8 9 10 11 12 13 14 15 16 17	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	-
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 21	
31 22	-
32 33	
33 34	-
35	
36	
37	
38	
39	
40	
41	
42	-
43	
44	
45	
46	
47	
48	
49	-
50	
51	
52	
53	
54	-
55	
56	
57	
58	
59	

60

tested for annual linear trend using an extension of the Wilcoxon rank-sum test of trend acrossordered groups.(17)

158 We used interrupted time series analysis to estimate the level and trend changes before and after introduction of free maternity care (1st June 2013). We created a time variable coded 159 sequentially from 1 to 132 representing the months from January 2009 to December 2019 and 160 free maternity care was coded as 0 before June 2013 and 1 from June 2013. We defined seasonal 161 effect variable using month of the year modelled on harmonic terms using the fourier code in 162 STATA. To measure the effect of free maternity care, we used the negative binomial regression 163 164 model because of presence of overdispersion in the trends and reported regression coefficients 165 transformed into incidence rate ratios (IRR). All the negative binomial regression models included 166 the dependent variable of interest e.g. the monthly number of admissions, and the following independent variables: the time variable, the binary pre- and post- free maternity care variable 167 168 and the seasonal effect variable.

Since YIs could be admitted more than once whilst <60 days old, we included multiple admissions 169 170 using unique IDs and adjusted for clustering by individual with robust standard errors. To identify exposures associated with inpatient death, we treated being discharged alive as a competing 171 172 event and fitted the proportional sub-distribution hazard model using the Fine-Gray competing risk model.(18) The measure of effect reported from the model was the sub-distribution hazard 173 ratios (SHR) and their respective 95% confidence intervals (CI). To build the multivariable 174 175 regression model, a backward stepwise approach was used where all the independent variables assessed in the univariate models were included in the model and only those with a P-value <0.1 176 retained in the final multivariable model. 177

For the post-discharge analysis, only data from those YI discharged alive and resident within the KHDSS were analysed. Time at risk was defined from date of discharge to 365 days later or censure at date of death or outmigration from the KHDSS. We performed a 'multiple discharges' analysis where YI with multiple admissions had their follow-up time reset at each successive discharge date. Exposures associated with post-discharge assessed using a Cox proportional hazards regression model with robust standard errors accounting for YI with multiple discharges. The proportional hazards assumption was assessed using the scaled Schoenfeld residuals test (Supplementary Tables S3 and S4). All exposures assessed in the univariate models were considered for inclusion in the multivariable Cox proportional hazards regression model using a backward stepwise approach. Both the inpatient and post-discharge multivariable regression models' discrimination performance were assessed using bootstrapped area under receiver operating characteristic curves (AUC) replicated 1000 times.

As sensitivity analysis, we assessed the YI born at KCH and enrolled to the Kilifi Perinatal and Maternal Research Project (KIPMAT), which had collected comprehensive birth data including birth weight and gestational age (weeks).(19) We estimated their birthweight Z scores using the INTERGROWTH Newborn Size Standards (INSS) and ran the regression models replacing admission weight with birthweight Z score.(20)

195 Statistical significance was evaluated using 95% CI and a two-tailed *P*-value <0.05. Statistical 196 analyses were conducted using STATA Version 17.0 (College Station, TX, USA).

2 197 Study size

1 2		
3 4	198	With 3,625 YIs discharged alive and included in the post-discharge analysis, a post-discharge
5 6 7	199	mortality of 5.7% and a two-sided alpha of 0.05, the study had greater than 80% power, to detect
8 9	200	hazard ratio of ≥ 2.0 of death between YIs with admission weight < 1.5 Kg compared to those with
10 11 12	201	weight ≥2·5 Kg.
13 14	202	Ethical considerations
15 16 17	203	Written consent was provided by the caregivers of all the surveillance study participants. Ethical
18 19	204	approval to conduct this analysis was granted by the Kenya Medical Research Institute (KEMRI)
20 21 22	205	National Ethics Review Committee (SCC 2778).
23 24 25	206	Patient and public involvement
26 27 28	207	There was no patient and public involvement in the planning or execution of this retrospective
29 30 31	208	cohort study.
32 33 34 35 36	209	cohort study.
30 37 38		
39 40 41		
42 43		
44 45		
46 47 48		
48 49 50		
51 52		
53 54		
55 56		
57		
58 59		12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		Tor peer review only - http://binjopen.binj.com/site/about/guidelines.xittini

Results

211 Baseline characteristics

During the study period, there were 42,742 paediatric admissions to KCH, of which 12,271 (29%) admission events among 11,877 individuals were aged <60 days. Of the 12,271 YI admission events, 4,421 (36%) were resident in the KHDSS and included in the analysis (**Figure 1**). This comprised 4,272 individual YI: 4,131 with one admission, 133 two admissions and 8 three admissions within the first 60 days of life.

217 KHDSS-resident admissions

Among the 4,421 YI admission events among KHDSS residents, 2,731 (62%) were ≤2 days old and 1,900 (43%) were female. Reported prematurity and low birth weight were 1,019 (23%) and 581 (13%) respectively. Low weight (<2.5kg) was observed in 1694 YIs (38%) while 1342 (30%) had MUAC <9.0cm. Common presenting clinical signs were lower chest wall indrawing (46%) and breathing difficulty (49%). Thirty percent had fever, 31% had hypothermia and 30% tachycardia. Nine hundred and thirty-two YI (21%) had hypoxia (SaO2 <90%) at admission and 250 (5.7%) had impaired consciousness. Presenting signs at admission for all the YI stratified by KHDSS residence are shown on Table 1. Malaria was very rare (n=4, 0.09%) whilst 142 (3.2%) and 170 (3.9%) YI were HIV antibody positive and had bacteraemia respectively. Supplementary Table S5 lists the bacterial isolates that were presumed pathogens, led by Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Group B Streptococcus.

1 2 3	
4 5 6 7	
8 9 1(1	1
12 13 14 15 16	3 4 5
12 12 18 19 20	7 3 9
2 22 23 23 24	1 2 3
25 26 27 28	5 7 3
29 30 31 32) 1 2
33 34 35 30 37	4 5 5
38 39 40 4	3 9 0
42 43 44 44	2 3 4
46 47 48 49	7 3 9
5(57 52 53	1 2 3
54 55 56 57 58	5 5 7
58 59 60	9

230 **Table 1. Study participants characteristics at admission.**

	All young infant admissions (N=12,271) ^a	Young infant admissions KHDSS residents (N=4,421)	Young infant admissions non- KHDSS residents (N=7,850)	p- value
Demographics				
Age in days				
0 to 2	7856 (64)	2731 (62)	5125 (65)	
3 to 7	1384 (11)	468 (11)	916 (12)	
8 to 28	1506 (12)	587 (13)	919 (12)	<0.00
>28	1525 (12)	635 (14)	890 (11)	_
Sex (female)	5245 (43)	1900 (43)	3345 (43)	0.70
Reported born premature	2970 (24)	1019 (23)	1951 (25)	0.005
Reported low birth weight	1782 (15)	581 (13)	1201 (15)	<0.00
Anthropometry				
Weight (kg)				
<1.5	1767 (14)	566 (13)	1201 (15)	
1•5 to <2•5	3211 (26)	1128 (26)	2083 (27)	
≥2•5	7193 (59)	2684 (61)	4509 (57)	<0.00
Missing	100 (0.8)	43 (1.0)	57 (0.7)	-
MUAC (cm)				
<9	3933 (32)	1342 (30)	2591 (33)	
9 to 10	2492 (20)	862 (20)	1630 (21)	-
10 to 11	2926 (24)	1035 (23)	1891 (24)	<0.00
≥11	2622 (21)	1056 (24)	1566 (20)	-
Missing	298 (2.4)	126 (2.9)	172 (2·2)	_
Clinical features				
Axillary temperature				
<36°C	3553 (29)	1358 (31)	2195 (28)	
36 to 37•5°C	4692 (38)	1711 (39)	2981 (38)	<0.00
>37 · 5°C	3948 (32)	1318 (30)	2630 (34)	-
Respiratory rate/min ^b				
Bradypnoea	540 (4·4)	188 (4·3)	352 (4·5)	
Normal	7333 (60)	2647 (60)	4686 (60)	
Tachypnoea	4158 (34)	1490 (34)	2668 (34)	0.56
Missing	240 (2.0)	96 (2·2)	144 (1.8)	
Heart rate/min ^c				
Bradycardia	396 (3·2)	158 (3.6)	238 (3·0)	
Normal	8162 (67)	2910 (66)	5252 (67)	
Tachycardia	3667 (30)	1331 (30)	2336 (30)	0.11
, Missing	46 (0.4)	22 (0.5)	24 (0·3)	-
Hypoxia ^d	2668 (22)	932 (21)	1736 (22)	0.19
Lower chest wall indrawing	5562 (45)	2051 (46)	3511 (45)	0.13
Wheeze	112 (0.9)	46 (1.0)	66 (0.8)	0.41

Stridor	62 (0·5)	19 (0·4)	43 (0.6)	0.48	
Breathing difficulty	5966 (49)	2172 (49)	3794 (48)	0.44	
Cyanosis	560 (4·6)	210 (4·8)	350 (4·5)	0.54	
Capillary refill >2 seconds	301 (2·6)	105 (2·4)	196 (2·5)	0.81	
Temperature gradient	710 (5·8)	258 (5·8)	452 (5·8)	0.73	
Weak pulse	463 (3·8)	157 (3·6)	306 (3·9)	0.05	
Lethargy	971 (7·9)	325 (7·4)	646 (8·2)	0.15	
Impaired consciousness ^e	792 (6·5)	250 (5.7)	542 (6·9)	0.002	
Bulging fontanel	111 (0·9)	32 (0.7)	79 (1·0)	0.21	
Stiff neck	48 (0·4)	10 (0·2)	38 (0.5)	0.05	
Convulsions	689 (5·6)	197 (4·5)	492 (6·3)	<0.00	
Sunken eyes	134 (1·1)	44 (1·0)	90 (1·2)	0.44	
Reduced skin turgor	308 (2·5)	97 (2·2)	211 (2.7)	0.19	
Pallor	633 (5·2)	221 (5·0)	412 (5·3)	0.55	
Laboratory features					
Meningitis ^f	98 (0·8)	33 (0·8)	65 (0·8)	0.8	
Haemoglobin <11 g/dl) ^g	1207 (9·8)	476 (11)	731 (9·3)	0.0	
HIV antibody positive	441 (3.6)	142 (3·2)	299 (3·8)	0.11	
Malaria slide positive	5 (0.04)	4 (0.09)	1 (0.01)	0.02	
Bacteraemia	590 (4·8)	170 (3·9)	420 (5·4)	<0.00	
White blood cells (10 ¹² cells/L) ^h					
<4	134 (1·1)	54 (1·2)	80 (1.0)		
4–20	8738 (71)	3228 (73)	5510 (70)	<0.00	
>20	2202 (18)	690 (16)	1512 (19)	<0.00	
unavailable	1197 (9·8)	449 (10)	748 (9·5)		
Platelets (10 ⁹ cells/L) ⁱ					
<150 cells/L	1615 (13)	586 (13)	1029 (13)		
≥150	9455 (77)	3387 (77)	6068 (77)	0.59	
unavailable	1201 (9·8)	448 (10)	753 (9·6)	_	
Blood glucose (mmols/L)					
<2.6	2479 (20)	882 (20)	1597 (20)		
2•6 to 7•0	5086 (41)	1875 (42)	3211 (41)	0.20	
>7.0	688 (5·6)	231 (5·2)	457 (5·8)	0.29	
unavailable	4018 (33)	1433 (32)	2585 (33)		

^a-Eligible admissions were young infants aged <60days admitted from 2009 to 2019, ^b- Tachypnoea: respiratory rate \geq 60 breaths/min, Bradypnoea: respiratory rate <30 breaths/min, ^c-Tachycardia: heart rate>160 beats/min, Bradycardia: heart rate<100 beats/min, ^d·Hypoxia: oxygen saturation<90%, ^e-Impaired consciousness level if 'prostrate' or 'unconscious', ^f Meningitis: positive CSF culture, or positive CSF microscopy, or positive CSF antigen test, or elevated CSF WBC count (\geq 20 in young infants aged 0-28 days OR, \geq 10 in young infants aged 29-59 days) PLUS a positive blood culture for a known pathogen, ^g Anaemia: haemoglobin <11 g/dl, ^h Normal values WBC 4-20 x 10¹² cells/L, Leucopoenia WBC <4 x 10¹² cells/L, Leucocytosis WBC >20 x 10¹² cells/L, ^I Normal values Platelets \geq 150x10⁹ cells/L, Thrombocytopenia <150x10⁹ cells/L, KHDSS: Kilifi Health and Demographic Surveillance System, MUAC: Mid-upper arm circumference.

Page 17 of 49

BMJ Open

1 2	
3 4	231
5 6	232
7 8	233
9 10 11	234
12 13	235
14 15 16	236
17 18	237
19 20 21	238
21 22 23	239
24 25	240
26 27 28	241
29 30	242
31 32 33	243
34 35	244
36 37 38	245
39 40 41	246
42 43 44	247
45 46 47	248
47 48 49	249
50 51	250
52 53 54	251
55 56	252
57 58 59	

60

	231	Admissions over time
	232	The annual number of admissions are shown in Supplementary Table S6. The overall proportion
	233	of YI among all admissions under 5 years old was 28% (95%CI 27–29%), increasing from 19% in
)	234	2009 to 34% in 2019 (test of linear trend P=0.02) Figure 2. Figure 3A shows the upward trend of
2 3	235	absolute YI admissions and downward trends for 2 to 59-month-olds and all admissions <60
+ 5 5	236	months old (all P-values for tests for stationarity <0.05). There was no significant difference in
7 3	237	monthly YI admissions before introduction of free maternity care in June 2013 (monthly median
) 	238	[IQR] of 76 [66–96] admissions) and after June 2013 (monthly median [IQR] of 95 [78–125]
<u>2</u> 3	239	admissions) season-adjusted IRR 1.06 (95%CI 0.54–2.09) P=0.86 (Supplementary Figure S1A).
1 5 5	240	The mean monthly YI admissions on day of birth did not differ before and after June 2013; season-
, , ,	241	adjusted IRR 0.88 (95%CI 0.44 to 1.76), P=0.72. The proportion of YI admissions to total
))	242	admissions aged <60 months before and after June 2013 were not different; season-adjusted IRR
<u>2</u> 3	243	1.02 (95%CI 0.28–3.71) P=0.97 Figure 3D . We found no significant difference in monthly absolute
1 5	244	admissions (all admissions <60 months old), before and after June 2013; season-adjusted IRR
) 7 }	245	1·01 (95%Cl 0·51–2·00) P=0·97 (Supplementary Figure S1B).
)) 	246	Inpatient deaths
<u>-</u> 3 1 5	247	Overall, 1,914/11,877 (16%) of YI died in hospital. The risk of inpatient death was not significantly

different between 645/4,272 (15%) KHDSS residents and 1,269/7,605 (17%) non-residents of
KHDSS (age- and sex-adjusted SHR 0.93 (95%Cl 0.85–1.02) P=0.12) (Figure 1). The annual YI
inpatient case fatality ratio was stable (11% in 2009 and 13% in 2019. P-value for trend=0.80),
Figure 2. Monthly inpatient case fatality for YI, 2 to 59 months old and all <60 months old children
are shown in Figure 3B.

2	
3	253
4	
5 6	254
7	_0 .
8	255
9	255
10	256
11	250
12 12	257
13 14	257
15	
16	258
17	
18	259
19	
20	260
21	
22 23	
24	261
25	
26	262
27	
28	263
29	
30 31	264
32	201
33	
34	265
35	
36	
37	266
38 30	
39 40	267
41	
42	268
43	
44	269
45	
46 47	
47 48	270
49	
50	271
51	272
52	212
53	273
54 55	
55 56	274
57	
58	
59	
60	

1

253 During the study period there were 3,119 inpatient deaths among admissions <60 months old 254 admitted at KCH, with YI admissions accounting for 61% (95%CI 60–63%) of the deaths and no significant linear trend from 2009 to 2019 (trend P=0.29). The mean monthly YI inpatient case 255 fatality was 16% (sd 0.86) and 16% (sd 1.23) before and after June 2013 respectively; season-256 257 adjusted IRR 0.77 (95%CI 0.39-1.52) P=0.45 Figure 3C. The mean monthly case fatality for all admissions aged <60 months and admissions 2–59 months old did not differ before June 2013 258 and after June 2013; season-adjusted IRR 0.79 (95%CI 0.39–1.58) P=0.50 and IRR 0.81 (95%CI 259 260 0.39–1.69) P=0.57 respectively Supplementary Figure S1 C and D. 261 Among the 4,421 KHDSS-resident YI admissions, median [IQR] time to death was 2 [1–4] days, while the survivors were admitted for 5 [3-8] days. A total of 423/645 (66%) deaths occurred 262 263 within the first 48 hours following admission. Forty-one YI left against medical advice, and 55 were referred to other hospitals for further care. 264 Admission diagnosis & case fatality ratio 265 The commonest reasons for hospital admission were neonatal sepsis (47%), preterm 266 267 complications (20%) and birth asphyxia (16%) accounting for 83% of all YI admissions (Table 2). 268 The case fatality ratios for YI with respiratory distress syndrome, preterm complications and birth asphyxia were 52%, 29% and 28% respectively (Table 2). 269 270

⁶ Discharge dia	agnosisª		. (%) y clinician at discharge
,		All admissions (N=4421)	Inpatient Deaths (N=645)
3 Neonatal sep	sis	2097 (47)	201 (9.6)
Preterm com	plications	889 (20)	262 (29)
Birth asphyxi	а	724 (16)	201 (28)
Neonatal jau	ndice	611 (14)	56 (9·2)
Lower respire	atory tract infection	486 (11)	41 (8·4)
Respiratory of	listress syndrome	263 (6·0)	136 (52)
Congenital a	nomalies	215 (4·9)	55 (26)
Meningitis ^b		112 (2·5)	11 (9·8)
Anaemia		78 (1.8)	14 (18)
Malnutrition		36 (0.8)	1 (2·8)
None specifie	ed	69 (1·6)	4 (5·8)
Others		266 (6·0) ^c	13 (4·9)
young infants age	ive CSF culture, or positive CSF microscopy, d 0-28 days OR, ≥10 in young infants aged 2 ite abdominal obstruction-15, bronchiolii	9-59 days) PLUS a positive blood cu	Iture for a known pathogen
^b Meningitis: posit young infants age ^c Accidents-3, Act Chromosomal ab Encephalopathy-9 uraemic syndrom aspiration-33, Net 1, Pyogenic arthri infection (URTI)-2	d 0-28 days OR, ≥10 in young infants aged 2 tte abdominal obstruction-15, bronchiolit hormality-5, CNS abscess-1, Conjunctivitis-2 b, Epilepsy-7, Extra pulmonary TB-1, Febril e-1, Hydrocephalus-11, LTB/croup-1, Imn onatal haemorrhage-14, Neonatal tetanus -1 tis-1, Rabies-1, Rash-4, renal failure-6, traum 4, Viral hepatitis-2, Viral infection-3.	9-59 days) PLUS a positive blood cu cis-12, burns-1, Candidiasis-1, Ce 2, Dehydration-2, Dental problems e convulsions-5, Feeding difficulty- nunosuppression-17, Malaria-2, Ma 0, Other skin disease-3, Otitis media a/fractures/RTA-11, Urinary tract in	Ilture for a known pathogen Ilulitis abscess-21, Chickenpox -1, Diabetes-1, Elective surgery -1, Gastroenteritis-15, Haemoly ale genital problem-1, Meconi a-1, Poisoning (organophosphate
^b Meningitis: posit young infants age ^c Accidents-3, Act Chromosomal ab Encephalopathy-9 uraemic syndrom aspiration-33, Net 1, Pyogenic arthri infection (URTI)-2 Exposures as	d 0-28 days OR, ≥10 in young infants aged 2 tte abdominal obstruction-15, bronchioli hormality-5, CNS abscess-1, Conjunctivitis-2 b, Epilepsy-7, Extra pulmonary TB-1, Febril e-1, Hydrocephalus-11, LTB/croup-1, Imn onatal haemorrhage-14, Neonatal tetanus -1 cis-1, Rabies-1, Rash-4, renal failure-6, traum	9-59 days) PLUS a positive blood cu cis-12, burns-1, Candidiasis-1, Ce 2, Dehydration-2, Dental problems e convulsions-5, Feeding difficulty- nunosuppression-17, Malaria-2, Ma 0, Other skin disease-3, Otitis media a/fractures/RTA-11, Urinary tract in	Ilture for a known pathogen Ilulitis abscess-21, Chickenpoo -1, Diabetes-1, Elective surgery -1, Gastroenteritis-15, Haemoly ale genital problem-1, Meconi a-1, Poisoning (organophosphate offection-10, upper respiratory tr
 ^b Meningitis: positive young infants age ^cAccidents-3, Actors Chromosomal ab Encephalopathy-5 uraemic syndrom aspiration-33, Net 1, Pyogenic arthritin infection (URTI)-2 Exposures as Variables ass 	d 0-28 days OR, ≥10 in young infants aged 2 tte abdominal obstruction-15, bronchioli hormality-5, CNS abscess-1, Conjunctivitis-2 b, Epilepsy-7, Extra pulmonary TB-1, Febril e-1, Hydrocephalus-11, LTB/croup-1, Imn onatal haemorrhage-14, Neonatal tetanus -1 cis-1, Rabies-1, Rash-4, renal failure-6, traum 4, Viral hepatitis-2, Viral infection-3. Sociated with inpatient death	9-59 days) PLUS a positive blood cu cis-12, burns-1, Candidiasis-1, Ce 2, Dehydration-2, Dental problems e convulsions-5, Feeding difficulty- nunosuppression-17, Malaria-2, Ma 0, Other skin disease-3, Otitis media a/fractures/RTA-11, Urinary tract in inpatient death in uni	Ilulitis abscess-21, Chickenpox -1, Diabetes-1, Elective surgery -1, Gastroenteritis-15, Haemoly ale genital problem-1, Meconic A-1, Poisoning (organophosphate ifection-10, upper respiratory tr
^b Meningitis: posit young infants age cAccidents-3, Act Chromosomal ab Encephalopathy-5 uraemic syndrom aspiration-33, Net 1, Pyogenic arthri infection (URTI)-2 Exposures as Variables ass Supplementa	d 0-28 days OR, ≥10 in young infants aged 2 tte abdominal obstruction-15, bronchioli hormality-5, CNS abscess-1, Conjunctivitis-2 b, Epilepsy-7, Extra pulmonary TB-1, Febril e-1, Hydrocephalus-11, LTB/croup-1, Imn onatal haemorrhage-14, Neonatal tetanus -1 cis-1, Rabies-1, Rash-4, renal failure-6, traum 4, Viral hepatitis-2, Viral infection-3. sociated with inpatient death sessed for association with	9-59 days) PLUS a positive blood cu cis-12, burns-1, Candidiasis-1, Ce 2, Dehydration-2, Dental problems e convulsions-5, Feeding difficulty- nunosuppression-17, Malaria-2, Mi 0, Other skin disease-3, Otitis media a/fractures/RTA-11, Urinary tract in inpatient death in uni able analysis (Table 3),	Ilulitis abscess-21, Chickenpox -1, Diabetes-1, Elective surgery -1, Gastroenteritis-15, Haemoly ale genital problem-1, Meconiu a-1, Poisoning (organophosphate offection-10, upper respiratory tra-
 ^b Meningitis: positivoung infants age ^cAccidents-3, Actor Chromosomal ab Encephalopathy-5 uraemic syndrom aspiration-33, Net 1, Pyogenic arthritinfection (URTI)-2 Exposures as Variables ass Supplementa 3–7 days, cor 	d 0-28 days OR, ≥10 in young infants aged 2 tte abdominal obstruction-15, bronchiolit hormality-5, CNS abscess-1, Conjunctivitis-2 b, Epilepsy-7, Extra pulmonary TB-1, Febril e-1, Hydrocephalus-11, LTB/croup-1, Imn onatal haemorrhage-14, Neonatal tetanus-1 tis-1, Rabies-1, Rash-4, renal failure-6, traum 4, Viral hepatitis-2, Viral infection-3. sociated with inpatient death sessed for association with ary Table S3. In the multivaria	9-59 days) PLUS a positive blood cu is-12, burns-1, Candidiasis-1, Ce 2, Dehydration-2, Dental problems e convulsions-5, Feeding difficulty- nunosuppression-17, Malaria-2, Mi 0, Other skin disease-3, Otitis media a/fractures/RTA-11, Urinary tract in inpatient death in uni able analysis (Table 3), associated with inpatie	Ilulitis abscess-21, Chickenpox -1, Diabetes-1, Elective surgery -1, Gastroenteritis-15, Haemoly ale genital problem-1, Meconic -1, Poisoning (organophosphate ifection-10, upper respiratory tra variate models are s admissions at age ≤2 ent deaths. Very low a
 ^b Meningitis: positivoung infants age ^cAccidents-3, Actor Chromosomal ab Encephalopathy-5 uraemic syndrom aspiration-33, Net 1, Pyogenic arthriinfection (URTI)-2 Exposures as Variables ass Supplementa 3–7 days, conweight (<1.5 	d 0-28 days OR, ≥10 in young infants aged 2 the abdominal obstruction-15, bronchiolit hormality-5, CNS abscess-1, Conjunctivitis-2 b, Epilepsy-7, Extra pulmonary TB-1, Febril e-1, Hydrocephalus-11, LTB/croup-1, Imn onatal haemorrhage-14, Neonatal tetanus -1 tis-1, Rabies-1, Rash-4, renal failure-6, traum 4, Viral hepatitis-2, Viral infection-3. sociated with inpatient death sessed for association with ary Table S3. In the multivaria mpared to ≥28 days old, were	9-59 days) PLUS a positive blood cu is-12, burns-1, Candidiasis-1, Ce 2, Dehydration-2, Dental problems e convulsions-5, Feeding difficulty- nunosuppression-17, Malaria-2, M: 0, Other skin disease-3, Otitis media a/fractures/RTA-11, Urinary tract ir inpatient death in uni able analysis (Table 3), associated with inpatie compared to ≥2.5kg we	Illulitis abscess-21, Chickenpox -1, Diabetes-1, Elective surgery -1, Gastroenteritis-15, Haemoly ale genital problem-1, Meconic -1, Poisoning (organophosphate ifection-10, upper respiratory tra variate models are s admissions at age ≤ 2 ent deaths. Very low a ere positively associa
 young infants age 'Accidents-3, Acc Chromosomal ab Encephalopathy-5 uraemic syndrom aspiration-33, Nec 1, Pyogenic arthri infection (URTI)-2 Exposures as Variables ass Supplementa 3–7 days, con weight (<1.5 inpatient deal 	d 0-28 days OR, ≥10 in young infants aged 2 the abdominal obstruction-15, bronchioliti hormality-5, CNS abscess-1, Conjunctivitis-2 b, Epilepsy-7, Extra pulmonary TB-1, Febril e-1, Hydrocephalus-11, LTB/croup-1, Imn onatal haemorrhage-14, Neonatal tetanus-1 tis-1, Rabies-1, Rash-4, renal failure-6, traum 4, Viral hepatitis-2, Viral infection-3. sociated with inpatient death ary Table S3. In the multivaria mpared to ≥28 days old, were kg) and weight 1.5-2.4kg co	9-59 days) PLUS a positive blood cu is-12, burns-1, Candidiasis-1, Ce 2, Dehydration-2, Dental problems e convulsions-5, Feeding difficulty- nunosuppression-17, Malaria-2, M: 0, Other skin disease-3, Otitis media a/fractures/RTA-11, Urinary tract ir inpatient death in uni able analysis (Table 3), • associated with inpatie compared to ≥2.5kg we bradypnoea, tachypnoe	Ilulitis abscess-21, Chickenpox -1, Diabetes-1, Elective surgery -1, Gastroenteritis-15, Haemoly ale genital problem-1, Meconic -1, Poisoning (organophosphate ifection-10, upper respiratory tra- variate models are admissions at age ≤2 ent deaths. Very low a ere positively associa

2	
3	
4	
5	
6	
7 8	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
20	
30	
31 32 33	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

1

positive test (aSHR 1·15 (95%Cl 0·81–1·63)) were positively associated with inpatient death. The

296 multivariable model bootstrapped AUC was 0.88 (95%CI 0.86–0.89) **Table 3**.

Table 3. Multivariable regression analysis of factors associated with inpatient and post discharge mortality.

	Inpatient analysis		Post-discharge analysis	
	Adjusted SHR*	P-value	Adjusted HR	P-value
Demographics				
Age in days				
0 to 2	2.12 (1.46–3.06)	<0.001	0.78 (0.50–1.21)	0.27
3 to 7	3.88 (2.46–6.10)	<0.001	0.57 (0.30–1.08)	0.08
8 to 28	1.42 (0.90–2.25)	0.13	1.19 (0.73–1.93)	0.48
>28	Reference		Reference	
Sex (female)	0.91 (0.78–1.07)	0.26	0.98 (0.74–1.31)	0.91
Admission days (log)	1		1.93 (1.52–2.46)	<0.001
Type of discharge				
Normal	1		Reference	
Absconded	1		2.73 (1.04–7.18)	0.04
Transferred/referred	1		14.4 (9.22–22.6)	<0.001
Anthropometry				
Weight (kg)				
<1.5	2.16 (1.75–2.67)	<0.001	2.01 (1.41–2.87)	<0.001
1.5 to <2.5	1.42 (1.16–1.74)	0.001	0.88 (0.47–1.65)	0.69
≥2.5	Reference		Reference	
Missing weight	3.85 (2.59–5.71)	<0.001	-	
Clinical features				
Axillary temperature				
<36°C	1.44 (1.17–1.78)	0.001	1.06 (0.72–1.57)	0.76
36 to 37.5°C	Reference		Reference	
>37·5°C	1.09 (0.84–1.41)	0.53	0.67 (0.46-0.99)	0.04
Missing temperature	1.03 (0.38–2.75)	0.96	0.94 (0.09–9.30)	0.96
Respiratory rate/min				
Bradypnoea	1.45 (1.09–1.93)	0.01	1.72 (0.81–3.65)	0.16
Normal	Reference		Reference	
Tachypnoea	0.80 (0.67–0.95)	0.01	1.33 (0.98–1.79)	0.07
Missing	1.51 (0.64–3.56)	0.34	0.82 (0.10-6.49)	0.85
Heart rate/min				
Bradycardia	1.40 (1.08–1.82)	0.01	¶	
Normal	Reference			
Tachycardia	1.14 (0.94–1.37)	0·18	¶	
Missing	0.41 (0.03–5.13)	0.49	¶	
Hypoxia (SaO2 <90%)	1.62 (1.37–1.92)	<0.001	¶	
Capillary refill >2 seconds	1.34 (0.97–1.86)	0.08	¶	

1

1 2						
3		Lower chest wall indrawing	1.41 (1.14–1.75)	0.002	¶	
4		Stridor	1.93 (0.92–4.03)	0.08	¶	
5		Breathing difficulty	1.45 (1.15–1.82)	0.001	¶	
6 7		Weak pulse	1.61 (1.19–2.17)	0.002	2·33 (1·13–4·82)	0.02
8		Bulging fontanel	2.45 (0.91–6.65)	0.08	3·41 (1·49–7·79)	0.004
9		Impaired consciousness	2.21 (1.72–2.84)	<0.001	¶	0001
10		Pallor	1.30 (0.98–1.71)	0.01	¶	
11		Laboratory features	1 50 (0 50 1 / 1)	007	11	
12		Meningitis	5.45 (2.50–11.8)	<0.001	2.21 (0.95–5.13)	0.07
13		HIV antibody positive	1.15 (0.81–1.63)	0.43	1.09 (0.50-2.35)	0.83
14 15		Bacteraemia	2.21 (1.51–3.22)	<0.001	, , ,	0.83
15 16		White blood cells (10 ¹² cells/L)	2.21 (1.31-3.22)	<0.001	¶	
17				0.003	•	
18		<4	2·17 (1·30–3·62)	0.003	¶	
19		4-20	Reference		¶	
20		>20	1.71 (1.43-2.04)	<0.001	¶	
21		unavailable	1.09 (0.82–1.44)	0.57	¶	
22		Model performance				
23		Bootstrapped AUC (95% CI)	0.88 (0.86–0.89)		0.76 (0.72–0.	,
24 25		SHR; sub-distribution hazard ra				
25 26		hazards model, HR-Hazard rati		-		oles not
27		selected for inclusion in the mu				
28		characteristics. Meningitis: pos				
29		antigen test, or elevated CSF W			-	in young
30		infants aged 29-59 days) PLUS	a positive blood cultu	re for a knov	vn pathogen	
31	299					
32						
33						
34 35	300	Post-discharge death				
35 36						
37	201	There were 2 770 live dischar	rang fungen 2 CAO VI u	asidanta of	KUDCC of which 2	700 (frame 2.0)
38	301	There were 3,776 live dischar	rges from 3,640 fr	esidents of	KHUSS, OF Which 3,	760 (Irom 3,64
39						
40	302	individual YI) were followed u	p for 3,233 infant-ye	ears (Figure	 During one-year 	follow-up, the
41						
42	303	were 208/3625 (5·7%) deaths	: 64·3 (95%CI 56·2-7	73·7) deaths	s per 1,000 infant-ye	ears. The media
43				-		
44	304	[IQR] time to death after disc	harge was 35 [7–9]	21 days Of	the 208 nost-discha	arge deaths 1(
45	504					
46	205		(0.20)	منطئينا مس	1.2. Cond. Omonth	a aftar diashar
47 48	305	(49%), 160 (77%), 179 (86%) a	and 193 (93%) occur	red within	1, 3, 6 and 9 month	s after discharg
40 49						
50	306	respectively. The annual YI	oost-discharge case	fatality wa	as 5·4% in 2009 an	id 6·3% in 202
51						
52	307	without evidence of linear tre	end (P-value for tren	d=0.77) (Fi	gure 2).	
53			,	/		
54						
55						
56						
57						
58						:
59		F	only - http://bmjopen.k			
60				mi com (cito (about/quidalinas veteo	

One hundred and one (49%) of the 208 post-discharge deaths occurred at home without hospital readmission, 67 (32%) occurred during readmission to KCH and 40 (19%) occurred at other health facilities. The five leading assigned causes of deaths for the 67 deaths at KCH were: neonatal sepsis (24%), preterm complications (22%), congenital heart disease (15%), neonatal jaundice (7.4%) and meningitis (7.4%) which were similar to index admission diagnosis **Supplementary Table S7**. Causes of other deaths were unknown.

314 Overall, we observed 853 (20%) deaths among 4,272 individual YIs: 645 inpatient and 208 post-315 discharge, hence 24% of deaths were post-discharge.

Exposures assessed for association with post-discharge mortality are shown on **Table 3**. In the multivariable Cox regression model, log days of hospital admission, leaving against advice, and referral to more specialized hospital were positively associated with post-discharge mortality. Other exposures associated with post-discharge mortality were low admission weight, fever, weak pulse, and bulging fontanel, whilst a meningitis diagnosis at admission had borderline effect (**Table 3**). The multivariable model bootstrapped AUC was 0.76 (95%CI 0.72–0.79).

322 Subgroup analysis

In a subgroup analysis including 1,358 admissions of YIs born at KCH, their median [IQR] gestational age was 38 (36–40) weeks and birth weight 2,778 (2,000-3,195) grams respectively. In the univariate regression model, born premature, born low birth weight and birth weight Z score <-2 were positively associated with inpatient mortality (**Supplementary Table S8**). In the multivariable model, low birth weight, admission age <8 days, bacteraemia and signs of clinical severity were associated with inpatient mortality (**Supplementary Table S9**).

1 2		
2 3 4	329	Among the 1,142 YI followed up for 1,021 child-years of which $41/1,142$ (3.6%) died, low birth
5 6	330	weight (aHR 2.76 (95%CI 1.30–5.82)) was positively associated with post-discharge mortality in
7 8 9	331	the multivariable model (Supplementary Table S9).
10 11	332	
12 13	552	
14 15		
16 17 18		
19 20		
21 22		
23 24		
25 26 27		
28 29		
30 31		
32 33		
34 35 36		
37 38		
39 40		
41 42		
43 44 45		
46 47		
48 49		
50 51		
52 53		
54 55 56		
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

333 Discussion

334 Trends in admissions and proportions of young infants

During the study period, we observed a marked increase in YI admissions and proportion of YI among admissions in under-fives increased from around a fifth in 2009, to more than one-third in 2019. However, this did not seem to be associated with the introduction of free maternity care in 2013. Lack of observable effect may be due to challenges faced during policy implementation arising from inadequate expansion of quality health care facilities and resources. Several authors reported an increase in mothers attending Kenyan health facilities for antenatal care and delivery, (11, 21) however our results suggest this occurred in the context of a general trend which we previously observed during 1990-2008.(10)

Conversely, the number of admitted children older than 60 days decreased alongside a reduction in local malaria transmission,(22) introduction of routine childhood pneumococcal conjugate and rotavirus immunisation,(23) and expansion in numbers of health facilities in Kilifi County.(24) Variation in annual admissions over the years was due to multiple health workers' strikes.(13) During these periods, the general paediatric ward was closed and only the sickest children were admitted to the paediatric HDU due to limited staffing and bed capacity. The time series analysis indicated an increase in inpatient mortality during strikes (**Figure 3C**).

The leading diagnoses at admission in our analysis were neonatal sepsis, preterm complications, and birth asphyxia, similar to the period 1990–2008.(10) Over a third of admissions from KCH maternity were preterm and the hospital also received referrals of preterm and very low birthweight infants from sub-county hospitals and local health centres. There are few African

published datasets of neonatal or YI inpatient diagnoses; in a network of 7 Nigerian and Kenyan hospitals, prematurity accounted for over half (52%), and birth asphyxia almost a quarter (24%) of neonatal admissions.(25) The leading bacterial isolates from blood cultures in our study (Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus) were similar to those among YI in rural settings of Tanzania and Burkina Faso. (26) Kenya attained elimination status of maternal and neonatal tetanus in 2018, following immunisation campaigns in high-risk regions.(27) Compared to 1990–2008,(10) neonatal tetanus was uncommon at our centre with only 10 cases in 11 years. Inpatient deaths The WHO has reported that in 2019, "47% of all under-5 deaths occurred in the newborn period with about one third dying on the day of birth and close to three quarters dying within the first week of life".(28) We found YI accounted for more than 60% of under-fives inpatient deaths, similar to a retrospective study of 16 Kenyan public hospitals in which neonatal deaths comprised 66% of inpatient paediatric deaths.(5) We found respiratory distress syndrome, birth asphyxia and preterm complications had the highest inpatient mortality. Improvements in peripartum care of mothers and infants together with appropriate technology such as non-invasive ventilation for management of respiratory complications of preterm birth are priorities for reduction in neonatal mortality in hospitals in LMICs.(5) Post-discharge deaths

Less than a quarter (24%) of all deaths during 1-year of follow up occurred post-discharge. This
 reflects a high inpatient (16%) case fatality rate with many very early inpatient deaths compared

to 6.6% in children aged \geq 60 days.(7) Nevertheless, the post-discharge YI mortality rate (64.3 per 1,000 child/years) was more than twice that of a cohort of children aged 2–59 months admitted to KCH between 2007- 2015.(29) This reflects post-discharge mortality rates being highest in younger age groups, such as in Tanzania among under 1-year olds: 72 per 1,000 child/years (95%C.I. 67·2–77·2) falling to 6·9 (95%C.I. 5·5–8·7) per 1,000 child/years in 4 to <5 year olds.(30) A greater proportion of YI post-discharge deaths occurred in hospital than among older children,(7) implying that caregivers may be more likely to seek re-admission for YI or may live closer to KCH. About half of post-discharge deaths occurred within the first month, highlighting the need for formal 'down-referral' for continuity of care after discharge in high risk YI. Analysis of exposures revealed that some were common for both inpatient and post-discharge mortality: low admission weight, axillary temperature, and respiratory rate. Birth weight was not available for most YI but low admission weight <2.5kg was common (40%) in our participants. Of known causes of post-discharge deaths, leading ones were related to problems in the early neonatal period. Meningitis was among the top 5 causes and bulging fontanel noted at admission was associated with increased risk of post-discharge death, suggesting that current treatment guidelines may not be sufficiently effective. Strengths and limitations of the study Strengths of this study are large sample size, systematic collection of data and linkage to a well-established demographic surveillance system, with few losses to follow up. Limitations are lack of accurate gestational age estimation and unknown birthweight of most participants. We did not have data collected at discharge, which may be of value in taking a risk-based approach to

BMJ Open

post-discharge care. This analysis is from a single hospital and outcomes in other settings with a different patient profile and facilities may vary. Conclusions Neonatal and YI admissions account for an increasing proportion of inpatient paediatric admissions, and their mortality rate remains high. Mortality reduction will depend on improvements in antenatal, peripartum and postpartum care of mothers and infants, as well as implementation of standardized neonatal care and paediatric protocols. Post-discharge mortality rates are higher, but account for a lower proportion of all deaths than among children age ≥ 60 days, likely because of the predominance of fatal conditions soon after birth with a correspondingly substantial proportion of infant mortality occurring in the first week of life. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	420
5 6	421
7 8 9	422
10 11	423
12 13	424
14 15 16	425
17 18 19	426
20 21	427
22 23	428
24 25	429
26 27 28	430
28 29 30	431
31 32	432
33 34	433
35 36 37	434
37 38 39	435
40 41	436
42 43	437
44 45	438
46 47 48	439
48 49 50	440
51 52	441
53 54	442
55 56 57	⊤-7∠
58	
59 60	

1

20 Acknowledgements

submission.

21 We thank the parents, patients, and staff of Kilifi County Hospital and the KEMRI-Wellcome Trust Research Programme for their participation in the study. This study is published with the 22 permission of the Director, KEMRI. For the purpose of open access, the authors have applied a 23 24 CC BY public copyright license to any author-accepted manuscript version arising from this

26 I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as 27 defined in the below author licence), an exclusive licence and/or a non-exclusive licence for 28 contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence 29 shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or 30 employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by 31 32 BMJ to the co-owners of the Journal, to publish the Work in BMJ Global Health and any other BMJ products and to exploit all rights, as set out in our licence. 33 34 35 The Submitting Author accepts and understands that any supply made under these terms is made by 36 BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a 37 postgraduate student of an affiliated institution which is paying any applicable article publishing charge 38 ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an 39 Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall 10 be governed by a Creative Commons licence – details of these licences and which Creative Commons 11 licence will apply to this Work are set out in our licence referred to above. 12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4 5	443	Figures
6 7	444	Figure 1. Flow of study participants.
8 9 10	445	Figure 2. Annual proportion of YI admissions to all admissions <60 months, inpatient case
11 12 13	446	fatality ratio (CFR) and post-discharge CFR.
14 15 16	447	Proportions are plotted with 95% confidence intervals.
17 18 19	448	Figure 3. A: Monthly hospital admissions (with predicted mean temporal trend), B: Monthly
20 21 22	449	case fatality rates (with predicted mean temporal trend), C: Monthly young infant inpatient
23 24	450	case fatality before and after June 2013 and D: Monthly proportions of young infants to
25 26 27	451	admissions <60 months old.
28 29 30	452	
31 32 33	453	
34 35	454	Ethics approval and consent to participate
36 37	455	Written consent was provided by the caregivers of all the surveillance study participants. Ethical
38 39 40	456	approval to conduct this analysis was granted by the Kenya Medical Research Institute (KEMRI)
41 42 43	457	National Ethics Review Committee (SCC 2778).
44 45 46	458	Consent for publication – not applicable
47 48	459	Availability of data and materials
49 50	460	Data are available in a public, open access repository. Deidentified participant data and analysis
51 52 53	461	code have been deposited and may be requested at the Harvard Dataverse via this
54 55 56	462	link <u>https://doi.org/10.7910/DVN/0XJVFX</u>
57 58		28
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 30 of 49

BMJ Open

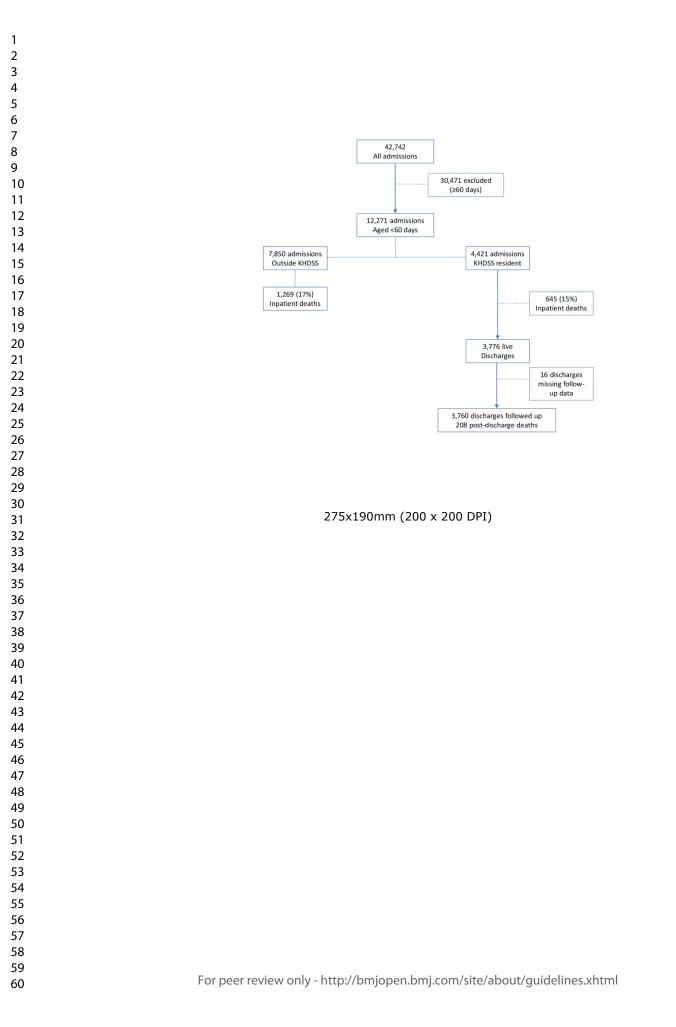
463	Competing interests
-----	---------------------

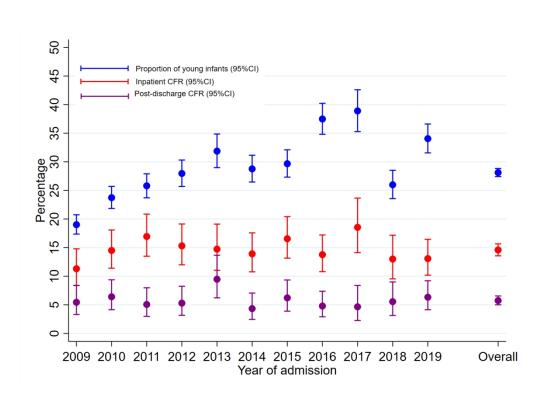
JAB declares the following: Chair of the DSMB for "Efficacy and safety of whole-body chlorhexidine cleansing in reducing bacterial skin colonisation of hospitalised neonates - a pilot trial". St George's, University of London and global sites; Treasurer of the Commonwealth Society for Paediatric Gastroenterology & Nutrition Other authors declare they have no competing interests. Funding Authors NM, AN, NO, MO, and staffing, facilities, and resources were funded by the Wellcome Trust (203077 Z 16 Z). MM was supported by a Wellcome Trust International Intermediate Fellowship (221997/Z/20/Z). JAB was supported by the Medical Research Council–Department for International Development–Wellcome Trust Joint Global Health Trials scheme (MR/M007367/1). JAB and MN were supported by the Bill & Melinda Gates Foundation (OPP1131320). CWO was supported by the Drugs for Neglected Diseases initiative/Global Antibiotic Research and Development Partnership (OXF-DND02). AT was supported by Crosslinks. Role of the funding source The funders did not have a role in study design, in the collection, analysis, and interpretation of data, in writing the report, or in the decision to submit the paper for publication. Author contributions AT: Conceptualization, investigation, methodology, formal analysis, writing – original draft, writing-review & editing; MN: Conceptualization, methodology, data curation, formal analysis, visualisation, writing – original draft, writing – review & editing; CWO: Conceptualization,

1		
2 3 4	484	investigation, methodology, formal analysis, validation, writing – original draft, writing– review
5 6 7	485	& editing; AN: Investigation, methodology, project administration, writing- review & editing;
8 9	486	MM: Conceptualization, methodology, writing- review & editing; NM: Investigation, project
10 11	487	administration, funding acquisition, resources, supervision, writing- review & editing; NO: Data
12 13 14	488	curation, writing– review & editing, MO: Data curation, writing– review & editing; JAB:
15 16	489	Conceptualisation, investigation, methodology, funding acquisition, supervision, validation,
17 18 19	490	writing- review & editing.
19 20		
21 22	491	AT and MN contributed equally to this paper. AT, the guarantor, accepts full responsibility for
23 24 25	492	the finished work and the conduct of the study, had access to the data, and controlled the
25 26 27	493	decision to publish.
28 29	494	decision to publish. References
30 31	495	
32		
33 34	496	References
35		
36 37	497	
38 39	498	1. UNICEF . Levels & Trends in Child Mortality: Report 2020, Estimates developed by the United
40 41 42	499	Nations Inter-agency Group for Child Mortality Estimation. New York: United Nations Children's Fund;
43 44	500	2020.
45 46	501	2. Collaborators GBDCM. Global, regional, national, and selected subnational levels of stillbirths,
47 48 49	502	neonatal, infant, and under-5 mortality, 1980-2015: a systematic analysis for the Global Burden of
50 51	503	Disease Study 2015. Lancet. 2016;388(10053):1725-74 doi 10.1016/S0140-6736(16)31575-6.
52 53	504	3. English M, Ngama M, Musumba C, et al. Causes and outcome of young infant admissions to a
54 55 56	505	Kenyan district hospital. Arch Dis Child. 2003;88(5):438-43 doi 10.1136/adc.88.5.438.
57 58		30
58 59 60		30 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

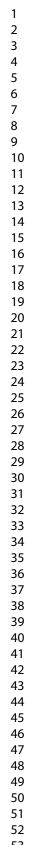
Page 32 of 49

BMJ Open


3 4	506	4.	van den Boogaard W, Manzi M, Harries AD, et al. Causes of pediatric mortality and case-fatality		
5 6	507	rates i	n eight Médecins Sans Frontières-supported hospitals in Africa. Public Health Action.		
7 8	508	2012;2(4):117-21 doi 10.5588/pha.12.0038.			
9 10 11	509	5.	Irimu G, Aluvaala J, Malla L, et al. Neonatal mortality in Kenyan hospitals: a multisite,		
12 13	510	retrospective, cohort study. BMJ Glob Health. 2021;6(5) doi 10.1136/bmjgh-2020-004475.			
14 15	511	6.	Obiero CW, Mturi N, Mwarumba S, et al. Clinical features to distinguish meningitis among young		
16 17	512	infants at a rural Kenyan hospital. Arch Dis Child. 2021;106(2):130-6 doi 10.1136/archdischild-2020-			
18 19 20	513	318913.			
21 22	514	7.	CHAIN Network. Childhood mortality during and after acute illness in Africa and south Asia: a		
23 24	515	prospective cohort study. Lancet Glob Health. 2022;10(5):e673-e84 doi 10.1016/s2214-109			
25 26	516	8.			
27 28 29	517	8.	Nemetchek B, English L, Kissoon N, et al. Paediatric postdischarge mortality in developing		
29 30 31	518	countries: a systematic review. <i>BMJ open</i> . 2018;8(12):e023445 doi 10.1136/bmjopen-2018-023445.			
32 33	519	9.	Moisi JC, Gatakaa H, Berkley JA, et al. Excess child mortality after discharge from hospital in Kilifi,		
34 35	520	Kenya	: a retrospective cohort analysis. Bull World Health Organ. 2011;89(10):725-32, 32A doi		
36 37 38	521	10.2471/BLT.11.089235.			
39 40	522	10.	Mwaniki MK, Gatakaa HW, Mturi FN, et al. An increase in the burden of neonatal admissions to		
41 42	523	a rural district hospital in Kenya over 19 years. BMC Public Health. 2010;10:591 doi 10.1186/1471-2458			
43 44	524	10-591.			
45 46	525	11.	Lang'at E, Mwanri L, Temmerman M. Effects of implementing free maternity service policy in		
47 48 49	526	Kenya	: an interrupted time series analysis. BMC Health Serv Res. 2019;19(1):645 doi 10.1186/s12913-		
50 51	527	019-4462-x.			
52 53					
54 55					
56 57 58			31		
59			51 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		
60			. or peer rettert only inteply on jopen on jee in site about guidelines. And in		


1 2				
3 4 5 6 7 8 9 10 11 12 13 14 15	528	12. KEMRI-Wellcor	ne Trust Research Programme. Health-research-linked-to-a-demographic-	
	529	surveillance-system [Available from: https://kemri-wellcome.org/programme/health-research-linked-		
	530	to-a-demographic-surveillance-system/ [Accessed May 10 2022].		
	531	13. Ong'ayo G, Ook	o M, Wang'ondu R, et al. Effect of strikes by health workers on mortality	
	532	between 2010 and 201	5 in Kilifi, Kenya: a population-based cohort analysis. Lancet Glob Health.	
	533	2019;7(7):e961-e7 doi 10.1016/s2214-109x(19)30188-3.		
16 17	534	14. Berkley JA, Low	e BS, Mwangi I, et al. Bacteremia among children admitted to a rural hospital in	
18 19 20	535	Kenya. N Engl J Med. 20	005;352(1):39-47 doi 10.1056/NEJMoa040275.	
20 21 22	536	15. Ministry of Hea	lth, Kenya. Basic Paediatric Protocols 4th ed2016.	
22 23 24	537	16. [dataset] Ngari	M, Talbert A, Ouma N, et al. Replication Data for: Inpatient and post-discharge	
25 26 27 28 29 30 31 32 33	538	mortality among young infants admitted to a rural Kenyan hospital. Harvard Dataverse. 2022. Available		
	539	from: https://doi.org/10.7910/DVN/0XJVFX.		
	540	17. Cuzick J. A Wilc	oxon-type test for trend. <i>Stat Med</i> . 1985;4(1):87-90 doi	
	541	10.1002/sim.47800401	12.	
34 35	542	18. Fine JP, Gray RJ	. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am	
36 37	543	Stat Assoc. 1999;94(44)	5):496-509 doi 10.1080/01621459.1999.10474144.	
38 39	544	19. Seale AC, Barsc	sio HC, Koech AC, et al. Embedding surveillance into clinical care to detect	
40 41 42	545	serious adverse events	in pregnancy. Vaccine. 2015;33(47):6466-8 doi 10.1016/j.vaccine.2015.07.086.	
43 44	546	20. Papageorghiou	AT, Kennedy SH, Salomon LJ, et al. The INTERGROWTH-21(st) fetal growth	
45 46	547 standards: toward the global integration of pregnancy and pediatric care. Am J Obstet G			
47 48	548	2018;218(2S):S630-S40	doi 10.1016/j.ajog.2018.01.011.	
49 50 51	549	21. Orangi S, Kairu	A, Malla L, et al. Impact of free maternity policies in Kenya: an interrupted time-	
52 53	550	series analysis. BMJ Glo	<i>b Health</i> . 2021;6(6) doi 10.1136/bmjgh-2020-003649.	
54 55				
56 57				
58 59		_	32	
60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

3 4	551	22. Njuguna P, Maitland K, Nyaguara A, et al. Observational study: 27 years of severe malaria		
5 6	552	surveillance in Kilifi, Kenya. BMC Med. 2019;17(1):124 doi 10.1186/s12916-019-1359-9.		
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	553	23. Hammitt LL, Etyang AO, Morpeth SC, et al. Effect of ten-valent pneumococcal conjugate vaccine		
	554	on invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal surveillance		
	555	study. Lancet (London, England). 2019;393(10186):2146-54 doi 10.1016/s0140-6736(18)33005-8.		
	556	24. Munywoki J, Kagwanja N, Chuma J, et al. Tracking health sector priority setting processes and		
	557	outcomes for human resources for health, five-years after political devolution: a county-level case study		
	558	in Kenya. Int J Equity Health. 2020;19(1):165 doi 10.1186/s12939-020-01284-3.		
	559	25. Nabwera HM, Wang D, Tongo OO, et al. Burden of disease and risk factors for mortality amongst		
23 24	560	hospitalized newborns in Nigeria and Kenya. PLoS One. 2021;16(1):e0244109 doi		
25 26	561	10.1371/journal.pone.0244109.		
27 28 20	562	26. Mduma E, Halidou T, Kaboré B, et al. Etiology of severe invasive infections in young infants in		
29 30 31 32 33 34 35 36 37 38 39 40 41 42	563	rural settings in sub-Saharan Africa. PLoS One. 2022;17(2):e0264322 doi 10.1371/journal.pone.0264322.		
	564	27. WHO Afro. Kenya now eliminates maternal and neonatal tetanus 2019 [Available from:		
	565	https://www.afro.who.int/news/kenya-now-eliminates-maternal-and-neonatal-tetanus[Accessed		
	566	February 2 2022].		
	567	28. World Health Organization. Newborns: improving survival and well-being 2020 [Available from:		
	568	https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality [Accessed May 13		
43 44	569	2022].		
45 46	570	29. Talbert A, Ngari M, Bauni E, et al. Mortality after inpatient treatment for diarrhea in children: a		
47 48 49	571	cohort study. BMC Med. 2019;17(1):20 doi 10.1186/s12916-019-1258-0.		
49 50 51 52 53	572	30. Mukasa O, Masanja H, DeSavigny D, et al. A cohort study of survival following discharge from		
	573	hospital in rural Tanzanian children using linked data of admissions with community-based demographic		
54 55	574	surveillance. Emerg Themes Epidemiol. 2021;18(1):4 doi 10.1186/s12982-021-00094-4.		
56 57 58		33		
59 60		55 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		


1 2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 3 3 4 5 6 7 8 9 0 112 3 3 4 5 6 7 8 9 0 112 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 2 3 4 5 6 7 8 9 0 112 3 3 4 5 6 7 8 9 0 112 3 3 4 5 6 7 8 9 0 112 3 3 4 5 5 6 7 8 9 0 112 3 3 4 5 5 6 7 8 9 0 112 3 3 4 5 5 6 7 8 9 0 112 5 3 4 5 5 6 7 8 9 0 112 5 3 4 5 5 5 5 7 8 9 0 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
55 56 57 58 59 60	56 57 58 59	out/quidalines yhtml

BMJ Open

547x398mm (72 x 72 DPI)

В А All admissions (<60 months) Admissions (2 to 59 months) -Young infants (<60 days) . Young infants (<60days) -All admissions (<60months) -Admissions (2 to 59 months) 500 -Monthly admissions 2010 2012 as are fitted trend lines 2008 2010 2012 Straight lines are fitted trend line Straight D С Monthly CFR
 Temporal trend & season
 Predicted mean temporal tr Monthly % of young infant
 Temporal trend & season Young infants case fatality (%) Predicted IRR 1.02 (95 IRR 0.77 (95%CI 0.39-1.52) P=0.45 ⁵⁰ 40 30 20 20 % 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Admission year ¹2009 ¹2010 ¹2011 ¹2012 ¹2013 ¹2014 ¹2015 ¹2016 ¹2017 ¹2018 ¹2019 ¹ Admission year

399x290mm (72 x 72 DPI)

Supplementary materials

Table of Contents

Table S1. List of health workers strikes during study period.	Page
	2
Table S2. Proportion of missing data	2,3
Table S3. Univariate analysis of admission features associated with inpatient deaths.	3, 4
Table S4. Univariate analysis of admission features associated with post-discharge	5,6
deaths.	
Table S5 Pathogens isolated from blood and CSF culture of young infants resident of	7
KHDSS during inpatient period.	
Table S6. Annual admissions and case fatality ratios	8
Table S7. Estimated causes of post-discharge deaths during readmission at KCH (67	8
deaths).	
Table S8. Univariate analysis of admission features associated with inpatient deaths	9,10
among babies born at KCH only.	
Table S9. Multivariable regression analysis of factors associated with inpatient and	11
post-discharge mortality among children born at KCH only.	
Figure S1. A: Monthly all young infant admissions, B: all admissions (<60 months	12
old), C: all admissions (<60 months old) case fatality and D: 2–59 months old case	
fatality before and after July 2013.	

arter July 2013.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1. List of health workers strikes during study period.

Strike dates	Health workers on strike	Duration of strike in days
5 to 13 December 2011	Doctors	9
1 to 15 March 2012	Nurses	15
13 September to 4 October 2012	Doctors	22
3 December 2012 to 13 January 2013	Nurses	42
16 January to 11 February 2013	Nurses	26
10 to 23 December 2013	Doctors & nurses	14
5 to 14 December 2016	Nurses	11
5 December 2016 to 15 March 2017	Doctors	102
5 June to 2 November 2017	Nurses	150

Table S2. Proportion of missing data

N=4,421	N missing	% missing
Demographics		
Age in days	0	
Sex (female)	0	
BCG scar	76	1.7
Reported born premature	321	7.3
Reported low birth weight	322	7.3
Anthropometry		
Weight (kg)	43	1.0
MUAC (cm)	126	2.9
Clinical features		
Axillary temperature	34	0.8
Tachypnea	208	4.7
Tachycardia	43	1.0
Hypoxia (SaO2 <90%)	20	0.5
Lower chest wall indrawing	68	1.5
Wheeze	69	1.6
Stridor	71	1.6
Breathing difficulty	64	1.5
Cyanosis	70	1.6
Capillary refill ≥2 seconds	34	0.8
Temperature gradient	81	1.8
Weak pulse	71	1.6
Lethargy	70	1.6
Impaired consciousness	70	1.6
Bulging fontanel	72	1.6
Stiff neck	71	1.6
Convulsions	64	1.5
Sunken eyes	73	1.7
Reduced skin turgor	71	1.6
Pallor	70	1.6
Laboratory features		
HIV antibody positive	756	17
Malaria slide positive	372	8.4
Bacteraemia	2281	52

Haemoglobin	448	10
WBC	449	10
Platelets	448	10
Blood glucose (mmols/L)	1433	32

Table S3. Univariate analysis of admission features associated with inpatient deaths.

N=4,421	Deaths (N=645) N (%)	Crude SHR	P-value	Scaled Schoenfeld residuals P-value
Demographics				
Age in days				
0 to 2	511 (19)	3.31 (2.39–4.58)	< 0.001	
3 to 7	56 (12)	2.07 (1.38–3.11)	< 0.001	0.14
8 to 28	40 (6.8)	1.15 (0.74–1.78)	0.54	0.14
>28	38 (6.0)	Reference		
Sex (female)	268 (14)	0.99 (0.91-1.09)	0.93	0.77
Reported born premature	294 (29)	2.53 (2.32–3.77)	< 0.001	0.06
Reported low birth weight	222 (38)	3.25 (2.97–3.56)	< 0.001	0.18
Anthropometry				
Weight (kg)				
<1.5	213 (38)	4.95 (4.13-5.93)	< 0.001	
1.5 to <2.5	174 (15)	1.86(1.53-2.26)	< 0.001	
≥2.5	229 (8.5)	Reference		0.09
Missing weight	29 (67)	10.7 (7.60–14.9)	< 0.001	
MUAC (cm)				
<9.0	333 (25)	3.57 (3.07-4.15)	< 0.001	
9 to 10	106 (12)	1.73 (1.45-2.07)	< 0.001	
10 to 11	96 (9.3)	1.48 (1.24–1.77)	< 0.001	0.08
≥11	75 (7.1)	Reference		
Missing MUAC	35 (28)	3.89 (3.02-5.00)	< 0.001	
Clinical features				
Axillary temperature				
<36°C	390 (29)	3.13 (2.82–3.47)	< 0.001	
36 to 37.5 °C	159 (9.3)	Reference		
>37.5 [°] C	84 (6.3)	0.77 (0.67–0.88)	< 0.001	0.34
Missing temperature	12 (35)	3.78 (2.65–5.39)	< 0.001	
Respiratory rate/min				
Bradypnoea	108 (57)	6.09 (4.98-7.46	< 0.001	
Normal	329 (12)	Reference		
Tachypnoea	197 (13)	1.07 (0.90–1.27)	0.45	0.71
Missing	11 (11)	0.91 (0.51–1.65)	0.76	1
Heart rate/min				
Bradycardia	74 (47)	4.05 (3.21–5.11)	< 0.001	
Normal	403 (14)	Reference		
Tachycardia	163 (12)	0.88 (0.73–1.05)	0.15	0.50
Missing	5 (23)	1.68 (0.72–3.93)	0.23	1
Hypoxia (SaO2 <90%)	309 (33)	3.91 (3.58–4.26)	< 0.001	0.48
Lower chest wall indrawing	448 (22)	2.86 (2.60–3.15)	< 0.001	0.41

Page 4	l2 of	49
--------	-------	----

Wheeze	0	-		
Stridor	6 (32)	1.48 (0.89–2.47)	0.13	0.23
Breathing difficulty	481 (22)	3.62 (3.26–4.02)	< 0.001	0.28
Cyanosis	98 (47)	4.01 (3.55–4.53)	<0.001	0.14
Capillary refill >2 seconds	61 (58)	5.61 (4.41–7.14)	< 0.001	0.54
Temperature gradient	98 (38)	2.85 (2.51–3.23)	< 0.001	0.36
Weak pulse	108 (69)	5.85 (5.21–6.57)	< 0.001	0.71
Lethargy	64 (20)	1.20 (1.04–1.40)	0.02	0.34
Impaired consciousness	140 (56)	5.43 (4.91–6.00)	<0.001	0.42
Bulging fontanel	6 (19)	1.34 (0.90–1.99)	0.15	0.08
Stiff neck	4 (40)	2.08 (1.30-3.32)	0.002	0.17
Convulsions	16 (8.1)	0.75 (0.61–0.93)	0.01	0.53
Sunken eyes	5 (11)	1.04 (0.69–1.56)	0.85	0.52
Reduced skin turgor	21 (22)	1.18 (0.91–1.52)	0.22	0.56
Pallor	72 (33)	2.47 (2.15–2.83)	< 0.001	0.63
Laboratory features				
Meningitis	8 (24)	8.06 (3.96–16.4)	<0.001	0.13
Anaemia (haemoglobin <11 g/dl)	50 (11)	0.67 (0.51–0.90)	0.007	0.51
HIV antibody positive	29 (20)	1.39 (1.13–1.71)	0.002	0.28
Malaria slide positive	0	-		
Bacteraemia	63 (37)	2.92 (2.10-4.06)	< 0.001	0.13
Blood glucose (mmols/L)				
<2.6	137 (16)	1.18 (1.04–1.33)	0.009	
2.6 to 7.0	229 (12)	Reference		0.42
>7.0	71 (31)	2.85 (2.47-3.29)	< 0.001	
Missing blood glucose	208 (15)	1.18 (1.06–1.32)	0.002	
White blood cells (10 ¹² cells/L)				
<4	14 (26)	2.43 (1.47–4.03)	0.001	
4-20	362 (11)	Reference		0.70
>20	210 (30)	2.97 (2.52-3.50)	< 0.001	
Missing	59 (13)	1.19 (0.91–1.57)	0.20	
Platelets (10 ⁹ cells/L)				
<150	139 (24)	1.89 (1.57–2.27)	<0.001	
≥150	447 (13)	Reference		0.10
Missing	59 (13)	1.01 (0.77–1.32)	0.95	

Table S4. Univariate analysis of admission features associated with post-discharge deaths.
--

N=3625	Deaths (N=208)	Crude HR	P-value	Scaled Schoenfeld residuals P-value
Demographics				
Age in days				
0 to 2	124 (5.6)	0.98 (0.67–1.44)	0.92	
3 to 7	15 (3.7)	0.63 (0.34–1.16)	0.14	
8 to 28	36 (6.6)	1.17 (0.73–1.87)	0.52	0.10
>28	33 (5.5)	Reference		
Sex (female)	89 (5.5)	0.98 (0.74–1.28)	0.86	0.79
Reported born premature	58 (8.0)	1.79 (1.32–2.44)	< 0.001	0.07
Reported low birth weight	33 (9.3)	1.99 (1.37–2.90)	< 0.001	0.13
Length of hospitalization (days)- log transformed	-	1.96 (1.68–2.27)	<0.001	0.38
Discharged over weekend	6			
No	173 (5.7)	Reference		
Yes	35 (4.8)	0.85 (0.59–1.23)	0.39	0.16
Type of discharge				
Normal discharge	180 (4.9)	Reference		
Absconded	5 (12)	2.60 (1.07–6.33)	0.04	0.75
Transferred/referred	23 (44)	11.8 (7.64–18.2)	< 0.001	
Anthropometry	× /			
Weight (kg)				
<1.5	30 (8.5)	2.49 (1.65–3.77)	< 0.001	- 0.17
1.5 to <2.5	87 (9.2)	2.64 (1.97-3.54)	< 0.001	
≥2.5	91 (3.7)	Reference		
Missing weight	0	-(V)		
MUAC (cm)				
<9.0	88 (8.8)	4.05 (2.56-6.41)	< 0.001	
9 to 10	44 (5.8)	2.56 (1.55-4.24)	< 0.001	
10 to 11	42 (4.5)	1.92 (1.15-3.18)	0.01	0.17
≥11	23 (2.4)	Reference		
Missing MUAC	11 (12)	5.83 (2.84-12.0)	< 0.001	
Clinical features				
Axillary temperature				
<36°C	78 (8.1)	1.45 (1.07–1.96)	0.02	
36 to 37.5°C	88 (5.7)	Reference		0.00
>37.5°C	41 (3.3)	0.57 (0.40–0.83)	0.003	0.80
Missing temperature	1 (5.0)	0.99 (0.14-7.12)	0.99	
Respiratory rate/min				
Bradypnoea	7 (8.8)	1.92 (0.90-4.13)	0.09	
Normal	108 (4.7)	Reference		
Tachypnoea	87 (6.8)	1.44 (1.09–1.92)	0.01	0.30
Missing	6 (7.2)	1.65 (0.72–3.76)	0.23	
Heart rate/min				
Bradycardia	9 (11)	2.10 (1.07–4.13)	0.03	
Normal	137 (5.5)	Reference		0.73
Tachycardia	62 (5.3)	0.97 (0.72–1.31)	0.85	1

Missing	0	-		
Hypoxia (SaO2 <90%)	51 (8.2)	1.68 (1.23–2.31)	0.001	0.54
Lower chest wall indrawing	108 (6.8)	1.54 (1.17–2.02)	0.002	0.18
Wheeze	2 (4.4)	0.77 (0.19–3.10)	0.71	0.20
Stridor	0	-		
Breathing difficulty	109 (6.5)	1.40 (1.07–1.85)	0.02	0.26
Cyanosis	7 (6.3)	1.14 (0.54–2.43)	0.73	0.17
Capillary refill ≥2 seconds	4 (9.4)	1.81 (0.67–4.87)	0.24	0.40
Temperature gradient	12 (7.5)	1.44 (0.80–2.57)	0.23	0.22
Weak pulse	7 (15)	3.10 (1.46–6.59)	0.003	0.38
Lethargy	14 (5.8)	1.06 (0.63–1.80)	0.82	0.19
Impaired consciousness	6 (5.5)	0.98 (0.44–2.21)	0.96	0.50
Bulging fontanel	4 (15)	3.04 (1.13–8.18)	0.03	0.06
Stiff neck	1 (17)	2.84 (0.40–20.2)	0.30	0.15
Convulsions	9 (5.0)	0.88 (0.46–1.75)	0.75	0.31
Sunken eyes	6 (15)	3.31 (1.47–7.45)	0.004	0.20
Reduced skin turgor	8 (11)	2.19 (1.08–4.43)	0.03	0.20
Pallor	15 (10)	2.09 (1.23–3.53)	0.006	0.23
Laboratory features				
Meningitis	4 (16)	3.98 (1.45–10.9)	0.007	0.13
Anaemia (haemoglobin <11 g/dl)	26 (6.2)	1.19 (0.79–1.80)	0.41	0.68
HIV antibody positive	7 (6.2)	1.17 (0.55–2.49)	0.69	0.76
Malaria slide positive	0	-		
Bacteraemia	10 (9.4)	1.02 (0.50-2.06)	0.96	0.28
Blood glucose (mmols/L)	- (- /			
<2.6	51 (6.9)	1.31 (0.92–1.85)	013	
2.6 to 7.0	86 (5.3)	Reference		
>7.0	10 (6.3)	1.21 (0.63-2.32)	0.57	0.25
Missing blood glucose	61 (5.0)	0.95 (0.68–1.32)	0.75	
White blood cells (10 ¹² cells/L)	- (/			
<4	1 (2.5)	0.45 (0.06-3.20)	0.42	
4-20	157 (5.5)	Reference		0.79
>20	29 (6.1)	1.10 (0.74–1.64)	0.63	
Missing	21 (5.4)	0.99 (0.63–1.56)	0.97	
Platelets (10 ⁹ cells/L)	1		0.57	
<150	38 (8.6)	1.69 (1.18-2.41)	0.004	
≥150	149 (5.1)	Reference	0.004	0.70
Missing	21 (5.4)	1.08 (0.68–1.70)	0.75	0.70
HR: hazard ratios; the HR are from	. ,	· · · · ·	0.75	

BMJ Open

3	
4 5	
6	
7 8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
21	
22 23	
24 25	
25 26	
27	
28 29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	

60

Table S5 Pathogens isolated from blood and CSF culture of young infants resident of KHDSS during inpatient period.

Blood culture Isolates		CSF culture isolates	
Pathogen full names (N=178)	No. (%)	Pathogen full names (N=24)	No. (%
Klebsiella pneumoniae	53 (30)	Escherichia coli	6 (25)
Escherichia coli	25 (14)	Group B Streptococcus	6 (25)
Staphylococcus aureus	22 (12)	Klebsiella pneumoniae	3 (13)
Group B Streptococcus	19 (11)	Streptococcus pneumoniae	3 (13)
Non-typhoidal Salmonella species	9 (5.1)	Enterobacter cloacae	3 (13)
Enterobacter cloacae	8 (4.5)	Non-typhoidal Salmonella species	2 (8.2
Pseudomonas aeruginosa	6 (3.4)	Acinetobacter lwoffi	1 (4.2
Streptococcus pneumoniae	5 (2.8)		
Streptococcus pyogenes	3 (1.7)		
Acinetobacter species	3 (1.7)		
Aeromonas hydrophila	3 (1.7)		
Group A Streptococcus	3 (1.7)		
Serratia marcescens	2 (1.1)		
Acinetobacter calcoaceticus/baumannii	2 (1.1)		
Acinetobacter lwoffi	1 (0.6)		
Aeromonas sobria	1 (0.6)		
Chryseobacterium indologenes	1 (0.6)		
Enterobacter aerogenes	1 (0.6)		
Enterococci species	1 (0.6)		
Haemophilus influenzae	1 (0.6)		
Proteus mirabilis	1 (0.6)		

CSF; cerebrospinal fluid, Out of the 33 Meningitis cases, only the 24 presented had positive CSF culture.

1	
2 3	
4	
5	
0	
/ 0	
0	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 21	
21	
22	
22 23	
24	
24 25	
26	
26 27	
28	
29	
30	
31	
32	
34 35	
35	
36	
37	
39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
40 49	
49 50	
50 51	
51 52	
52	
55 54	
55	
56	
57	
58	
50	

60

1

Table S6. Annual admissions and case fatality ratios (CFR).

Admissions/Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
<60 days	407	455	425	418	319	424	429	472	275	323	474
2 to 59 months	1734	1462	1222	1177	682	1050	1017	787	432	920	918
Proportion of YI admissions	19%	24%	26%	28%	32%	29%	30%	37%	39%	26%	34%
YI inpatient deaths	46	66	72	64	47	59	71	65	51	42	62
YI inpatient CFR	11%	15%	17%	15%	15%	14%	17%	14%	19%	13%	13%
YI post-discharge 1-year deaths	19	24	17	18	25	15	21	19	10	15	25
YI Post-discharge 1- year CFR	5.4%	6.4%	5.1%	5.3%	9.5%	4.3%	6.2%	4.8%	4.7%	5.6%	6.3%

Table S7. Estimated causes of post-discharge deaths during readmission at KCH (67 deaths).

Index admission diagnosis (N=67)	No. (%)	Causes of post-discharge deaths (N=67)	No. (%)
Neonatal sepsis	15 (22)	Neonatal sepsis	16 (24)
Preterm complications	15 (22)	Preterm complications	15 (22)
Heart disease-Congenital	9 (13)	Heart disease-Congenital	10 (15)
Neonatal jaundice	5 (7.5)	Neonatal jaundice	5 (7.4)
Meningitis	4 (6.0)	Meningitis	5 (7.4)
Birth asphyxia	4 (6.0)	Birth asphyxia	5 (7.4)
Lower respiratory tract infection	4 (6.0)	Lower respiratory tract infection	4 (6.0)
Encephalopathy - unknown	0	Encephalopathy - unknown	1 (1.5)
Hydrocephalus	1 (1.5)	Hydrocephalus	1 (1.5)
Malnutrition	1 (1.5)	None specified	5 (7.4)
None specified	9 (13)		

Index admission diagnosis and causes of death were assigned by treating clinician.

1	
2	
3	
4 5	
5 6	
7	
8	
9	
10 11	
12	
13	
14	
15 16	
17	
18	
19	
20 21	
22	
23	
24	
25 26	
20	
28	
29	
30 31	
32	
33	
34	
35 36	
30 37	
38	
39	
40 41	
41	
43	
44	
45 46	
40 47	
48	
49	
50 51	
51 52	
53	
54	
55	
56 57	
58	
59	
60	

Table S8. Univariate analysis of admission features associated with inpatient deaths among babies born at KCH only.

N=1,358	Deaths (N=174) N (%)	Crude SHR	P-value	Scaled Schoenfeld residuals P- value	
Demographics					
Age in days					
0 to 2	151 (15)	2.48 (1.19–5.16)	0.02		
3 to 7	8 (7.0)	1.22 (0.45–3.30)	0.69	0.20	
8 to 28	8 (6.8)	1.21 (0.46–3.23)	0.70	0.26	
>28	7 (5.5)	Reference			
Sex (female)	84 (14)	1.11 (0.83–1.48)	0.50	0.31	
Born premature	101 (21)	2.65 (1.97–3.56)	<0.001	0.10	
Born low birth weight	107 (21)	2.74 (2.03–3.71)	<0.001	0.44	
Anthropometry					
Weight z score at birth					
<-2.0	32 (17)	1.49 (1.02–2.17)	0.04		
≥-2.0	142 (12)	Reference		0.12	
MUAC (cm)		0			
<9.0	97 (23)	3.14 (2.05–4.83)	<0.001		
9 to 10	26 (9.9)	1.26 (0.74–2.17)	0.40		
10 to 11	25 (7.3)	0.91 (0.53–1.57)	0.73	0.17	
≥11	26 (7.9)	Reference		_	
Missing MUAC	0	-			
Clinical features					
Axillary temperature					
<36°C	113 (26)	3.02 (2.13–4.27)	<0.001		
36 to 37.5°C	41 (9.2)	Reference		-	
>37.5°C	18 (3.9)	0.42 (0.24–0.72)	0.002	0.30	
Missing temperature	2 (50)	6.90 (1.84–25.8)	0.004		
Respiratory rate/min					
Bradypnoea	32 (52)	6.44 (4.39–9.45)	<0.001		
Normal	91 (10)	Reference		1	
Tachypnoea	50 (12)	1.21 (0.86–1.69)	0.28	0.17	
Missing	1 (5.3)	0.49 (0.07–3.37)	0.47	1	
Heart rate/min					
Bradycardia	21 (43)	4.76 (3.06–7.43)	<0.001		
Normal	98 (10)	Reference		0.81	
Tachycardia	55 (15)	1.48 (1.07–2.05)	0.02	1	

Missing	0	-		
Hypoxia (SaO2 <90%)	79 (29)	3.62 (2.71–4.83)	<0.001	0.81
Lower chest wall indrawing	125 (21)	3.57 (2.57–4.95)	<0.001	0.47
Wheeze	0	-		
Stridor	5 (63)	6.96 (3.09–15.7)	<0.001	0.60
Breathing difficulty	481 (22)	5.40 (3.69–7.88)	<0.001	0.18
Cyanosis	29 (48)	5.15 (3.54–7.50)	<0.001	0.18
Capillary refill >2 seconds	14 (64)	7.22 (4.43–11.7)	<0.001	0.58
Temperature gradient	26 (30)	2.69 (1.81–4.01)	<0.001	0.49
Weak pulse	25 (58)	6.52 (4.44–9.56)	<0.001	0.77
Lethargy	17 (16)	1.29 (0.79–2.10)	0.31	0.56
Impaired consciousness	48 (52)	6.75 (4.93–9.24)	<0.001	0.13
Bulging fontanel	1 (25)	2.03 (0.31–13.2)	0.46	0.59
Stiff neck	1 (5.3)	-		0.31
Convulsions	1 (2.9)	0.21 (0.03–1.48)	0.12	0.21
Sunken eyes	1 (17)	1.35 (0.19–9.77)	0.77	0.57
Reduced skin turgor	1 (5.9)	0.44 (0.06–3.19)	0.42	0.56
Pallor	21 (42)	4.00 (2.61–6.12)	<0.001	0.59
Laboratory features				
Meningitis	2 (29)	9.95 (2.37–41.8)	0.002	0.12
Haemoglobin <11 g/dl	11 (13)	0.92 (0.51-1.66)	0.78	0.25
HIV antibody positive	8 (21)	1.68 (0.84–3.33)	0.14	0.14
Malaria slide positive	0	G		
Bacteraemia	14 (33)	3.00 (1.48–5.95)	0.002	0.20
Blood glucose (mmols/l)				
<2.6	33 (12)	1.02 (0.67–1.56)	0.91	
2.6 to 7.0	58 (12)	Reference		
>7.0	11 (21)	1.88 (1.00–3.54)	0.05	0.95
Missing blood glucose	72 (13)	1.11 (0.79–1.56)	0.53	
White blood cells (10 ¹² cells/L)				
<4	3 (33)	3.52 (1.25-9.91)	0.02	
4-20	100 (10)	Reference		0.08
>20	59 (28)	3.10 (2.27-4.24)	<0.001	
Missing	12 (8.2)	0.82 (0.45-1.48)	0.50	
Platelets (10 ⁹ cells/L)				
<150	35 (20)	1.69 (1.18-2.44)	0.005	
≥150	127 (12)	Reference		0.50
Missing	12 (8.2)	0.66 (0.37-1.19)	0.17	

	Inpatient and	alysis	Post-discharge analysis		
	Adjusted SHR*	P-value	Adjusted HR	P-value	
Demographics					
Age in days					
0 to 2	3.03 (1.33–6.94)	0.009	¶		
3 to 7	4.08 (1.48–11.3)	0.007	¶		
8 to 28	2.57 (0.90–7.29)	0.08	¶		
>28	Reference				
Anthropometry					
Low birth weight	1.55 (1.10-2.20)	0.01	2.76 (1.30-5.82)	0.008	
Clinical features					
Axillary temperature					
<36°C	1.49 (0.97–2.28)	0.07	1.44 (0.71–2.95)	0.31	
36 to 37.5°C	Reference		Reference		
>37.5°C	0.67 (0.39–1.13)	0.13	0.22 (0.06-0.78)	0.02	
Missing temperature	3.37 (0.85–13.4)	0.09	0.48 (0.09–2.64)	0.40	
Respiratory rate/min	, , , , , , , , , , , , , , , , , , ,		, , ,		
Bradypnoea	2.22 (1.36–3.63)	0.001	¶		
Normal	Reference				
Tachypnoea	0.78 (0.55–1.11)	0.17	¶		
Missing	-	-			
Heart rate/min					
Bradycardia	1.88 (1.14–3.12)	0.01	3.56 (1.14–11.2)	0.03	
Normal	Reference		Reference		
Tachycardia	1.57 (1.11–2.21)	0.01	1.54 (0.77–3.07)	0.22	
Missing	0.25 (0.02–3.00)	0.28	-		
Hypoxia (SaO2 <90%)	1.60 (1.14–2.24)	0.006	¶		
Lower chest wall indrawing	1.42 (0.91–2.22)	0.12	¶		
Stridor	3.74 (1.87–7.49)	< 0.001	1		
Breathing difficulty	2.13 (1.25–3.64)	0.005			
Capillary refill >2 seconds	1.94 (1.06–3.56)	0.03	1		
Weak pulse	2.15 (1.27–3.65)	0.004	1.60 (0.24–10.5)	0.63	
Pallor	2.36 (1.46–3.83)	< 0.001	۴.		
Laboratory features	/	-			
Bacteraemia	2.50 (1.20–5.22)	0.02	0.21 (0.03–1.81)	0.16	
Model performance					
AUC (95% CI)	0.85 (0.82–0.88)		0.79 (0.72–0	.85)	
SHR; sub-distribution hazard ratios; *		Fine and G		-	
model, HR-Hazard ratio from the Pro					
inclusion in the multivariable model,					

Table S9. Multivariable regression analysis of factors associated with inpatient and post-discharge mortality among children born at KCH only.

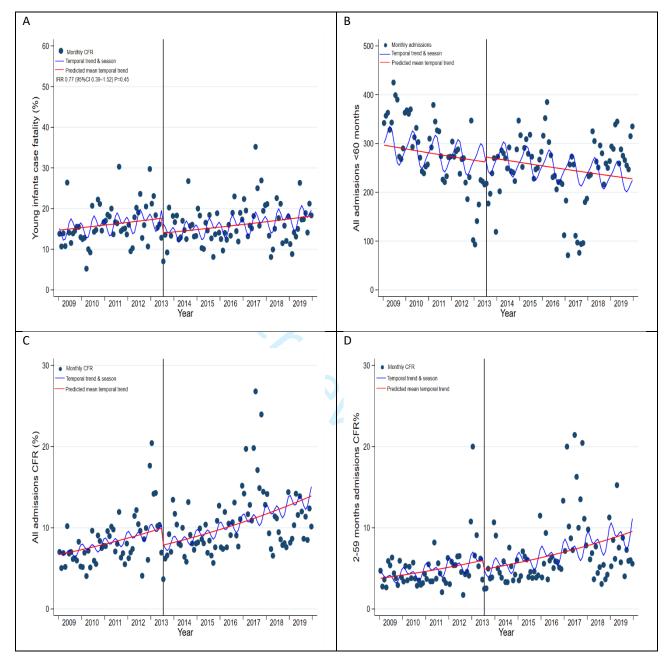


Figure S1. A: Monthly all young infant admissions, B: all admissions (<60 months old), C: all admissions (<60 months old) case fatality and D: 2–59 months old case fatality before and after July 2013.

BMJ Open

BMJ Open

Trends in inpatient and post-discharge mortality among young infants admitted to Kilifi County Hospital, Kenya, a retrospective cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067482.R1
Article Type:	Original research
Date Submitted by the Author:	30-Nov-2022
Complete List of Authors:	Talbert, Alison; KEMRI-Wellcome Trust Research Programme Ngari, Moses; KEMRI-Wellcome Trust Research Programme Obiero, Christina; KEMRI-Wellcome Trust Research Programme; University of Amsterdam, Department of Global Health Nyaguara, A.; KEMRI-Wellcome Trust Research Programme Mwangome, MK; KEMRI-Wellcome Trust Research Programme Mturi, Neema; KEMRI-Wellcome Trust Research Programme Ouma, Nelson; KEMRI-Wellcome Trust Research Programme Otiende, M.; KEMRI-Wellcome Trust Research Programme Berkley, James ; KEMRI-Wellcome Trust Research Programme; University of Oxford, Centre for Tropical Medicine & Global Health
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology
Keywords:	Epidemiology < TROPICAL MEDICINE, PAEDIATRICS, NEONATOLOGY, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Trends in inpatient and post-discharge mortality among young infants
5	2	admitted to Kilifi County Hospital Kenya, a retrospective cohort
6 7 8	3	study.
9 10	4	Alison Talbert MRCP ¹ , Moses Ngari PhD ^{1,2} , Christina Obiero MPH ^{1,3} , Amek Nyaguara PhD ¹ ,
11	5	Martha Mwangome PhD ^{1, 2} , Neema Mturi MRCP ¹ , Nelson Ouma BSc ¹ , Mark Otiende MSc ¹ , and
12 13 14	6	James A Berkley FRCPCH ^{1, 2, 4}
15 16 17	7 8	Institutions of affiliation
18 19	9	1. KEMRI/Wellcome Trust Research Programme, Centre for Geographic Medicine Research
20 21	10	-Coast, PO Box 230 - 80108, Kilifi, Kenya.
22 23	11	2. The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
24	12	3. Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands
25 26 27	13	4. Center for Tropical Medicine & Global Health, University of Oxford, Oxford, UK.
27 28 29	14	
30 31	15	Corresponding author: Alison Talbert Email: <u>ATalbert@kemri-wellcome.org</u>
32 33	16	P.O Box 230,Kilifi, 80108 Kenya Phone: +254 729 218993
34 35	17	
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	18	Word count 3883
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Abstract
Objectives: to describe admission trends and estimate inpatient and post-discharge mortality
and its associated exposures, among young infants (YI) admitted to a county hospital in Kenya
Design: retrospective cohort study

23 Setting: secondary level hospital

Participants: YI aged less than 60 days admitted to hospital January 2009 to December 2019:
12,271 admissions in 11,877 individuals. YI who were resident within a health and demographic
surveillance system (KHDSS): n= 3,625 with 4,421 admissions were followed up for 1 year after
discharge.

Primary and secondary outcome measures: Inpatient and 1-year post-discharge mortality, the
latter in KHDSS residents.

Results: Of 12,271 YI admissions, 4,421 (36%) were KHDSS-resident. Neonatal sepsis, preterm 30 31 complications and birth asphyxia accounted for 83% of admissions. The proportion of YI among under-fives admissions increased from 19% in 2009 to 34% in 2019 (Ptrend =0.02). Inpatient case 32 33 fatality was 16%, with 66% of deaths occurring within 48 hours of admission. The introduction 34 of free maternity care in 2013 was not associated with a change in admissions or inpatient mortality among YI. During 1-year post-discharge, 208/3625 (5.7%) YI died, 64.3 (95%CI 56.2– 35 73.7) per 1,000 infant-years. 49% of post-discharge deaths occurred within one month of 36 discharge, and 49% of post-discharge deaths occurred at home. Both inpatient and post-37 discharge deaths were associated with low admission weight. Inpatient mortality was 38

BMJ Open

2		
3 4	39	associated with clinical signs of disease severity, while post-discharge mortality was associated
5 6 7	40	with length of hospitalization, leaving against advice and referral to a specialized hospital.
8 9 10	41	Conclusions: YIs accounted for an increasing proportion of paediatric admissions and their overall
11 12	42	mortality remains high. Post-discharge mortality accounts for a lower proportion of deaths but
13 14 15	43	mortality rate is higher than among children aged 2-59 months. Services to address post-
16 17	44	discharge mortality are needed and should focus on infants at higher risk.
18 19 20	45	
20 21 22 23	46	Key words
24 25 26	47	Young infant; neonatal; mortality; inpatient; post-discharge; Africa; Kenya
27 28	48	291 words
29 30 31	49	
32 33	50	291 words
34 35 36	51	
37 38 39	52	
40 41 42	53	
43 44 45	54	
46 47	55	
48 49 50	56	
51 52 53	57	
54 55 56	58	
57 58		3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1		
2 3		
4 5	59	
6 7 8	60	
9 10	61	
11 12 13	62	
14 15 16	63	Article summary
17 18 19	64	Strengths and limitations of this study
20 21 22	65	Large sample size with systematic data collection
23 24	66	• Linkage of hospital admissions to a well-established demographic surveillance system,
25 26 27	67	with low loss to follow up.
28 29 30	68	• Lack of accurate gestational age estimation or birthweight of most participants.
31 32	69	• Data are from a single hospital and only the population covered by demographic
33 34 35	70	surveillance
36 27	71	
37 38		
39	72	
40 41		
42		
43		
44 45		
46		
47		
48 49		
50		
51		
52 53		
55 54		
55		
56 57		
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

73 Background

The United Nations Sustainable Development Goal 3 aims to ensure healthy living and promote wellbeing for all ages, with all countries aiming to reduce neonatal and under-five mortality to below 12 and 25 per 1,000 live births by 2030 respectively. In sub-Saharan Africa, child mortality has declined by ~58% in the last 30 years. However, the estimated neonatal and under-five mortality rates in sub-Saharan Africa remained high in 2019 (27 and 76 per 1,000 live births respectively) with a similar neonatal mortality rate of 27 per 1,000 live births in Kenya.¹ Combined neonatal and post-neonatal infant mortality accounts for over three quarters of all under-five deaths in Kenyan children.²

Young infants aged <60 days old (YI) comprise around half of hospital admissions in sub-Saharan Africa and continue to face high risk of in-hospital mortality and long-term neuro-disability.³⁻⁶ Post-discharge mortality is emerging as a major problem in children in low- and middle-income countries (LMICs),⁷ however, there are limited data among YI. A systematic review of paediatric post-discharge mortality in developing countries included 24 studies published up to July 2017 with 19 from Africa.⁸ Four studies included YI. Although young age was reported as a risk factor of mortality, no studies specifically identified deaths among infants aged <60 days. We have previously demonstrated excess post-discharge mortality among all hospitalised children, suggesting that hospitalisation itself selects vulnerable children with a sustained increased risk of dying over the longer term.⁷⁹

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
12
13 14
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30 37
37 38
38 39
40
41 42
43
44
45
46
47
48
49
50
51
52
53
54

Better understanding of YI deaths occurring during hospitalisation and after discharge from hospital is vital for development and use of targeted interventions aimed at improving survival.

This analysis aimed to describe admission trends and measure inpatient and post-discharge mortality and its associated exposures, including the introduction of free maternity care, among

 Juspital (.

 YI admitted to Kilifi County Hospital (KCH), Kenya and followed up through the Kilifi Health and Demographic Surveillance System (KHDSS).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

99 Methods

100 Study participants and design

KCH is a secondary-level referral hospital situated in Kilifi County along the Kenyan coast. It serves a rural and peri-urban population. It has a maternity unit. with approximately 6,000 deliveries per year, a general paediatric ward with a newborn unit for babies aged less than 1 month, and a paediatric High Dependency Unit (HDU) that also admits YIs. The year 2009 was selected as a starting point, because a previous analysis of mortality among YI covered admissions from 1990 to 2008¹⁰. Free maternity care was introduced by the Kenyan government on 1st June 2013 and led to a marked increase in health facility births.¹¹

The KHDSS, established in 2002, covers a population of 279,158 within an area of 900km² centred
 on KCH.¹² Census rounds visit each household every four months to ascertain vital status and
 migration in and out of the hospital catchment area.

We conducted a retrospective cohort study of YIs resident within the KHDSS who were admitted to KCH between January 1st, 2009, and December 31st, 2019. Children discharged alive and followed up in KHDSS census rounds until March 2021 were eligible for analyses of post-discharge mortality. During the study period, there were 9 health workers' strikes with the last nurses' strike lasting for 150 days (5th June to 2nd November 2017).¹³ Supplementary Table S1. For comparison, we also examined admissions aged 60 days to 59 months during the same period.

54 117

Procedures

BMJ Open

1	
2	
3	
4	
5	
6	
7 8	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
11 12 13 14 15 16 17 18 19 20	
10	
19	
20	
21	
21 22 23 24	
23	
24	
25	
26	
27	
28	
29	
30	
30	
31 32	
3Z	
33 34 35	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

	119	At admission, standardised medical history, and clinical examination, including anthropometric
)	120	measurements were obtained by trained clinical staff. Blood samples were systematically taken
	121	for complete blood count, slide for malaria microscopy, and clinical chemistry, Human
-	122	Immunodeficiency Virus (HIV) antibody test and blood culture at hospital admission, as described
,	123	previously. ¹⁴ A lumbar puncture for cerebrospinal fluid (CSF) analysis was done at admission in
;))	124	infants in whom sepsis was suspected and deferred in those seriously ill or with other
	125	contraindications. Clinical and laboratory data were recorded in real time on a ward surveillance
-	126	database linked to the KHDSS database. Empiric antibiotics were initiated according to national
,	127	guidelines ¹⁵ with ampicillin/benzylpenicillin plus gentamicin as first-line intravenous therapy.
	128	Second-line and subsequent antimicrobial therapy was guided by blood culture results and
	129	clinical progress. Mechanical ventilation was not available at KCH.
	130	Statistical methods

131 Study variables

136

137

60

Outcomes of interest were death in hospital and during 1 year after discharge. Exposures of interest were demographic, nutritional, clinical features, and haematological, biochemical, and microbiological findings at the time of admission. De-identified study data were deposited in the Harvard Dataverse depository.¹⁶

2		
3 4 5	138	
6 7	139	Weight at admission and mid-upper arm circumference (MUAC) were categorised as shown on
8 9 10	140	Table 1 . Because approximately 40% of the YI were underweight (< 2.5 kg), and 60% were aged ≤ 2
11 12	141	days at admission, YI's admission weights rather than anthropometric Z scores using WHO
13 14 15	142	standards were reported. Furthermore, most YI who were born at home or in other hospitals and
16 17	143	referred to KCH were missing gestational age estimates and birth weight to be able to estimate
18 19 20	144	gestational age at birth using the INTERGROWTH 21st Newborn Size Standards (INSS).
21 22 23	145	Prematurity was defined as gestation age <37 weeks and LBW as birth weight <2500 grams for
24 25	146	YIs born at KCH. Admission blood glucose was categorized into <2·6, 2·6 to 7·0 and ≥7·0 mmol/I
26 27 28	147	representing low, normal and high levels respectively. ¹⁵ Missing data were not assumed to be
29 30	148	missing at random. We, therefore, created categorical variables and added a missing category
31 32 33	149	which was included in the regression analysis.
34 35 36	150	Demographic, anthropometric, and clinical data are presented as frequencies and proportions
37 38	151	for categorical variables and means (standard deviation (sd)) or median (interquartile range
39 40 41	152	(IQR)) for continuous variables depending on the underlying distribution. Proportions of missing
42 43 44	153	data for each variable are shown on Supplementary Table S2 .
44 45 46	154	Monthly admissions and case fatality were plotted against time (month of admission) to visually
47 48	155	inspect the trend from 2009 to 2019 and the predicted trend line superimposed on the curves.
49 50 51	156	We used the Augmented Dickey Fuller test (ADF test) to test if the time series were stationary
52 53	157	(no trend or seasonal effects). We also presented annual absolute admissions, proportion of YI
54 55 56	158	among all admissions <60 months and case fatality. Monthly admissions and case fatality were
57 58		9
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
4	1
5	
6	1
7	
8	
5 6 7 8 9 10	1
10	
11	
11 12 13 14 15 16 17 18	_
13	
14	1
15	
16	1
17	1
18	
19	1
20	
21	1
22	_
23	
24	1
25	
26	1
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	-
28	
29	1
30	
31	1
32	
33	4
34	1
35	
36	
37	1
36 37 38	
39	1
40	
41	1
42	1
43	
44	1
45	
46	1
47	_
48	
49	1
50	
51	1
52	
53	1
54	_
55	
56	1
57	
58	
59	

60

tested for annual linear trend using an extension of the Wilcoxon rank-sum test of trend across
 ordered groups.¹⁷

We used interrupted time series analysis to estimate the level and trend changes before and 161 after introduction of free maternity care (1st June 2013). We created a time month variable 162 coded sequentially from January 2009 to December 2019 and a binary variable coded as 0 and 1 163 for admissions before and after June 2013 respectively to represent to represent introduction of 164 free maternity care . We defined seasonal effect variable using month of the year modelled on 165 harmonic terms using the Fourier code in STATA. To measure the effect of free maternity care, 166 167 we used the negative binomial regression model because of presence of overdispersion in the 168 trends and reported regression coefficients transformed into incidence rate ratios (IRR). All the negative binomial regression models included the following independent variables: the time 169 month variable, the binary pre- and post- free maternity care variable and the seasonal effect 170 171 variable.

Since YIs could be admitted more than once whilst <60 days old, we included multiple admissions 172 173 using unique IDs and adjusted for clustering by individual with robust standard errors. To identify exposures associated with inpatient death, we treated being discharged alive as a competing 174 175 event and fitted the proportional sub-distribution hazard model using the Fine-Gray competing 176 risk model.¹⁸ The measure of effect reported from the model was the sub-distribution hazard ratios (SHR) and their respective 95% confidence intervals (CI). To build the multivariable 177 178 regression model, a backward stepwise approach was used where all the independent variables assessed in the univariate models were included in the model and only those with a P-value <0.1 179 retained in the final multivariable model. 180

BMJ Open

For the post-discharge analysis, only data from those YI discharged alive and resident within the KHDSS were analysed. Time at risk was defined from date of discharge to 365 days later or censure at date of death or outmigration from the KHDSS. We performed a 'multiple discharges' analysis where YI with multiple admissions had their follow-up time reset at each successive discharge date. Exposures associated with post-discharge were assessed using a Gamma distribution shared frailty Cox proportional hazards regression model accounting for YI with multiple discharges. The proportional hazards assumption was assessed using the scaled Schoenfeld residuals test (Supplementary Tables S3 and S4). All exposures assessed in the univariate models were considered for inclusion in the multivariable Cox proportional hazards regression model using a backward stepwise approach similar to the inpatient analysis. Both the inpatient and post-discharge multivariable regression models' discrimination performance were assessed using bootstrapped area under receiver operating characteristic curves (AUC) replicated 1000 times. As sensitivity analysis, we assessed the YI born at KCH and enrolled to the Kilifi Perinatal and Maternal Research Project (KIPMAT), which had collected comprehensive birth data including birth weight and gestational age (weeks).¹⁹ We estimated their birthweight Z scores using the INTERGROWTH Newborn Size Standards (INSS) and ran the regression models replacing admission weight with birthweight Z score.²⁰ Statistical significance was evaluated using 95% CI and a two-tailed P-value <0.05. Statistical analyses were conducted using STATA Version 17.0 (College Station, TX, USA).

201 Study size

2		
3 4	202	We used all available eligible YI data from 2009 to 2019 (4,421 for inpatient and 3,625 for post-
5 6	203	discharge analyses) regardless of sample size.
7 8 9	204	
9 10 11 12	205	Ethical considerations
13 14 15	206	Written consent was provided by the caregivers of all the surveillance study participants. Ethical
16 17	207	approval to conduct this analysis was granted by the Kenya Medical Research Institute (KEMRI)
18 19 20	208	National Ethics Review Committee (SCC 2778).
21 22 23	209	Patient and public involvement
24 25 26	210	There was no patient and public involvement in the planning or execution of this retrospective
20 27 28	211	cohort study.
29 30 31 32	212	cohort study.
33 34		
35 36 37		
38 39		
40 41		
42 43		
44 45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57		
58		12
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Results

214 Baseline characteristics

During the study period, there were 42,742 paediatric admissions to KCH, of which 12,271 (29%) admission events among 11,877 individuals were aged <60 days. Of the 12,271 YI admission events, 4,421 (36%) were resident in the KHDSS and included in the analysis (**Figure 1**). This comprised 4,272 individual YI: 4,131 with one admission, 133 two admissions and 8 three admissions within the first 60 days of life.

220 KHDSS-resident admissions

Among the 4,421 YI admission events among KHDSS residents, 2,731 (62%) were ≤2 days old and 1,900 (43%) were female. Reported prematurity and low birth weight were 1,019 (23%) and 581 (13%) respectively. Low weight (<2.5kg) was observed in 1694 YIs (38%) while 1342 (30%) had MUAC <9.0cm. Common presenting clinical signs were lower chest wall indrawing (46%) and breathing difficulty (49%). Thirty percent had fever, 31% had hypothermia and 30% tachycardia. Nine hundred and thirty-two YI (21%) had hypoxia (SaO2 <90%) at admission and 250 (5.7%) had impaired consciousness. Presenting signs at admission for all the YI stratified by KHDSS residence are shown on **Table 1**. Malaria was rare (n=4, 0.09%) whilst 142 (3.2%) and 170 (3.9%) YI were HIV antibody positive and had bacteraemia respectively. Supplementary Table S3 lists the bacterial isolates that were presumed pathogens, led by Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Group B Streptococcus.

54 232

1	
2	
3	
-	
4	
5	
6	
7	
8	
•	
9	
1	0
	1
1	2
1	2
1.	4
1	5
1	
1	7
1	
1	9
	0
2	
2	2
2	3
2	4
2	
2	б
2	
2	8
2	a
3	0
3	1
3	
3	3
3	
3	5
3	6
3	7
3	
3	9
4	0
4	
4	2
4	
4	4
4	5
4	
4	7
4	
4	9
5	
5	
5	2
5	
5	4
5	
5	б
5	
5	8
	0

60

233 Table 1. Study participants characteristics at admission.

	All young infant admissions (N=12,271) ^a	Young infant admissions KHDSS residents (N=4,421)	Young infant admissions non- KHDSS residents (N=7,850)	p- valı
Demographics				
Age in days				
0 to 2	7856 (64)	2731 (62)	5125 (65)	
3 to 7	1384 (11)	468 (11)	916 (12)	-00
8 to 28	1506 (12)	587 (13)	919 (12)	<0.(
>28	1525 (12)	635 (14)	890 (11)	_
Sex (female)	5245 (43)	1900 (43)	3345 (43)	0.7
Reported born premature	2970 (24)	1019 (23)	1951 (25)	0.0
Reported low birth weight	1782 (15)	581 (13)	1201 (15)	<0.0
Born at KCH				
Yes	6757 (55)	2743 (62)	4014 (51)	
No	5514 (45)	1678 (38)	3836 (49)	<0.0
Anthropometry				
Weight (kg)				
<1.5	1767 (14)	566 (13)	1201 (15)	
1•5 to <2•5	3211 (26)	1128 (26)	2083 (27)	
≥ 2 •5	7193 (59)	2684 (61)	4509 (57)	<0.0
Missing	100 (0.8)	43 (1·0)	57 (0·7)	_
MUAC (cm)				
<9	3933 (32)	1342 (30)	2591 (33)	
9 to 10	2492 (20)	862 (20)	1630 (21)	_
10 to 11	2926 (24)	1035 (23)	1891 (24)	<0.0
≥11	2622 (21)	1056 (24)	1566 (20)	_
Missing	298 (2·4)	126 (2·9)	172 (2·2)	
Clinical features				
Axillary temperature				
<36°C	3553 (29)	1358 (31)	2195 (28)	
36 to 37•5°C	4692 (38)	1711 (39)	2981 (38)	<0.0
>37•5°C	3948 (32)	1318 (30)	2630 (34)	_
Respiratory rate/min ^b				
Bradypnoea	540 (4.4)	188 (4·3)	352 (4·5)	
Normal	7333 (60)	2647 (60)	4686 (60)	
Tachypnoea	4158 (34)	1490 (34)	2668 (34)	0.
Missing	240 (2.0)	96 (2·2)	144 (1·8)	1
Heart rate/min ^c				
Bradycardia	396 (3·2)	158 (3·6)	238 (3·0)	
Normal	8162 (67)	2910 (66)	5252 (67)	
Tachycardia	3667 (30)	1331 (30)	2336 (30)	0.3
Missing	46 (0.4)	22 (0.5)	24 (0·3)	

Hypoxia ^d	2668 (22)	932 (21)	1736 (22)	0.19
Lower chest wall indrawing	5562 (45)	2051 (46)	3511 (45)	0.13
Wheeze	112 (0·9)	46 (1·0)	66 (0.8)	0.41
Stridor	62 (0·5)	19 (0·4)	43 (0.6)	0.48
Breathing difficulty	5966 (49)	2172 (49)	3794 (48)	0.44
Cyanosis	560 (4·6)	210 (4·8)	350 (4.5)	0.54
Capillary refill >2 seconds	301 (2.6)	105 (2·4)	196 (2·5)	0.81
Temperature gradient	710 (5·8)	258 (5·8)	452 (5·8)	0.73
Weak pulse	463 (3·8)	157 (3·6)	306 (3·9)	0.05
Lethargy	971 (7·9)	325 (7·4)	646 (8·2)	0.15
Impaired consciousness ^e	792 (6·5)	250 (5·7)	542 (6·9)	0.007
Bulging fontanel	111 (0·9)	32 (0.7)	79 (1·0)	0.21
Stiff neck	48 (0.4)	10 (0·2)	38 (0.5)	0.05
Convulsions	689 (5·6)	197 (4·5)	492 (6·3)	<0.001
Sunken eyes	134 (1·1)	44 (1·0)	90 (1.2)	0.44
Reduced skin turgor	308 (2.5)	97 (2·2)	211 (2.7)	0.19
Pallor	633 (5·2)	221 (5·0)	412 (5·3)	0.55
Laboratory features				
Meningitis ^f	98 (0·8)	33 (0.8)	65 (0·8)	0.87
Haemoglobin <11 g/dl) ^g	1207 (9·8)	476 (11)	731 (9·3)	0.02
HIV antibody positive	441 (3·6)	142 (3·2)	299 (3.8)	0.11
Malaria slide positive	5 (0.04)	4 (0.09)	1 (0.01)	0.02
Bacteraemia	590 (4·8)	170 (3·9)	420 (5.4)	<0.002
White blood cells (10 ¹² cells/L) ^h				
<4	134 (1·1)	54 (1·2)	80 (1.0)	
4–20	8738 (71)	3228 (73)	5510 (70)	~0.00
>20	2202 (18)	690 (16)	1512 (19)	<0.001
unavailable	1197 (9·8)	449 (10)	748 (9·5)	
Platelets (10 ⁹ cells/L) ⁱ				
<150 cells/L	1615 (13)	586 (13)	1029 (13)	
≥150	9455 (77)	3387 (77)	6068 (77)	0.59
unavailable	1201 (9.8)	448 (10)	753 (9.6)	
Blood glucose (mmols/L)				
<2.6	2479 (20)	882 (20)	1597 (20)	
2•6 to 7•0	5086 (41)	1875 (42)	3211 (41)	
>7.0	688 (5.6)	231 (5.2)	457 (5.8)	0.29
unavailable	4018 (33)	1433 (32)	2585 (33)	

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15		^a -Eligible admissions were young infants aged <60days admitted from 2009 to 2019, ^b - Tachypnoea: respiratory rate ≥60 breaths/min, Bradypnoea: respiratory rate <30 breaths/min, ^c -Tachycardia: heart rate>160 beats/min, Bradycardia: heart rate<100 beats/min, ^d -Hypoxia: oxygen saturation<90%, ^e - Impaired consciousness level if 'prostrate' or 'unconscious', ^f Meningitis: positive CSF culture, or positive CSF microscopy, or positive CSF antigen test, or elevated CSF WBC count (≥20 in young infants aged 0-28 days OR, ≥10 in young infants aged 29-59 days) PLUS a positive blood culture for a known pathogen, ^g Anaemia: haemoglobin <11 g/dl, ^h Normal values WBC 4-20 x 10 ¹² cells/L, Leucopoenia WBC <4 x 10 ¹² cells/L, Leucocytosis WBC >20 x 10 ¹² cells/L, ^I Normal values Platelets ≥150x10 ⁹ cells/L, Thrombocytopenia <150x10 ⁹ cells/L, KHDSS: Kilifi Health and Demographic Surveillance System, MUAC: Mid-upper arm circumference.
16 17	234	Admissions over time
18 19	235	The annual number of admissions are shown in Supplementary Table S4. The overall proportion
20 21	236	of YI among all admissions under 5 years old was 28% (95%CI 27–29%), increasing from 19% in
22 23 24	237	2009 to 34% in 2019 (test of linear trend P=0.02) Figure 2. Figure 3A shows the upward trend of
25 26	238	absolute YI admissions and downward trends for 2 to 59-month-olds and all admissions <60
27 28 29	239	months old (all P-values for tests for stationarity <0.05). There was no significant difference in
30 31	240	monthly YI admissions before introduction of free maternity care in June 2013 (monthly median
32 33	241	[IQR] of 76 [66–96] admissions) and after June 2013 (monthly median [IQR] of 95 [78–125]
34 35 36	242	admissions) season-adjusted IRR 1.06 (95%CI 0.54–2.09) P=0.86 (Supplementary Figure S1A).
37 38	243	The mean monthly YI admissions on day of birth did not differ before and after June 2013; season-
39 40 41	244	adjusted IRR 0.88 (95%CI 0.44 to 1.76), P=0.72. The proportion of YI admissions to total
42 43	245	admissions aged <60 months before and after June 2013 were not different; season-adjusted IRR
44 45	246	1.02 (95%CI 0.28–3.71) P=0.97 Figure 3D. We found no significant difference in monthly absolute
46 47 48	247	admissions (all admissions <60 months old), before and after June 2013; season-adjusted IRR
49 50	248	1·01 (95%Cl 0·51–2·00) P=0·97 (Supplementary Figure S1B).
51 52 53	249	Inpatient deaths
54 55		,
56 57		
58 59		16 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		tor peer review only - mep//onlyopenionly.com/site/ about/ guidelines/kitim

BMJ Open

Overall, 1,914/11,877 (16%) of YI died in hospital. The risk of inpatient death was not significantly
different between 645/4,272 (15%) KHDSS residents and 1,269/7,605 (17%) non-residents of
KHDSS (age- and sex-adjusted SHR 0.93 (95%CI 0.85–1.02) P=0.12) (Figure 1). The annual YI
inpatient case fatality ratio was stable (11% in 2009 and 13% in 2019. P-value for trend=0.80),
Figure 2. Monthly inpatient case fatality for YI, 2 to 59 months old and all <60 months old children
are shown in Figure 3B.

During the study period there were 3,119 inpatient deaths among admissions <60 months old admitted at KCH, with YI admissions accounting for 61% (95%CI 60–63%) of the deaths and no significant linear trend from 2009 to 2019 (trend P=0·29). The mean monthly YI inpatient case fatality was 16% (sd 0.86) and 16% (sd 1.23) before and after June 2013 respectively; seasonadjusted IRR 0.77 (95%CI 0.39-1.52) P=0.45 Figure 3C. The mean monthly case fatality for all admissions aged <60 months and admissions 2–59 months old did not differ before June 2013 and after June 2013; season-adjusted IRR 0.79 (95%CI 0.39–1.58) P=0.50 and IRR 0.81 (95%CI 0.39–1.69) P=0.57 respectively Supplementary Figure S1 C and D.

Among the 4,421 KHDSS-resident YI admissions, median [IQR] time to death was 2 [1–4] days, while the survivors were admitted for 5 [3–8] days. A total of 423/645 (66%) deaths occurred within the first 48 hours following admission. Forty-one YI left against medical advice, and 55 were referred to other hospitals for further care.

268 Admission diagnosis & case fatality ratio

	Discharge diagnosis ^a	No. (%) Diagnosis assigne	d by clinician at discharge
		All admissions (N=4421)	Inpatient Deaths (N=
	Neonatal sepsis	2097 (47)	201 (9.6)
	Preterm complications	889 (20)	262 (29)
	Birth asphyxia	724 (16)	201 (28)
	Neonatal jaundice	611 (14)	56 (9·2)
	Lower respiratory tract infection	486 (11)	41 (8·4)
	Respiratory distress syndrome	263 (6·0)	136 (52)
	Congenital anomalies	215 (4·9)	55 (26)
	Meningitis ^b	112 (2.5)	11 (9·8)
	Anaemia	78 (1·8)	14 (18)
	Malnutrition	36 (0.8)	1 (2·8)
	None specified	69 (1·6)	4 (5·8)
	Others	266 (6·0) ^c	13 (4·9)
2	The case fatality ratios for YI with re asphyxia were 52%, 29% and 28% r	espectively (Table 2).	
'2 '3		espectively (Table 2).	
22 23 24	asphyxia were 52%, 29% and 28% r	espectively (Table 2). ed by clinician.	·
72 73 74	asphyxia were 52%, 29% and 28% r	espectively (Table 2). ed by clinician.	
72 73 74 75	asphyxia were 52%, 29% and 28% r	espectively (Table 2). ed by clinician.	
72 73 74 75 76	asphyxia were 52%, 29% and 28% r	espectively (Table 2). ed by clinician.	
71 72 73 74 75 76 77 78 79	asphyxia were 52%, 29% and 28% r	espectively (Table 2). ed by clinician.	

.

	 ^a Young infant could be assigned up to 2 diagnoses ^b Meningitis: positive CSF culture, or positive CSF microscopy, or positive CSF antigen test, or elevated CSF WBC count (≥20 in young infants aged 0-28 days OR, ≥10 in young infants aged 29-59 days) PLUS a positive blood culture for a known pathogen ^cAccidents-3, Acute abdominal obstruction-15, bronchiolitis-12, burns-1, Candidiasis-1, Cellulitis abscess-21, Chickenpox-1, Chromosomal abnormality-5, CNS abscess-1, Conjunctivitis-2, Dehydration-2, Dental problems-1, Diabetes-1, Elective surgery-5, Encephalopathy-9, Epilepsy-7, Extra pulmonary TB-1, Febrile convulsions-5, Feeding difficulty-1, Gastroenteritis-15, Haemolytic uraemic syndrome-1, Hydrocephalus-11, LTB/croup-1, Immunosuppression-17, Malaria-2, Male genital problem-1, Meconium aspiration-33, Neonatal haemorrhage-14, Neonatal tetanus -10, Other skin disease-3, Otitis media-1, Poisoning (organophosphates)-1, Pyogenic arthritis-1, Rabies-1, Rash-4, renal failure-6, trauma/fractures/RTA-11, Urinary tract infection-10, upper respiratory tract infection (URTI)-24, Viral hepatitis-2, Viral infection-3.
280	
281	
282	Exposures associated with inpatient death
283	Variables assessed for association with inpatient death in univariate models are shown in
284	Supplementary Table S5. In the multivariable analysis (Table 3), admissions at age ≤ 2 days and
285	3–7 days, compared to ≥28 days old, were associated with inpatient deaths. Being born at KCH
286	was not associated with inpatient death, so was not included in the multivariate analysis. Very
287	low admission weight (<1.5kg) and weight 1.5–2.4kg compared to \geq 2.5kg were positively
288	associated with inpatient deaths. Signs of clinical severity (bradypnoea, tachypnoea, bradycardia,
289	hypoxia, lower chest wall indrawing, breathing difficulty, weak pulse, impaired consciousness,
290	and hypothermia, but not fever), meningitis, bacteraemia, leucopoenia and leucocytosis but not
291	an HIV antibody positive test (aSHR 1.15 (95%CI 0.81–1.63)) were positively associated with
292	inpatient death. The multivariable model bootstrapped AUC was 0.88 (95%Cl 0.86–0.89) Table 3 .
293	Performance of a multivariable model including only 4,272 single admissions did not differ from
294	the model with multiple admissions (bootstrapped AUC 0.88 (95%CI 0.86–0.89) Supplementary
295	Table S6.
296 297	Table 3. Multivariable regression analysis of factors associated with inpatient and post- discharge mortality.
	19
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
12	
10	
19	
20	
21	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 31 22 33 4 35 36 37	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
39 40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5 0	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

	Inpatient analysis		Post-discharge analysis	
	Adjusted SHR*	P-value	Adjusted HR	P-value
Demographics				
Age in days				
0 to 2	2.12 (1.46–3.06)	<0.001	1.30 (0.73–2.31)	0.37
3 to 7	3.88 (2.46–6.10)	<0.001	0.80 (0.38–1.68)	0.56
8 to 28	1.42 (0.90–2.25)	0.13	1.45 (0.81–2.59)	0·21
>28	Reference		Reference	
Sex (female)	0.91 (0.78–1.07)	0.26	0.98 (0.74–1.31)	0.94
Born at KCH				
Yes	¶		Reference	
No	n I		1.59 (1.18–2.14)	0.003
Admission days (log)	n I		1.87 (1.54–2.26)	<0·001
Type of discharge				
Normal	ſ		Reference	
Absconded	ſ		3.01 (1.22–7.46)	0.02
Transferred/referred	ſ		12.8 (8.11–20.2)	<0.001
Anthropometry				
Weight (kg)				
<1.5	2.16 (1.75–2.67)	<0.001	1.95 (1.38–2.74)	<0.001
1.5 to <2.5	1.42 (1.16–1.74)	0.001	0.82 (0.48–1.42)	0.49
≥2.5	Reference		Reference	
Missing weight	3.85 (2.59–5.71)	<0.001	- //	
Clinical features				
Axillary temperature				
<36°C	1.44 (1.17–1.78)	0.001	1.06 (0.74–1.53)	0.75
36 to 37·5°C	Reference		Reference	
>37·5°C	1.09 (0.84–1.41)	0.53	0.69 (0.47–0.99)	0.04
Missing temperature	1.03 (0.38–2.75)	0.96	1.09 (0.15-8.22)	0.93
Respiratory rate/min				
Bradypnoea	1.45 (1.09–1.93)	0.01	1.66 (0.76–3.63)	0·21
Normal	Reference		Reference	

Tachypnoea	0.80 (0.67–0.95)	0.01	1.24 (0.93–1.66)	0·14
Missing	1.51 (0.64–3.56)	0.34	0.80 (0.11–5.82)	0.82
Heart rate/min				
Bradycardia	1.40 (1.08–1.82)	0.01	¶	
Normal	Reference			
Tachycardia	1.14 (0.94–1.37)	0·18	¶	
Missing	0.41 (0.03–5.13)	0.49	¶	
Hypoxia (SaO2 <90%)	1.62 (1.37–1.92)	<0.001	¶	
Capillary refill >2 seconds	1.34 (0.97–1.86)	0.08	¶	
Lower chest wall indrawing	1.41 (1.14–1.75)	0.002	¶	
Stridor	1.93 (0.92–4.03)	0.08	¶	
Breathing difficulty	1.45 (1.15–1.82)	0.001	¶	
Weak pulse	1.61 (1.19–2.17)	0.002	2· 22 (1·01–4·89)	0.04
Bulging fontanel	2.45 (0.91–6.65)	0.08	2.59 (0.92–7.26)	0.07
Impaired consciousness	2.21 (1.72–2.84)	<0.001	¶	
Pallor	1.30 (0.98–1.71)	0.07	¶	
Laboratory features				
Meningitis	5.45 (2.50-11.8)	<0·001	2.16 (0.73-6.37)	0·17
HIV antibody positive	1.15 (0.81–1.63)	0.43	0.94 (0.43-2.05)	0·87
Bacteraemia	2.21 (1.51–3.22)	<0.001	¶	
White blood cells (10 ¹²				
cells/L)			O,	
<4	2.17 (1.30-3.62)	0.003	T	
4-20	Reference		T	
>20	1.71 (1.43-2.04)	<0.001	1	
unavailable	1.09 (0.82-1.44)	0.57	¶	
Model performance				
Bootstrapped AUC (95%	0.88 (0.86–0.89)		0.76 (0.73–0.	80)
CI)				
SHR; sub-distribution hazard	ratios; *the SHR are	e from the I	Fine and Gray's pro	portion
sub-hazards model, HR-Haz	ard ratio from the sh	ared frailty	Cox regression mo	del, ¶;
variables not selected for inc	lusion in the multivar	riable mode	el, AUC; area under	receive
operating characteristics. Me	ningitis: positive CSI	F culture, c	r positive CSF micr	oscopy

1 2		
3 4		or positive CSF antigen test, or elevated CSF WBC count (≥20 in young infants aged 0-
5		28 days OR, ≥10 in young infants aged 29-59 days) PLUS a positive blood culture for a
6 7		known pathogen
8 9	298	
10 11 12 13	299	Post-discharge death
14 15	300	There were 3,776 live discharges from 3,640 YI residents of KHDSS, of which 3,760 (from 3,625
16 17	301	individual YI) were followed up for 3,233 infant-years (Figure 1). During one-year follow-up, there
18 19 20	302	were 208/3625 (5·7%) deaths: 64·3 (95%CI 56·2–73·7) deaths per 1,000 infant-years. The median
21 22	303	[IQR] time to death after discharge was 35 [7–92] days. Of the 208 post-discharge deaths, 101
23 24 25	304	(49%), 160 (77%), 179 (86%) and 193 (93%) occurred within 1, 3, 6 and 9 months after discharge
26 27	305	respectively. The annual YI post-discharge case fatality was 5.4% in 2009 and 6.3% in 2019
28 29 30	306	without evidence of linear trend (P-value for trend=0·77) (Figure 2).
31 32 33	307	One hundred and one (49%) of the 208 post-discharge deaths occurred at home without hospital
34 35	308	readmission, 67 (32%) occurred during readmission to KCH and 40 (19%) occurred at other health
36 37 38	309	facilities. The five leading assigned causes of deaths for the 67 deaths at KCH were: neonatal
39 40	310	sepsis (24%), preterm complications (22%), congenital heart disease (15%), neonatal jaundice
41 42	311	(7.4%) and meningitis (7.4%) which were similar to index admission diagnosis Supplementary
43 44 45	312	Table S7. Causes of other deaths were unknown.
46 47 48	313	Overall, we observed 853 (20%) deaths among 4,272 individual YIs: 645 inpatient and 208 post-
49 50 51	314	discharge, hence 24% of deaths were post-discharge.
52 53 54	315	Exposures assessed for association with post-discharge mortality are shown on Supplementary
54 55 56	316	Table S8. In the multivariable Cox regression model, born outside KCH, log days of hospital
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

admission, leaving against advice, and referral to more specialized hospital were positively associated with post-discharge mortality. Other exposures associated with post-discharge mortality were low admission weight, fever and weak pulse(**Table 3**). The multivariable model bootstrapped AUC was 0.76 (95%Cl 0.73–0.80).

321 Subgroup analysis

In a subgroup analysis including 1,358 admissions of YIs born at KCH, their median [IQR] gestational age was 38 (36–40) weeks and birth weight 2,778 (2,000-3,195) grams respectively. In the univariate regression model, born premature, low birth weight and birth weight Z score <-2 were positively associated with inpatient mortality (**Supplementary Table S9**). In the multivariable model, low birth weight, admission age <8 days, bacteraemia and signs of clinical severity were associated with inpatient mortality (**Supplementary Table S10**).

Among the 1,142 YI followed up for 1,021 child-years of which 41/1,142 (3.6%) died, low birth weight (aHR 2.76 (95%CI 1.30–5.82)) was positively associated with post-discharge mortality in the multivariable model (**Supplementary Table S10**).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4 5	332	Discussion
6 7 8	333	Trends in admissions and proportions of young infants
9 10 11	334	During the study period, we observed a marked increase in YI admissions and proportion of YI
12 13	335	among admissions in under-fives increased from around a fifth in 2009, to more than one-third
14 15	336	in 2019. However, this did not seem to be associated with the introduction of free maternity care
16 17 18	337	in 2013. Lack of observable effect may be due to challenges faced during policy implementation
19 20	338	arising from inadequate expansion of quality health care facilities and resources. Several authors
21 22 23	339	reported an increase in mothers attending Kenyan health facilities for antenatal care and
24 25	340	delivery, ^{11 21} however our results suggest this occurred in the context of a general trend which
26 27 28	341	we previously observed during 1990-2008. ¹⁰
29 30 31	342	Conversely, the number of admitted children older than 60 days decreased alongside a reduction
32 33	343	in local malaria transmission, ²² introduction of routine childhood pneumococcal conjugate and
34 35	344	rotavirus immunisation, ²³ and expansion in numbers of health facilities in Kilifi County. ²⁴
36 37 38	345	Variation in annual admissions over the years was due to multiple health workers' strikes. ¹³
39 40	346	During these periods, the general paediatric ward was closed and only the sickest children were
41 42 43	347	admitted to the paediatric HDU due to limited staffing and bed capacity. The time series analysis
44 45 46	348	indicated an increase in inpatient mortality during strikes (Figure 3C).
47 48	349	The leading diagnoses at admission in our analysis were neonatal sepsis, preterm complications,
49 50 51	350	and birth asphyxia, similar to the period $1990-2008$. ¹⁰ Over a third of admissions from KCH
52 53	351	maternity were preterm and the hospital also received referrals of preterm and very low
54 55 56	352	birthweight infants from sub-county hospitals and local health centres. There are few African
57 58		24
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

published datasets of neonatal or YI inpatient diagnoses; in a network of 7 Nigerian and Kenyan hospitals, prematurity accounted for over half (52%), and birth asphyxia almost a quarter (24%) of neonatal admissions.²⁵ The leading bacterial isolates from blood cultures in our study (Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus) were similar to those among YI in rural settings of Tanzania and Burkina Faso.²⁶ Kenya attained elimination status of maternal and neonatal tetanus in 2018, following immunisation campaigns in high-risk regions.²⁷ Compared to 1990–2008,¹⁰neonatal tetanus was uncommon at our centre with only 10 cases in 11 years.

361 Inpatient deaths

The WHO has reported that in 2019, "47% of all under-5 deaths occurred in the newborn period with about one third dying on the day of birth and close to three quarters dying within the first week of life".²⁸ Delivery by a skilled health worker has been shown to be effective in reducing perinatal mortality.²⁹ We did not collect data on delivery by a skilled birth attendant but in 2018/9 69% of births in Kilifi County were reported to be attended by skilled health personnel which is slightly higher than the national average.³⁰ We found YI accounted for more than 60% of under-fives inpatient deaths, similar to a retrospective study of 16 Kenyan public hospitals in which neonatal deaths comprised 66% of inpatient paediatric deaths.⁵ We found respiratory distress syndrome, birth asphyxia and preterm complications had the highest inpatient mortality. Mechanical ventilation was not available in Kilifi County Hospital. Improvements in peripartum care of mothers and infants together with appropriate technology such as non-invasive ventilation for management of respiratory complications of preterm birth are priorities for reduction in neonatal mortality in hospitals in LMICs.⁵

Post-discharge deaths

1

BMJ Open

2	
2	
3	
4	
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\end{array}$	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
15	
10	
17	
18	
19	
20	
21	
22	
22	
∠3	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
50	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
59 60	

60

376	Less than a quarter (24%) of all deaths during 1-year of follow up occurred post-discharge. This
377	reflects a high inpatient (16%) case fatality rate with many very early inpatient deaths compared
378	to 6.6% in children aged \geq 60 days. ⁷ Nevertheless, the post-discharge YI mortality rate (64.3 per
379	1,000 child/years) was more than twice that of a cohort of children aged 2–59 months admitted
380	to KCH between 2007- 2015. ³¹ This reflects post-discharge mortality rates being highest in
381	younger age groups, such as in Tanzania among under 1-year olds: 72 per 1,000 child/years
382	(95%C.I. 67·2–77·2) falling to 6·9 (95%C.I. 5·5–8·7) per 1,000 child/years in 4 to <5 year olds. ³²
383	A greater proportion of YI post-discharge deaths occurred in hospital than among older children, ⁷
384	implying that caregivers may be more likely to seek re-admission for YI or may live closer to KCH.
385	About half of post-discharge deaths occurred within the first month, highlighting the need for
386	formal 'down-referral' for continuity of care after discharge in high risk YI.
387	Analysis of exposures revealed that some were common for both inpatient and post-discharge
388	mortality: low admission weight, axillary temperature, and respiratory rate. Birth weight was
389	not available for most YI but low admission weight <2.5kg was common (40%) in our
390	participants. In young infants it is difficult to distinguish low birth weight from malnutrition, but
391	we have reported the higher case fatality rates in the lower admission weight categories
392	(Tables S3 and S4). Of known causes of post-discharge deaths, leading ones were related to
393	problems in the early neonatal period.
394	Strengths and limitations of the study

Strengths of this study are large sample size, systematic collection of data and linkage to a well-established demographic surveillance system, with few losses to follow up. Limitations are lack of accurate gestational age estimation, unknown birthweight of most participants and that individual socioeconomic data were unavailable. We did not have clinical data collected at discharge, which may be of value in taking a risk-based approach to post-discharge care. This analysis is from a single hospital and excludes residents outside KHDSS who may have different exposures and risks. Conclusions Neonatal and YI admissions account for an increasing proportion of inpatient paediatric admissions, and their overall mortality rate remains high. Post-discharge mortality accounts for a lower proportion of all deaths than hospital admissions aged 2 to 59 months but the post-discharge mortality rate among young infants is higher.^{31 33} This is likely because of the predominance of fatal neonatal conditions such as extreme prematurity or birth asphyxia. Services to address post-discharge mortality are needed and should focus on infants at higher risk. Acknowledgements

1

BMJ Open

2		
3		
4		
5		
6		
7		
8		
9		
9 1(、	
11		
	2	
13		
14	ł	
15	5	
16	5	
17		
18		
19		
20 21	,	
2		
22	2	
	3	
24	ł	
25 26	5	
26	5	
27 28 29 30	7	
28	3	
20)	
30)	
21	,	
32)	
	-	
	3	
34		
35		
36	5	
37	7	
38		
39)	
4()	
41		
42	,	
	3	
42		
44 45	r	
46)	
47		
48	3	
49		
50)	
51		
52	2	
	3	
54	ł	
55	5	
56	5	
57	,	
	,	
58	5	

We thank the parents, patients, and staff of Kilifi County Hospital and the KEMRI-Wellcome Trust
Research Programme for their participation in the study. This study is published with the permission of
the Director, KEMRI. This work was supported, in whole or in part, by the Bill & Melinda Gates
Foundation [Grant Number INV-00791]. Under the grant conditions of the Foundation, a Creative
Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript
version that might arise from this submission.

425 I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as 426 defined in the below author licence), an exclusive licence and/or a non-exclusive licence for 427 contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence 428 shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or 429 employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free 430 basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by 431 BMJ to the co-owners of the Journal, to publish the Work in BMJ Global Health and any other BMJ 432 products and to exploit all rights, as set out in our licence.

8 433

59

60

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

2		
3 4	441	
5	442	Figures
6 7		
8	443	Figure 1. Flow of study participants.
9 10		
11 12	444	Figure 2. Annual proportion of YI admissions to all admissions <60 months, inpatient case
12		
14 15	445	fatality ratio (CFR) and post-discharge CFR.
15 16		
17	446	Proportions are plotted with 95% confidence intervals.
18 19		
20	447	Figure 3. A: Monthly hospital admissions (with predicted mean temporal trend), B: Monthly
21 22		
23	448	case fatality rates (with predicted mean temporal trend), C: Monthly young infant inpatient
24 25	440	case fetality before and after lung 2012 and D. Manthly propertient of young inforts to
25 26	449	case fatality before and after June 2013 and D: Monthly proportions of young infants to
27	450	admissions <60 months old.
28 29		
30	451	
31 32	431	
33	450	
34 35	452	Ethics approval and consent to participate
36		
37	453	Ethics approval and consent to participate
38 39	454	Written consent was provided by the caregivers of all the surveillance study participants. Ethical
40		
41 42	455	approval to conduct this analysis was granted by the Kenya Medical Research Institute (KEMRI)
43	456	National Ethics Review Committee (SCC 2778).
44 45	430	National Ethics Neview Committee (SCC 2778).
46		
47	457	Consent for publication – not applicable
50	458	Availability of data and materials
53		
54		
57		
58 59		29
48 49 50 51 52 53 54 55 56 57	457	

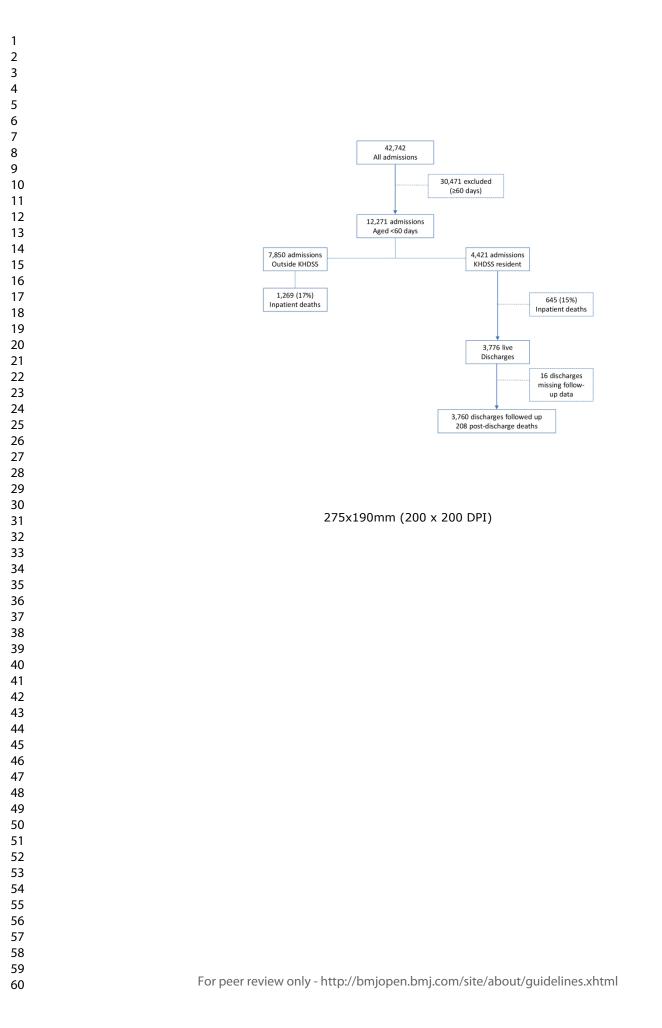
1 2		
3 4	459	Data are available in a public, open access repository. Deidentified participant data and analysis
5 6 7	460	code have been deposited and may be requested at the Harvard Dataverse via this
8 9	461	link https://doi.org/10.7910/DVN/0XJVFX
10 11 12 13	462	Competing interests
14 15	463	JAB declares the following: Chair of the DSMB for "Efficacy and safety of whole-body chlorhexidine
16 17 18	464	cleansing in reducing bacterial skin colonisation of hospitalised neonates - a pilot trial". St George's,
19 20	465	University of London and global sites; Treasurer of the Commonwealth Society for Paediatric
21 22 23	466	Gastroenterology & Nutrition Other authors declare they have no competing interests.
24 25	467	Funding
26 27	468	Authors NM, AN, NO, MO, and staffing, facilities, and resources were funded by the Wellcome
28 29 30	469	Trust (203077_Z_16_Z). MM was supported by a Wellcome Trust International Intermediate
31 32	470	Fellowship (221997/Z/20/Z). JAB was supported by the Medical Research Council–Department
33 34 35	471	for International Development–Wellcome Trust Joint Global Health Trials scheme
36 37	472	(MR/M007367/1). JAB and MN were supported by the Bill & Melinda Gates Foundation
38 39 40	473	(OPP1131320). CWO was supported by the Drugs for Neglected Diseases initiative/Global
40 41 42	474	Antibiotic Research and Development Partnership (OXF-DND02). AT was supported by
43 44 45	475	Crosslinks.
46 47 48	476	Role of the funding source
49 50 51	477	The funders did not have a role in study design, in the collection, analysis, and interpretation of
52 53 54	478	data, in writing the report, or in the decision to submit the paper for publication.
55 56	479	Author contributions
57 58		30
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

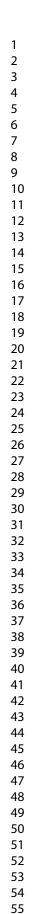
2 3
4
5
6
6 7
8
9
10 11
12
13
12 13 14 15 16 17
15
16
7 8 9 10 11 12 13 14 15 16 17 18
10
20
21
22
16 17 18 19 20 21 22 23 24
24 25
25
26 27
28
29
30
31 32
32 33
34
34 35 36 37 38 39
36
37
38 20
39 40
41
42
43
44
45 46
46 47
48
49
50
51
52
53 54
54 55
56
57
58
59
60

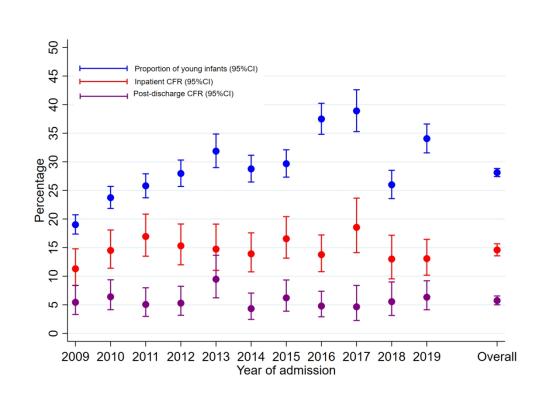
480	AT: Conceptualization, investigation, methodology, formal analysis, writing – original draft,
481	writing- review & editing; MN: Conceptualization, methodology, data curation, formal analysis,
482	visualisation , writing – original draft, writing– review & editing; CWO: Conceptualization,
483	investigation, methodology, formal analysis, validation, writing – original draft, writing– review
484	& editing; AN: Investigation, methodology, project administration, writing- review & editing;
485	MM: Conceptualization, methodology, writing- review & editing; NM: Investigation, project
486	administration, funding acquisition, resources, supervision, writing-review & editing; NO: Data
487	curation, writing– review & editing, MO: Data curation, writing– review & editing; JAB:
488	Conceptualisation, investigation, methodology, funding acquisition, supervision, validation,
489	writing– review & editing.
490	AT and MN contributed equally to this paper. AT, the guarantor, accepts full responsibility for
491	the finished work and the conduct of the study, had access to the data, and controlled the
492	decision to publish.
400	
493	
494	
495	References
496	1. UNICEF. Levels & Trends in Child Mortality: Report 2020, Estimates developed by the United
497	Nations Inter-agency Group for Child Mortality Estimation. New York: United Nations Children's Fund,
498	2020.
499	2. Collaborators GBDCM. Global, regional, national, and selected subnational levels of stillbirths,
500	neonatal, infant, and under-5 mortality, 1980-2015: a systematic analysis for the Global Burden
	31

Page 33 of 54

1

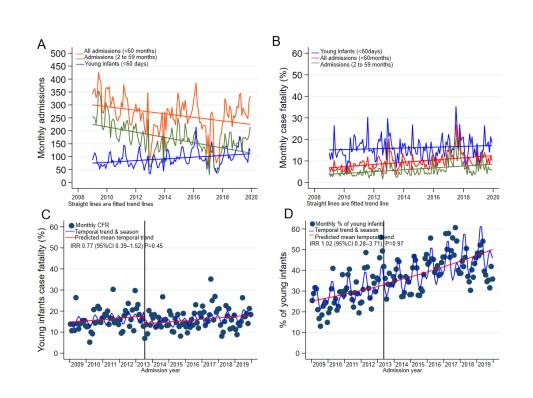

BMJ Open


2 3	501	of Disease Study 2015. <i>Lancet</i> 2016;388(10053):1725-74. doi: 10.1016/S0140-6736(16)31575-6
4 5		
6 7	502	[published Online First: 2016/10/14]
8 9	503	3. English M, Ngama M, Musumba C, et al. Causes and outcome of young infant admissions to a Kenyan
10 11	504	district hospital. Arch Dis Child 2003;88(5):438-43. doi: 10.1136/adc.88.5.438
12 13	505	4. van den Boogaard W, Manzi M, Harries AD, et al. Causes of pediatric mortality and case-fatality rates
14 15	506	in eight Médecins Sans Frontières-supported hospitals in Africa. Public Health Action
16 17	507	2012;2(4):117-21. doi: 10.5588/pha.12.0038
18 19 20	508	5. Irimu G, Aluvaala J, Malla L, et al. Neonatal mortality in Kenyan hospitals: a multisite, retrospective,
20 21 22	509	cohort study. <i>BMJ Glob Health</i> 2021;6(5) doi: 10.1136/bmjgh-2020-004475
23 24	510	6. Obiero CW, Mturi N, Mwarumba S, et al. Clinical features to distinguish meningitis among young
25 26	511	infants at a rural Kenyan hospital. Arch Dis Child 2021;106(2):130-36. doi: 10.1136/archdischild-
27 28	512	2020-318913 [published Online First: 20200820]
29 30 31	513	7. CHAIN, Network. Childhood mortality during and after acute illness in Africa and south Asia: a
32 33	514	prospective cohort study. Lancet Glob Health 2022;10(5):e673-e84. doi: 10.1016/s2214-
34 35	515	109x(22)00118-8
36 37	516	8. Nemetchek B, English L, Kissoon N, et al. Paediatric postdischarge mortality in developing countries: a
38 39 40	517	systematic review. BMJ open 2018;8(12):e023445. doi: 10.1136/bmjopen-2018-023445
40 41 42	518	[published Online First: 2018/12/30]
43 44	519	9. Moisi JC, Gatakaa H, Berkley JA, et al. Excess child mortality after discharge from hospital in Kilifi,
45 46	520	Kenya: a retrospective cohort analysis. Bull World Health Organ 2011;89(10):725-32, 32A. doi:
47 48	521	10.2471/BLT.11.089235 [published Online First: 2011/11/16]
49 50 51	522	10. Mwaniki MK, Gatakaa HW, Mturi FN, et al. An increase in the burden of neonatal admissions to a
52 53	523	rural district hospital in Kenya over 19 years. BMC Public Health 2010;10:591. doi:
54 55	524	10.1186/1471-2458-10-591 [published Online First: 2010/10/12]
56 57		22
58 59		32
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


3 4	525	11. Lang'at E, Mwanri L, Temmerman M. Effects of implementing free maternity service policy in Kenya:
5 6	526	an interrupted time series analysis. BMC Health Serv Res 2019;19(1):645. doi: 10.1186/s12913-
7 8	527	019-4462-x [published Online First: 2019/09/08]
9 10 11	528	12. KEMRI-WellcomeTrust, Programme. R. Health-research-linked-to-a-demographic-surveillance-
11 12 13	529	system [Available from: <u>https://kemri-wellcome.org/programme/health-research-linked-to-a-</u>
14 15	530	demographic-surveillance-system/ accessed May 10 2021.
16 17	531	13. Ong'ayo G, Ooko M, Wang'ondu R, et al. Effect of strikes by health workers on mortality between
18 19	532	2010 and 2016 in Kilifi, Kenya: a population-based cohort analysis. Lancet Glob Health
20 21 22	533	2019;7(7):e961-e67. doi: 10.1016/s2214-109x(19)30188-3 [published Online First: 2019/05/28]
23 24	534	14. Berkley JA, Lowe BS, Mwangi I, et al. Bacteremia among children admitted to a rural hospital in
25 26	535	Kenya. N Engl J Med 2005;352(1):39-47. doi: 10.1056/NEJMoa040275 [published Online First:
27 28	536	2005/01/07]
29 30 31	537	15. Ministry of Health, Kenya. Basic Paediatric Protocols 4th ed, 2016.
32 33	538	[dataset] 16. Ngari M, Talbert A, Ouma N, et al. Replication Data for: Inpatient and post-discharge
34 35	539	mortality among young infants admitted to a rural Kenyan hospital.: Harvard Dataverse, June 9 2022.
36 37 38	540	https://doi.org/10.7910/DVN/0XJVFX
39 40	541	17. Cuzick J. A Wilcoxon-type test for trend. <i>Stat Med</i> 1985;4(1):87-90. doi: 10.1002/sim.4780040112
41 42	542	18. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Stat
43 44	543	Assoc 1999;94(446):496-509. doi: 10.1080/01621459.1999.10474144
45 46	544	19. Seale AC, Barsosio HC, Koech AC, et al. Embedding surveillance into clinical care to detect serious
47 48 49	545	adverse events in pregnancy. Vaccine 2015;33(47):6466-8. doi: 10.1016/j.vaccine.2015.07.086
50 51	546	[published Online First: 20150805]
52 53		
54 55		
56 57 58		33
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	547	20. Papageorghiou AT, Kennedy SH, Salomon LJ, et al. The INTERGROWTH-21(st) fetal growth standards:
5 6	548	toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol
7 8	549	2018;218(2S):S630-S40. doi: 10.1016/j.ajog.2018.01.011 [published Online First: 2018/02/10]
9 10 11	550	21. Orangi S, Kairu A, Malla L, et al. Impact of free maternity policies in Kenya: an interrupted time-series
12 13	551	analysis. BMJ Glob Health 2021;6(6) doi: 10.1136/bmjgh-2020-003649
14 15	552	22. Njuguna P, Maitland K, Nyaguara A, et al. Observational study: 27 years of severe malaria
16 17	553	surveillance in Kilifi, Kenya. BMC Med 2019;17(1):124. doi: 10.1186/s12916-019-1359-9
18 19 20	554	[published Online First: 2019/07/10]
21 22	555	23. Hammitt LL, Etyang AO, Morpeth SC, et al. Effect of ten-valent pneumococcal conjugate vaccine on
23 24	556	invasive pneumococcal disease and nasopharyngeal carriage in Kenya: a longitudinal
25 26	557	surveillance study. Lancet (London, England) 2019;393(10186):2146-54. doi: 10.1016/s0140-
27 28 29	558	6736(18)33005-8 [published Online First: 20190415]
30 31	559	24. Munywoki J, Kagwanja N, Chuma J, et al. Tracking health sector priority setting processes and
32 33	560	outcomes for human resources for health, five-years after political devolution: a county-level
34 35	561	case study in Kenya. Int J Equity Health 2020;19(1):165. doi: 10.1186/s12939-020-01284-3
36 37 38	562	[published Online First: 20200921]
39 40	563	25. Nabwera HM, Wang D, Tongo OO, et al. Burden of disease and risk factors for mortality amongst
41 42	564	hospitalized newborns in Nigeria and Kenya. <i>PLoS One</i> 2021;16(1):e0244109. doi:
43 44	565	10.1371/journal.pone.0244109 [published Online First: 20210114]
45 46 47	566	26. Mduma E, Halidou T, Kaboré B, et al. Etiology of severe invasive infections in young infants in rural
48 49	567	settings in sub-Saharan Africa. PLoS One 2022;17(2):e0264322. doi:
50 51	568	10.1371/journal.pone.0264322 [published Online First: 20220225]
52 53		
54 55 56		
50 57 58		34
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	569	27. WHO Afro. Kenya now eliminates maternal and neonatal tetanus 2019 [Available from:
5 6	570	https://www.afro.who.int/news/kenya-now-eliminates-maternal-and-neonatal-tetanus
7 8	571	accessed February 2 2022.
9 10 11	572	28. World Health Organization. Newborns: improving survival and well-being 2020 [Available from:
12 13	573	https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality accessed
14 15	574	May 13 2022.
16 17	575	29. Bhutta ZA, Das JK, Bahl R, et al. Can available interventions end preventable deaths in mothers,
18 19 20	576	newborn babies, and stillbirths, and at what cost? Lancet (London, England)
20 21 22	577	2014;384(9940):347-70. doi: 10.1016/s0140-6736(14)60792-3 [published Online First:
23 24	578	20140519]
25 26	579	30. ThinkWell. A reivew of the Transforming Health Systems for Universal Care project in Kilifi County,
27 28	580	2021.
29 30 31	581	31. Talbert A, Ngari M, Bauni E, et al. Mortality after inpatient treatment for diarrhea in children: a
32 33	582	cohort study. BMC Med 2019;17(1):20. doi: 10.1186/s12916-019-1258-0 [published Online First:
34 35	583	20190128]
36 37	584	32. Mukasa O, Masanja H, DeSavigny D, et al. A cohort study of survival following discharge from
38 39	585	hospital in rural Tanzanian children using linked data of admissions with community-based
40 41 42	586	demographic surveillance. Emerg Themes Epidemiol 2021;18(1):4. doi: 10.1186/s12982-021-
43 44	587	00094-4 [published Online First: 20210318]
45 46	588	33. Ngari MM, Fegan G, Mwangome MK, et al. Mortality after Inpatient Treatment for Severe
47 48	589	Pneumonia in Children: a Cohort Study. Paediatric and perinatal epidemiology 2017;31(3):233-
49 50 51	590	42. doi: 10.1111/ppe.12348 [published Online First: 2017/03/21]
52 53 54 55	591	
56 57		
58 59 60		35 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



547x398mm (72 x 72 DPI)

399x290mm (72 x 72 DPI)

Supplementary materials

Table of Contents

Table S1. List of health workers strikes during study period.	Page
	2
Table S2. Proportion of missing data	3
Table S3 Pathogens isolated from blood and CSF cultures of young infants resident inKHDSS during inpatient period.	4
Table S4. Annual admissions and case fatality ratios	5
Table S5. Univariate analysis of admission features associated with inpatient deaths.	6,7
Table S6. Multivariable regression analysis of factors associated with inpatient mortality (single vs multiple admissions).	8,9
Table S7. Estimated causes of post-discharge deaths during readmission at KCH (67 deaths).	10
Table S8. Univariate analysis of admission features associated with post-discharge deaths.	11,12
Table S9. Univariate analysis of admission features associated with inpatient deaths among babies born at KCH only.	13,14
Table S10. Multivariable regression analysis of factors associated with inpatient andpost-discharge mortality among children born at KCH only.	15
Figure S1. A: Monthly all young infant admissions, B: all admissions (<60 months old), C: all admissions (<60 months old) case fatality and D: 2–59 months old case fatality before and after July 2013.	16

ar July 2013.

Table S1. List of health workers strikes during study period.

5 to 13 December 2011 1 to 15 March 2012	Health workers on strike	Duration of strike in days
1 to 15 March 2012	Doctors	9
	Nurses	15
13 September to 4 October 2012	Doctors	22
3 December 2012 to 13 January 2013	Nurses	42
16 January to 11 February 2013	Nurses	26
10 to 23 December 2013	Doctors & nurses	14
5 to 14 December 2016	Nurses	11
5 December 2016 to 15 March 2017	Doctors	102
5 June to 2 November 2017	Nurses	150
	Nurses	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 42 of 54

Table S2. Proportion of missing data

N=4,421	N missing	% missing
Demographics		
Age in days	0	
Sex (female)	0	
BCG scar	76	1.7
Reported born premature	321	7.3
Reported low birth weight	322	7.3
Anthropometry		
Weight (kg)	43	1.0
MUAC (cm)	126	2.9
Clinical features		
Axillary temperature	34	0.8
Tachypnea	208	4.7
Tachycardia	43	1.0
Hypoxia (SaO2 <90%)	20	0.5
Lower chest wall indrawing	68	1.5
Wheeze	69	1.6
Stridor	71	1.6
Breathing difficulty	64	1.5
Cyanosis	70	1.6
Capillary refill ≥2 seconds	34	0.8
Temperature gradient	81	1.8
Weak pulse	71	1.6
Lethargy	70	1.6
Impaired consciousness	70	1.6
	70	1.6
Bulging fontanel		
Stiff neck	71	1.6
Convulsions	64	1.5
Sunken eyes	73	1.7
Reduced skin turgor	71	1.6
Pallor	70	1.6
Laboratory features	75.0	47
HIV antibody positive	756	17
Malaria slide positive	372	8.4
Bacteraemia	2281	52
Haemoglobin	448	10
WBC	449	10
Platelets	448	10
Blood glucose (mmols/L)	1433	32

Table S3 Pathogens isolated from blood and CSF cultures of young infants resident in KHDSS during inpatient	
period.	

Blood culture Isolates		CSF culture isolates	
Pathogen (N=178)	No. (%)	Pathogen (N=24)	No. (%
Klebsiella pneumoniae	53 (30)	Escherichia coli	6 (25)
Escherichia coli	25 (14)	Group B Streptococcus	6 (25)
Staphylococcus aureus	22 (12)	Klebsiella pneumoniae	3 (13)
Group B Streptococcus	19 (11)	Streptococcus pneumoniae	3 (13)
Non-typhoidal Salmonella species	9 (5.1)	Enterobacter cloacae	3 (13)
Enterobacter cloacae	8 (4.5)	Non-typhoidal Salmonella species	2 (8.2)
Pseudomonas aeruginosa	6 (3.4)	Acinetobacter lwoffi	1 (4.2)
Streptococcus pneumoniae	5 (2.8)		
Streptococcus pyogenes	3 (1.7)		
Acinetobacter species	3 (1.7)		
Aeromonas hydrophila	3 (1.7)		
Group A Streptococcus	3 (1.7)		
Serratia marcescens	2 (1.1)		
Acinetobacter calcoaceticus/baumannii	2 (1.1)		
Acinetobacter lwoffi	1 (0.6)		
Aeromonas sobria	1 (0.6)		
Chryseobacterium indologenes	1 (0.6)		
Enterobacter aerogenes	1 (0.6)		
Enterococci species	1 (0.6)		
Haemophilus influenzae	1 (0.6)		
Proteus mirabilis	1 (0.6)		

CSF; cerebrospinal fluid, Out of the 33 Meningitis cases, only the 24 presented had positive CSF culture.

1	
2	
3	
4	
5	
5 6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55	
55	

Table S4. Annual admissions and case fatality ratios (CFR).

Proportion of YI admissions199admissions1YI inpatient deaths46YI inpatient CFR119YI post-discharge 1-year deaths19	734 1462 9% 24% 6 66 1% 15% 9 24	425 1222 26% 72 17% 17 5.1%	418 1177 28% 64 15% 18 5.3%	319 682 32% 47 15% 25 9.5%	424 1050 29% 59 14% 15 4.3%	429 1017 30% 71 17% 21 6.2%	472 787 37% 65 14% 19 4.8%	275 432 39% 51 19% 10 4.7%	323 920 26% 42 13% 15 5.6%	474 918 34% 62 13% 25 6.3%
2 to 59 months173Proportion of YI199admissions199YI inpatient46deaths46YI inpatient CFR119YI post-discharge191-year deaths19	9% 24% 6 66 1% 15% 9 24	26% 72 17% 17	28% 64 15% 18	32% 47 15% 25	29% 59 14% 15	30% 71 17% 21	37% 65 14% 19	39% 51 19% 10	920 26% 42 13% 15	34% 62 13% 25
Proportion of YI admissions199admissions1YI inpatient deaths46YI inpatient CFR119YI post-discharge 1-year deaths19	9% 24% 6 66 1% 15% 9 24	26% 72 17% 17	28% 64 15% 18	47 15% 25	29% 59 14% 15	30% 71 17% 21	65 14% 19	51 19% 10	26% 42 13% 15	34% 62 13% 25
YI inpatient46deaths119YI inpatient CFR119YI post-discharge191-year deaths19	1% 15% 9 24	17% 17	15% 18	15% 25	14% 15	17% 21	14% 19	19% 10	13% 15	13% 25
deathsYI inpatient CFR119YI post-discharge191-year deaths19	1% 15% 9 24	17% 17	15% 18	15% 25	14% 15	17% 21	14% 19	19% 10	13% 15	13% 25
YI inpatient CFR119YI post-discharge191-year deaths19	9 24	17	18	25	15	21	19	10	15	25
YI post-discharge 19	9 24	17	18	25	15	21	19	10	15	25
1-year deaths										
1-year deaths 5.4 YI Post-discharge 5.4 1- year CFR 1	.4% 6.4%	5.1%	5.3%	9.5%	4.3%	6.2%	4.8%	4.7%	5.6%	6.3%
YI Post-discharge 5.4 <u>1- year CFR</u>	.4% 6.4%	5.1%	5.3%	9.5%	4.3%	6.2%	4.8%	4.7%	5.6%	6.3%
1- year CFR	0	0								
	.4% 6.4%									

N=4,421	Deaths (N=645) N (%)	Crude SHR	P-value	Scaled Schoenfeld residuals P-value
Demographics				
Age in days				
0 to 2	511 (19)	3.31 (2.39–4.58)	< 0.001	
3 to 7	56 (12)	2.07 (1.38-3.11)	< 0.001	0.14
8 to 28	40 (6.8)	1.15 (0.74–1.78)	0.54	0.14
>28	38 (6.0)	Reference		
Sex (female)	268 (14)	0.99 (0.91-1.09)	0.93	0.77
Reported born premature	294 (29)	2.53 (2.32-3.77)	< 0.001	0.06
Reported low birth weight	222 (38)	3.25 (2.97-3.56)	< 0.001	0.18
Born at KCH				
Yes	382 (14)	Reference		
No	263 (16)	1.13 (0.97–1.32)	0.12	0.61
Anthropometry				
Weight (kg)				
<1.5	213 (38)	4.95 (4.13-5.93)	< 0.001	
1.5 to <2.5	174 (15)	1.86(1.53-2.26)	< 0.001	
≥2.5	229 (8.5)	Reference		- 0.09
Missing weight	29 (67)	10.7 (7.60–14.9)	< 0.001	
MUAC (cm)				
<9.0	333 (25)	3.57 (3.07-4.15)	< 0.001	0.08
9 to 10	106 (12)	1.73 (1.45-2.07)	< 0.001	
10 to 11	96 (9.3)	1.48 (1.24–1.77)	< 0.001	
≥11	75 (7.1)	Reference		
Missing MUAC	35 (28)	3.89 (3.02-5.00)	< 0.001	
Clinical features				
Axillary temperature				
<36°C	390 (29)	3.13 (2.82–3.47)	< 0.001	
36 to 37.5°C	159 (9.3)	Reference		
>37.5°C	84 (6.3)	0.77 (0.67–0.88)	< 0.001	0.34
Missing temperature	12 (35)	3.78 (2.65–5.39)	< 0.001	•
Respiratory rate/min				
Bradypnoea	108 (57)	6.09 (4.98–7.46	< 0.001	
Normal	329 (12)	Reference		0.74
Tachypnoea	197 (13)	1.07 (0.90–1.27)	0.45	0.71
Missing	11 (11)	0.91 (0.51–1.65)	0.76	
Heart rate/min				
Bradycardia	74 (47)	4.05 (3.21–5.11)	< 0.001	
Normal	403 (14)	Reference		0.50
Tachycardia	163 (12)	0.88 (0.73–1.05)	0.15	0.50
Missing	5 (23)	1.68 (0.72–3.93)	0.23	1
Hypoxia (SaO2 <90%)	309 (33)	3.91 (3.58–4.26)	< 0.001	0.48
Lower chest wall indrawing	448 (22)	2.86 (2.60–3.15)	< 0.001	0.41
Wheeze	0	-		

Table S5. Univariate analysis of admission features associated with inpatient deaths.

Stridor	6 (32)	1.48 (0.89–2.47)	0.13	0.23
Breathing difficulty	481 (22)	3.62 (3.26–4.02)	<0.001	0.28
Cyanosis	98 (47)	4.01 (3.55–4.53)	<0.001	0.14
Capillary refill >2 seconds	61 (58)	5.61 (4.41–7.14)	<0.001	0.54
Temperature gradient	98 (38)	2.85 (2.51–3.23)	<0.001	0.36
Weak pulse	108 (69)	5.85 (5.21–6.57)	<0.001	0.71
Lethargy	64 (20)	1.20 (1.04–1.40)	0.02	0.34
Impaired consciousness	140 (56)	5.43 (4.91-6.00)	< 0.001	0.42
Bulging fontanel	6 (19)	1.34 (0.90–1.99)	0.15	0.08
Stiff neck	4 (40)	2.08 (1.30–3.32)	0.002	0.17
Convulsions	16 (8.1)	0.75 (0.61–0.93)	0.01	0.53
Sunken eyes	5 (11)	1.04 (0.69–1.56)	0.85	0.52
Reduced skin turgor	21 (22)	1.18 (0.91–1.52)	0.22	0.56
Pallor	72 (33)	2.47 (2.15–2.83)	<0.001	0.63
Laboratory features				
Meningitis	8 (24)	8.06 (3.96–16.4)	<0.001	0.13
Anaemia (haemoglobin <11 g/dl)	50 (11)	0.67 (0.51–0.90)	0.007	0.51
HIV antibody positive	29 (20)	1.39 (1.13–1.71)	0.002	0.28
Malaria slide positive	0	-		
Bacteraemia	63 (37)	2.92 (2.10–4.06)	<0.001	0.13
Blood glucose (mmols/L)	427 (46)	1 40 (4 04 4 22)	0.000	
<2.6	137 (16)	1.18 (1.04–1.33)	0.009	
2.6 to 7.0	229 (12)	Reference	(0.001	0.42
>7.0	71 (31)	2.85 (2.47–3.29)	< 0.001	
Missing blood glucose White blood cells (10 ¹² cells/L)	208 (15)	1.18 (1.06–1.32)	0.002	
<4	14 (26)	2.43 (1.47-4.03)	0.001	
4-20	362 (11)	Reference	0.001	0.70
>20	210 (30)	2.97 (2.52–3.50)	<0.001	0.70
Missing	59 (13)	1.19 (0.91–1.57)	0.20	
Platelets (10 ⁹ cells/L)				
<150	139 (24)	1.89 (1.57–2.27)	< 0.001	
≥150	447 (13)	Reference		0.10
Missing	59 (13)	1.01 (0.77–1.32)	0.95	
SHR: sub-distribution hazard ratios; t	he SHR are fro	m the Fine and Gray's p	roportional sub-	hazards m

י ר	
2	
3	
4	
5	
6	
7 8	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17 18	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

Table S6. Multivariable regression analysis of factors associated with inpatient mortality (single
vs multiple admissions).

	Multiple admissions	(N=4421)	Single admissions	(N=4272)
	Adjusted SHR*	P-value	Adjusted SHR*	P-value
Demographics				
Age in days				
0 to 2	2.12 (1.46–3.06)	<0.001	2·14 (1·49–3·10)	<0.001
3 to 7	3.88 (2.46–6.10)	<0.001	3·92 (2·48–5·16)	<0.001
8 to 28	1.42 (0.90–2.25)	0.13	1.50 (0.95–2.38)	0.08
>28	Reference		Reference	
Sex (female)	0.91 (0.78–1.07)	0.26	0.90 (0.77–1.06)	0.20
Anthropometry				
Weight (kg)				
<1.5	2·16 (1·75–2·67)	<0.001	2·26 (1·83–2·79)	<0.001
1.5 to <2.5	1.42 (1.16–1.74)	0.001	1.43 (1.17–1.76)	<0.001
≥2.5	Reference		Reference	
Missing weight	3.85 (2.59-5.71)	<0.001	3.78 (2.56–5.58)	<0.001
Clinical features				
Axillary temperature				
<36°C	1.44 (1.17–1.78)	0.001	1.45 (1.17–1.79)	0.001
36 to 37.5°C	Reference		Reference	
>37·5°C	1.09 (0.84–1.41)	0.53	1.07 (0.83–1.39)	0.57
Missing temperature	1.03 (0.38–2.75)	0.96	0.92 (0.33-2.51)	0.87
Respiratory rate/min				
Bradypnoea	1.45 (1.09–1.93)	0.01	1.44 (1.08–1.92)	0.01
Normal	Reference		Reference	
Tachypnoea	0.80 (0.67–0.95)	0.01	0.79 (0.66–0.94)	0.009
Missing	1.51 (0.64–3.56)	0.34	¹ ·48 (0·62–3·55)	0.38
Heart rate/min				
Bradycardia	1.40 (1.08–1.82)	0.01	1.42 (1.09-1.85)	0.008
Normal	Reference		Reference	
Tachycardia	1.14 (0.94–1.37)	0.18	1.15 (0.96–1.39)	0.14
Missing	0.41 (0.03–5.13)	0.49	0.45 (0.04-5.14)	0.52
Hypoxia (SaO2 <90%)	1.62 (1.37–1.92)	<0.001	1.60 (1.36–1.90)	<0.001
Capillary refill >2 seconds	1.34 (0.97–1.86)	0.08	1.31 (0.94–1.83)	0.11
Lower chest wall indrawing	1.41 (1.14–1.75)	0.002	1.42 (1.14–1.77)	0.002
Stridor	1.93 (0.92-4.03)	0.08	1.85 (0.89-3.85)	0.10
Breathing difficulty	1.45 (1.15–1.82)	0.001	1.44 (1.15–1.81)	0.002
Weak pulse	1.61 (1.19–2.17)	0.002	1.61 (1.18–2.18)	0.002
Bulging fontanel	2.45 (0.91–6.65)	0.08	2.41 (0.90-6.55)	0.08
Impaired consciousness	2.21 (1.72–2.84)	<0.001	2.17 (1.68–2.78)	<0.001
Pallor	1.30 (0.98–1.71)	0.07	1.28 (0.97–1.69)	0.08
Laboratory features				
Meningitis	5.45 (2.50–11.8)	<0.001	5.18 (2.39–11.2)	<0.001
HIV antibody positive	1.15 (0.81–1.63)	0.43	1.14 (0.80–1.62)	0.47
· · ·		L	. /	1

culture, or p ays OR, ≥10	positive CSF micro	sub-hazards model, Al oscopy, or positive CSF aged 29-59 days) PLUS	·50) 0·003 ·03) <0·00 ·41) 0·71 ·86–0·89) UC; area under antigen test, or
e 3–2·04) 2–1·44) 5–0·89) Fine and Gra culture, or p ays OR, ≥10	<0.001 0.57 ay's proportional positive CSF micro in young infants	Reference 1.70 (1.43–2. 1.06 (0.79–1. 0.88 (0. sub-hazards model, Al oscopy, or positive CSF aged 29-59 days) PLUS	e (03) <0.00 (41) 0.71 (86–0.89) UC; area under antigen test, or
e 3–2·04) 2–1·44) 5–0·89) Fine and Gra culture, or p ays OR, ≥10	<0.001 0.57 ay's proportional positive CSF micro in young infants	Reference 1.70 (1.43–2. 1.06 (0.79–1. 0.88 (0. sub-hazards model, Al oscopy, or positive CSF aged 29-59 days) PLUS	e (03) <0.00 (41) 0.71 (86–0.89) UC; area under antigen test, or
3–2·04) 2–1·44) 5–0·89) Fine and Gra culture, or p ays OR, ≥10	0.57 ay's proportional positive CSF micro in young infants	1.70 (1.43–2. 1.06 (0.79–1. 0.88 (0. I sub-hazards model, AL oscopy, or positive CSF aged 29-59 days) PLUS	·03) <0·00 ·41) 0·71 ·86–0·89) UC; area under antigen test, or
2-1·44) 5-0·89) Fine and Grading Control Cont	0.57 ay's proportional positive CSF micro in young infants	1.06 (0.79–1. 0.88 (0. sub-hazards model, Al oscopy, or positive CSF aged 29-59 days) PLUS	·41) 0·71 ·86–0·89) UC; area under antigen test, or
5—0·89) Fine and Gra culture, or p ays OR, ≥10	ay's proportional positive CSF micro in young infants	0.88 (0 sub-hazards model, AU oscopy, or positive CSF aged 29-59 days) PLUS	•86–0•89) UC; area under antigen test, or
Fine and Gra culture, or p ays OR, ≥10	oositive CSF micro in young infants	sub-hazards model, Al oscopy, or positive CSF aged 29-59 days) PLUS	UC; area under antigen test, or
Fine and Gra culture, or p ays OR, ≥10	oositive CSF micro in young infants	sub-hazards model, Al oscopy, or positive CSF aged 29-59 days) PLUS	UC; area under antigen test, or

Table S7. Estimated causes of post-discharge deaths during readmission at KCH (67 deaths).

Index admission diagnosis (N=67)	No. (%)	Causes of post-discharge deaths (N=67)	No. (%)
Neonatal sepsis	15 (22)	Neonatal sepsis	16 (24)
Preterm complications	15 (22)	Preterm complications	15 (22)
Heart disease-Congenital	9 (13)	Heart disease-Congenital	10 (15)
Neonatal jaundice	5 (7.5)	Neonatal jaundice	5 (7.4)
Meningitis	4 (6.0)	Meningitis	5 (7.4)
Birth asphyxia	4 (6.0)	Birth asphyxia	5 (7.4)
Lower respiratory tract infection	4 (6.0)	Lower respiratory tract infection	4 (6.0)
Encephalopathy - unknown	0	Encephalopathy - unknown	1 (1.5)
Hydrocephalus	1 (1.5)	Hydrocephalus	1 (1.5)
Malnutrition	1 (1.5)	None specified	5 (7.4)
None specified	9 (13)		

Index admission diagnosis and causes of death were assigned by treating clinician.

6	
7	
8	
9	
-	0
1	
	1
1	2
1	3
1	
1	
1	6
1	7
1	
1	9
2	0
2	1
2	2
2	
2	4
	5
	6
2	
2	, 8
2	
	0
3	
3	
3	
3	
3	
	6
3	7
3	
3	9
4	0
4	1
4	2
4	3
4	4
4	
4	
4	
4	
	9
	0
5 5	
- 2	1

Table S8. Univariate analysis of admission features associated with post-discharge deaths.

N=3625	Deaths (N=208)	Crude HR	P-value	Scaled Schoenfeld residuals P-value
Demographics				
Age in days				
0 to 2	124 (5.6)	0.98 (0.67–1.44)	0.92	
3 to 7	15 (3.7)	0.63 (0.34–1.16)	0.14	0.10
8 to 28	36 (6.6)	1.17 (0.73–1.87)	0.52	0.10
>28	33 (5.5)	Reference		
Sex (female)	89 (5.5)	0.98 (0.74–1.28)	0.86	0.79
Reported born premature	58 (8.0)	1.79 (1.32–2.44)	< 0.001	0.07
Reported low birth weight	33 (9.3)	1.99 (1.37–2.90)	< 0.001	0.13
Born at KCH				
Yes	102 (4.3)	Reference		
No	106 (7.6)	1.75 (1.34–2.30)	< 0.001	0.12
Length of hospitalization (days)-	O-	1.96 (1.68–2.27)	<0.001	0.38
log transformed				
Discharged over weekend				
No	173 (5.7)	Reference		
Yes	35 (4.8)	0.85 (0.59–1.23)	0.39	0.16
Type of discharge	•			
Normal discharge	180 (4.9)	Reference		
Absconded	5 (12)	2.60 (1.07-6.33)	0.04	0.75
Transferred/referred	23 (44)	11.8 (7.64–18.2)	< 0.001	
Anthropometry				
Weight (kg)				
<1.5	30 (8.5)	2.49 (1.65–3.77)	< 0.001	
1.5 to <2.5	87 (9.2)	2.64 (1.97–3.54)	< 0.001	0.17
≥2.5	91 (3.7)	Reference 🥒		0.17
Missing weight	0	-		
MUAC (cm)				
<9.0	88 (8.8)	4.05 (2.56-6.41)	< 0.001	
9 to 10	44 (5.8)	2.56 (1.55–4.24)	< 0.001	
10 to 11	42 (4.5)	1.92 (1.15–3.18)	0.01	0.17
≥11	23 (2.4)	Reference		
Missing MUAC	11 (12)	5.83 (2.84–12.0)	< 0.001	
Clinical features				
Axillary temperature				
<36°C	78 (8.1)	1.45 (1.07–1.96)	0.02	
36 to 37.5°C	88 (5.7)	Reference		
>37.5°C	41 (3.3)	0.57 (0.40–0.83)	0.003	0.80
Missing temperature	1 (5.0)	0.99 (0.14–7.12)	0.99	7
Respiratory rate/min		· · · ·	1	1
Bradypnoea	7 (8.8)	1.92 (0.90-4.13)	0.09	
Normal	108 (4.7)	Reference	1	1
Tachypnoea	87 (6.8)	1.44 (1.09–1.92)	0.01	0.30
Missing	6 (7.2)	1.65 (0.72–3.76)	0.23	1
Heart rate/min	. ,	7		

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
1(C
	1
	2
13	3
14	
14	+
1	5
10	5
1	7
18	8
19	
20	n
2	1
2	1
2	2
2	3
24	4
2	5
20	5
2	7
28	, R
29	9
30	
3	
32	2
33	3
34	4
3	-
30	
20	2
3	/
38	
39	9
4(0
4	1
4	2
4	3
4	-
4	
40	С
4	7
48	8
49	9
50	
5	
	2
53	3
54	
5	
56	5
5	7
58	R
50	

59

Bradycardia	9 (11)	2.10 (1.07–4.13)	0.03	
Normal	137 (5.5)	Reference		0.73
Tachycardia	62 (5.3)	0.97 (0.72–1.31)	0.85	0.75
Missing	0	-		
Hypoxia (SaO2 <90%)	51 (8.2)	1.68 (1.23–2.31)	0.001	0.54
Lower chest wall indrawing	108 (6.8)	1.54 (1.17–2.02)	0.002	0.18
Wheeze	2 (4.4)	0.77 (0.19–3.10)	0.71	0.20
Stridor	0	-		
Breathing difficulty	109 (6.5)	1.40 (1.07–1.85)	0.02	0.26
Cyanosis	7 (6.3)	1.14 (0.54–2.43)	0.73	0.17
Capillary refill ≥2 seconds	4 (9.4)	1.81 (0.67–4.87)	0.24	0.40
Temperature gradient	12 (7.5)	1.44 (0.80–2.57)	0.23	0.22
Weak pulse	7 (15)	3.10 (1.46–6.59)	0.003	0.38
Lethargy	14 (5.8)	1.06 (0.63–1.80)	0.82	0.19
Impaired consciousness	6 (5.5)	0.98 (0.44–2.21)	0.96	0.50
Bulging fontanel	4 (15)	3.04 (1.13–8.18)	0.03	0.06
Stiff neck	1 (17)	2.84 (0.40–20.2)	0.30	0.15
Convulsions	9 (5.0)	0.88 (0.46–1.75)	0.75	0.31
Sunken eyes	6 (15)	3.31 (1.47–7.45)	0.004	0.20
Reduced skin turgor	8 (11)	2.19 (1.08-4.43)	0.03	0.20
Pallor	15 (10)	2.09 (1.23-3.53)	0.006	0.23
Laboratory features		· · · · · · · · · · · · · · · · · · ·		
Meningitis	4 (16)	3.98 (1.45-10.9)	0.007	0.13
Anaemia (haemoglobin <11	26 (6.2)	1.19 (0.79-1.80)	0.41	0.68
g/dl)				
HIV antibody positive	7 (6.2)	1.17 (0.55–2.49)	0.69	0.76
Malaria slide positive	0			
Bacteraemia	10 (9.4)	1.02 (0.50–2.06)	0.96	0.28
Blood glucose (mmols/L)				
<2.6	51 (6.9)	1.31 (0.92–1.85)	013	
2.6 to 7.0	86 (5.3)	Reference		0.20
>7.0	10 (6.3)	1.21 (0.63–2.32)	0.57	0.25
Missing blood glucose	61 (5.0)	0.95 (0.68–1.32)	0.75	
White blood cells (10 ¹² cells/L)				
<4	1 (2.5)	0.45 (0.06-3.20)	0.42	
4-20	157 (5.5)	Reference		0.79
>20	29 (6.1)	1.10 (0.74–1.64)	0.63	
Missing	21 (5.4)	0.99 (0.63–1.56)	0.97	
Platelets (10 ⁹ cells/L)				
<150	38 (8.6)	1.69 (1.18-2.41)	0.004	
≥150	149 (5.1)	Reference		0.70
Missing	21 (5.4)	1.08 (0.68–1.70)	0.75	
HR: hazard ratios; the HR are from	, ,			

2
4
5
6
7 8
8
9
10
9 10 11
11
12
13
14
15 16
16
17 18
18
10
19 20
20
21 22
22
22 23 24 25 26 27 28 29 30
24
25
26
20
27
28
29 30
50
31
32
33
34
34 35 36 37 38
22
30
37
38
39
40
41
42
43
43 44
45
46
47
48
49
50
51
51
53
54
55
56
57
58
50

60

1 2

Table S9. Univariate regression analysis of factors associated with inpatient and post-discharge mortality among children born at KCH only.

N=1,358	Deaths (N=174) N (%)	Crude SHR	P-value	Scaled Schoenfeld residuals P- value
Demographics				
Age in days				
0 to 2	151 (15)	2.48 (1.19–5.16)	0.02	
3 to 7	8 (7.0)	1.22 (0.45–3.30)	0.69	0.36
8 to 28	8 (6.8)	1.21 (0.46–3.23)	0.70	0.26
>28	7 (5.5)	Reference		1
Sex (female)	84 (14)	1.11 (0.83–1.48)	0.50	0.31
Born premature	101 (21)	2.65 (1.97–3.56)	<0.001	0.10
Born low birth weight	107 (21)	2.74 (2.03–3.71)	<0.001	0.44
Anthropometry				
Weight z score at birth				
<-2.0	32 (17)	1.49 (1.02–2.17)	0.04	
≥-2.0	142 (12)	Reference		0.12
MUAC (cm)		0		
<9.0	97 (23)	3.14 (2.05–4.83)	<0.001	
9 to 10	26 (9.9)	1.26 (0.74–2.17)	0.40	
10 to 11	25 (7.3)	0.91 (0.53–1.57)	0.73	0.17
≥11	26 (7.9)	Reference		
Missing MUAC	0	-		
Clinical features				
Axillary temperature			<u>.</u>	
<36°C	113 (26)	3.02 (2.13–4.27)	<0.001	
36 to 37.5°C	41 (9.2)	Reference		1
>37.5°C	18 (3.9)	0.42 (0.24–0.72)	0.002	- 0.30
Missing temperature	2 (50)	6.90 (1.84–25.8)	0.004	1
Respiratory rate/min				
Bradypnoea	32 (52)	6.44 (4.39–9.45)	<0.001	
Normal	91 (10)	Reference		
Tachypnoea	50 (12)	1.21 (0.86–1.69)	0.28	0.17
Missing	1 (5.3)	0.49 (0.07–3.37)	0.47	1
Heart rate/min				
Bradycardia	21 (43)	4.76 (3.06–7.43)	<0.001	
Normal	98 (10)	Reference		0.81
Tachycardia	55 (15)	1.48 (1.07–2.05)	0.02	1

Missing	0	-			
Hypoxia (SaO2 <90%)	79 (29)	3.62 (2.71–4.83)	<0.001	0.81	
Lower chest wall indrawing	125 (21)	3.57 (2.57–4.95)	<0.001	0.47	
Wheeze	0	-			
Stridor	5 (63)	6.96 (3.09–15.7)	<0.001	0.60	
Breathing difficulty	481 (22)	5.40 (3.69–7.88)	<0.001	0.18	
Cyanosis	29 (48)	5.15 (3.54–7.50)	<0.001	0.18	
Capillary refill >2 seconds	14 (64)	7.22 (4.43–11.7)	<0.001	0.58	
Temperature gradient	26 (30)	2.69 (1.81–4.01)	<0.001	0.49	
Weak pulse	25 (58)	6.52 (4.44–9.56)	<0.001	0.77	
Lethargy	17 (16)	1.29 (0.79–2.10)	0.31	0.56	
Impaired consciousness	48 (52)	6.75 (4.93–9.24)	<0.001	0.13	
Bulging fontanel	1 (25)	2.03 (0.31–13.2)	0.46	0.59	
Stiff neck	1 (5.3)	-		0.31	
Convulsions	1 (2.9)	0.21 (0.03–1.48)	0.12	0.21	
Sunken eyes	1 (17)	1.35 (0.19–9.77)	0.77	0.57	
Reduced skin turgor	1 (5.9)	0.44 (0.06–3.19)	0.42	0.56	
Pallor	21 (42)	4.00 (2.61–6.12)	<0.001	0.59	
Laboratory features					
Meningitis	2 (29)	9.95 (2.37-41.8)	0.002	0.12	
Haemoglobin <11 g/dl	11 (13)	0.92 (0.51-1.66)	0.78	0.25	
HIV antibody positive	8 (21)	1.68 (0.84–3.33)	0.14	0.14	
Malaria slide positive	0				
Bacteraemia	14 (33)	3.00 (1.48–5.95)	0.002	0.20	
Blood glucose (mmols/l)					
<2.6	33 (12)	1.02 (0.67–1.56)	0.91		
2.6 to 7.0	58 (12)	Reference		0.95	
>7.0	11 (21)	1.88 (1.00–3.54) 🗸	0.05		
Missing blood glucose	72 (13)	1.11 (0.79–1.56)	0.53		
White blood cells (10 ¹² cells/L)					
<4	3 (33)	3.52 (1.25–9.91)	0.02		
4-20	100 (10)	Reference		0.08	
>20	59 (28)	3.10 (2.27-4.24)	<0.001		
Missing	12 (8.2)	0.82 (0.45-1.48)	0.50		
Platelets (10 ⁹ cells/L)					
<150	35 (20)	1.69 (1.18–2.44)	0.005		
≥150	127 (12)	Reference		0.50	
Missing	12 (8.2)	0.66 (0.37-1.19)	0.17		

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
59	

1 2

-

Table S10. Multivariable regression analysis of factors associated with inpatient and post-discharge mortality among children born at KCH only.

	Inpatient analysis		Post-discharge analysis		
	Adjusted SHR*	P-value	Adjusted HR	P-value	
Demographics					
Age in days					
0 to 2	3.03 (1.33–6.94)	0.009	¶		
3 to 7	4.08 (1.48–11.3)	0.007	¶		
8 to 28	2.57 (0.90–7.29)	0.08	¶		
>28	Reference				
Anthropometry					
Low birth weight	1.55 (1.10-2.20)	0.01	2.76 (1.30-5.82)	0.008	
Clinical features					
Axillary temperature					
<36°C	1.49 (0.97–2.28)	0.07	1.44 (0.71–2.95)	0.31	
36 to 37.5°C	Reference		Reference		
>37.5°C	0.67 (0.39–1.13)	0.13	0.22 (0.06–0.78)	0.02	
Missing temperature	3.37 (0.85-13.4)	0.09	0.48 (0.09-2.64)	0.40	
Respiratory rate/min					
Bradypnoea	2.22 (1.36-3.63)	0.001	9		
Normal	Reference				
Tachypnoea	0.78 (0.55-1.11)	0.17	9		
Missing	-				
Heart rate/min					
Bradycardia	1.88 (1.14-3.12)	0.01	3.56 (1.14–11.2)	0.03	
Normal	Reference		Reference		
Tachycardia	1.57 (1.11–2.21)	0.01	1.54 (0.77–3.07)	0.22	
Missing	0.25 (0.02-3.00)	0.28	-		
Hypoxia (SaO2 <90%)	1.60 (1.14-2.24)	0.006	1		
Lower chest wall indrawing	1.42 (0.91-2.22)	0.12 🧹	1		
Stridor	3.74 (1.87–7.49)	< 0.001	1		
Breathing difficulty	2.13 (1.25-3.64)	0.005	1		
Capillary refill >2 seconds	1.94 (1.06-3.56)	0.03	1		
Weak pulse	2.15 (1.27-3.65)	0.004	1.60 (0.24-10.5)	0.63	
Pallor	2.36 (1.46–3.83)	<0.001	1		
Laboratory features					
Bacteraemia	2.50 (1.20–5.22)	0.02	0.21 (0.03–1.81)	0.16	
Model performance					
AUC (95% CI)	0.85 (0.82–0.88)		0.79 (0.72–0.85)		
SHR; sub-distribution hazard ratios; * model, HR-Hazard ratio from the Pro inclusion in the multivariable model,	portional Cox regress	sion model, ¶	; variables not selecte		

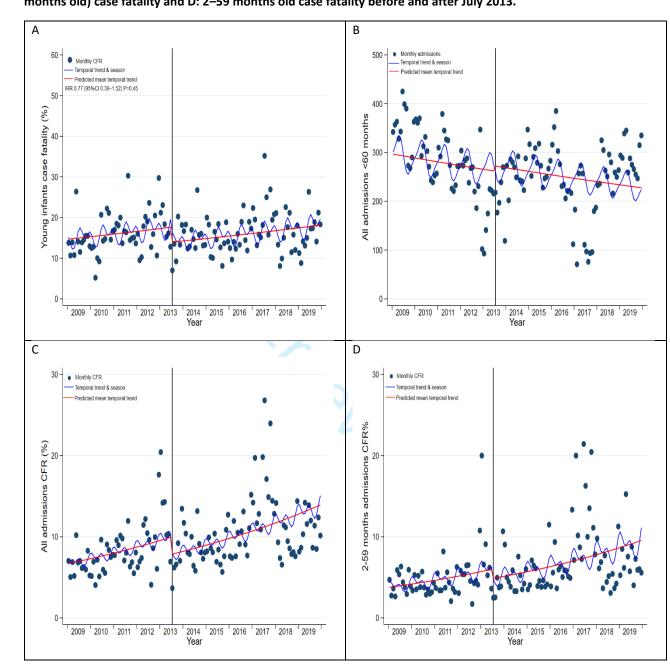


Figure S1. A: Monthly all young infant admissions, B: all admissions (<60 months old), C: all admissions (<60 months old) case fatality and D: 2–59 months old case fatality before and after July 2013.