

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The effectiveness of cerebellar vermis intermittent theta burst stimulation in improving trunk control and balance function for subacute stroke patients: a randomized controlled trial protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066356
Article Type:	Protocol
Date Submitted by the Author:	06-Jul-2022
Complete List of Authors:	Chen, Yi; Sichuan University West China Hospital, Su, Wei; Sichuan University, Department of Rehabilitation Medicine Gui, Chen-Fan; Sichuan University, Department of Rehabilitation Medicine Guo, Qi-Fan; Sichuan University, Department of Rehabilitation Medicine Tan, Hui-Xin; Sichuan University, Department of Rehabilitation Medicine He, Lin; Sichuan University West China Hospital Jiang, Han-Hong; Sichuan University, Department of Rehabilitation Medicine Wei, Qing-Chuan; Sichuan University, Department of Rehabilitation Medicine Gao, Qiang ; Sichuan University, Department of Rehabilitation Medicine Gao, Qiang ; Sichuan University, Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province
Keywords:	Stroke < NEUROLOGY, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Motor neurone disease < NEUROLOGY

SCHOLARONE[™] Manuscripts

1	
1	
2	
3	
4	
3 4 5 6 7	
2	
6	
7	
8	
9	
9 10	
10	
11	
12	
13	
14	
17	
15	
16	
17	
 11 12 13 14 15 16 17 18 19 	
10	
17	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
21	
22	
23	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1	The effectiveness of cerebellar vermis intermittent theta burst
2	stimulation in improving trunk control and balance function for
3	subacute stroke patients: a randomized controlled trial protocol
4	Yi Chen ^{1,2} , Wei Su ^{1,2} , Chen-Fan Gui ^{1,2} , Qi-Fan Guo ^{1,2} , Hui-Xin Tan ^{1,2} , Lin He ^{1,2} , Han-Hong
5	Jiang ^{1,2} , Qing-Chuan Wei ^{1,2} , Qiang Gao ^{1,2*}
6	¹ Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu,
7	Sichuan, China
8	² Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
9	* Correspondence:
10	Qiang Gao, MD, PhD, Rehabilitation Medicine Center, West China Hospital, Sichuan
11	University, No. 37, Guo Xue Xiang, 610041, Chengdu, Sichuan Province, China. Tel: +86
12	18980605992. Fax: +86-028-86298045. Email: <u>gaoqiang_hxkf@163.com</u> .
13 14	Word count: 3813 words
14 15	word count. 3813 words

2 3 4 5	16 17	Abstract
6 7 8 9 10 11 12	18	Introduction Balance impairments frequently occur in patients with stroke. Achieving
	19	effective core trunk stability is the key to improving balance ability. However, there still lacks
	20	of advanced well-defined rehabilitation protocols for balance improvement in stroke patients.
13 14	21	Intermittent theta-burst stimulation (iTBS) is a non-invasive brain activity modulation
15 16 17	22	strategy, which can produce long-term potentiation. Cerebellar vermis is a cardinal structure
18 19	23	involved in balance and motor control. However, no study has demonstrated the therapeutic
20 21	24	effect and potential mechanism of cerebellar vermis iTBS on balance in individuals with
22 23 24	25	stroke.
25 26	26	Methods and Analysis This study will be a prospective single-center double-blind
27 28 29 30 31 32 33	27	randomized controlled clinical trial with 3-week intervention and 3-week follow-up. Eligible
	28	participants will be randomly allocated in a 1:1 ratio to experimental group or control group,
	29	respectively. After routine conventional physical therapy, patients assigned to the
34 35	30	experimental group will receive cerebellar vermis iTBS whereas patients assigned to the
36 37	31	control group will receive sham stimulation. The overall intervention periods are five days a
38 39 40	32	week for three consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks
41 42	33	post-intervention (T1) and 3 weeks follow-up (T3). The primary outcomes are Berg balance
43 44	34	scale (BBS) and trunk impairment scale (TIS) scores. The secondary outcomes are balance
45 46 47 48 49	35	tests via the Balance Master system, muscle activation of trunk and lower limbs via the
	36	surface electromyography (sEMG) recording, cerebral cortex oxygen concentrations via the
50 51	37	resting-state functional near-infrared spectroscopy (fNIRS), FMA-LE scores, and Barthel
52 53 54	38	index (BI) scores.
55 56	39	Ethics and Dissemination This study was approved by the West China Hospital Clinical

Trials and Biomedical Ethics Committee of Sichuan University. The trial registration number

BMJ Open

3	
4	
5	
4 5 6 7	
7	
ð 0	
9 10	
11	
12	
13	
14	
15	
16	
1/	
 8 9 10 11 12 13 14 15 16 17 18 19 20 	
20	
21	
22	
23	
24 25	
25	
27	
20 21 22 23 24 25 26 27 28 29	
29	
30	
31 22	
32 33	
33 34 35 36 37	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

41 is ChiCTR2200061225. All participants will sign the informed consent voluntarily. The
42 results of this study will be published in peer-reviewed journals and disseminated at academic
43 conferences.

44 Strengths and limitations of this study

45 > This prospective single-center double-blind randomized controlled clinical trial with 346 week intervention and 3-week follow-up is firstly designed to confirm the effect and
47 potential mechanism of cerebellar vermis iTBS stimulation on balance in subacute stroke
48 patients.

49 > Our study will comprehensively assess the trunk control and balance function by clinical
 50 scales, balance tests via the Smart Equitest Balance Master System and sEMG
 51 measurements. Additionally, we will also collect the concentration of HbO2 in cerebral
 52 cortex via the resting-state fNIRS. Integrated data results sufficiently verify the research
 53 hypothesis.

54 ➤ Our study can provide valuable information to develop a novel treatment method for the
 55 rehabilitation of balance dysfunction after stroke.

56 > This study has sufficient research basis. Previously published articles by our research
 57 group provided evidence that iTBS of the cerebellar hemisphere could promotes upper
 58 limb spasticity, balance, and walking performance recovery in post-stroke patients. And,
 59 preliminary pilot study conducted by us found that cerebellar vermis iTBS contributed to
 60 increasing the excitability of the bilateral supplementary motor areas during balance tasks
 61 in healthy adults.

62 Introduction

63 Stroke is the third most common cause of disability worldwide.¹ The number of incidents,

64 prevalent survivors, and disability-adjusted life-years lost of stroke is still increasing over the

65 past two decades², which are considered to lead to heavy economic burdens on society.

Balance impairments frequently occur in patients with stroke, with the reported incidence ranging from 61% to 83%³. The main manifestations are postural instability, weak trunk control, and difficulty of weight shift,⁴ which will ultimately result in falls, poor mobility, decreased physical activity, and reduced quality of life in patients.⁵ Therefore, improvement of the balance function is a cardinal requirement in patients with stroke. The trunk plays a fundamental role in trunk control, balance, and mobility during sitting and transferring.⁶ The synchronized activity of trunk muscles is necessary for maintaining dynamic balance. In addition, proper trunk muscle control is essential in stabilizing distal limbs.⁷ Muscle weakness of lower limbs is associated with a decreased standing balance control.⁸ Impaired trunk control and core muscle weakness attenuate balance and physical function in individuals after stroke.⁹ Therefore, achieving effective core trunk stability is crucial to improving balance ability after stroke. The cerebellum, a central brain structure located in posterior cranial fossa, works in concert with the cerebral cortex, brainstem, and spinal cord and is involved in motor control.¹⁰¹¹ It

consists of two lateral hemispheres and a cerebellar vermis. Cerebellar vermis is a cardinal structure involved in balance and motor processing,^{12 13} which is responsible for regulating the trunk, head, neck and proximal limb muscles to control posture and maintain balance.¹⁴ And balance dysfunction in cerebellar disorders is most likely caused by lesions of the medial zone of the cerebellum.¹⁵ At present, the main clinical interventions to improve the balance function in stroke rehabilitation are muscle strength training or balance training. It has a great potential to activate the cerebellar vermis in the central nervous system through the neuromodulation with non-invasive brain stimulation to enhance the balance function in stroke patients.

Repetitive transcranial magnetic stimulation (rTMS) is a safe, reliable, and standardized noninvasive brain activity modulation strategy to regulate cortical excitability and facilitate neural

BMJ Open

plasticity.¹⁶ Intermittent theta-burst stimulation (iTBS) is a novel form of rTMS, which can produce long-term potentiation and is more rapid and efficacious than standard rTMS.¹⁷ Our group recently provided evidence that iTBS of the cerebellar hemisphere could promotes upper limb spasticity, balance, and walking performance recovery in post-stroke patients.¹⁸⁻²⁰ However, no study has demonstrated the therapeutic effect and potential mechanism of cerebellar vermis iTBS on balance in individuals with stroke since now. Preliminary pilot study conducted by us found that cerebellar vermis iTBS contributed to increasing the excitability of the bilateral supplementary motor areas (SMA) during balance tasks in healthy adults.21

Objective

A randomized controlled double-blind trial is conducted to determine the effects of cerebellar vermis iTBS on trunk control, muscle activation and balance function in subacute stroke patients since no clinical research have been reported to verify the effectiveness of cerebellar vermis iTBS stimulation. We hypothesize that cerebellar vermis iTBS can promote the activation of trunk and lower limbs muscles, and increase the excitability of SMA to improve trunk control and balance function in patients with subacute stroke.

109 Methods

110 Study design and setting

111 This study is a prospective single-center double-blind randomized controlled clinical trial

112 with 3-week intervention and 3-week follow-up. The protocol is strictly followed the standard

- 113 protocol guidelines: SPIRIT 2013 Statement.²² Eligible participants will be randomly
- allocated in a 1:1 ratio to the experimental group or control group, respectively. After routine
- 2 115 conventional physical therapy, patients assigned to the experimental group will receive

cerebellar vermis iTBS whereas patients assigned to the control group will receive sham stimulation. The overall intervention periods are five days a week for three consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks post-intervention (T1), and 3 weeks follow-up (T3). The whole study will be performed at the Department of Rehabilitation Medicine of Sichuan University West China Hospital (Chengdu, Sichuan Province, China). Figure 1 shows the flow diagram of the study design. We plan to start subject recruitment on the 15th of July 2022 and complete the trial in December 2024. Figure 2 illustrates the study schedule. Sample size calculation The sample size calculation was conducted via G*power of 3.1.9.2 based on the result of Berg balance scale (BBS) score in our published study, which indicated an estimated effect size f =0.38.¹⁹ Other parameters were set as follows: significance level α =0.05 (two tails), power $(1-\beta) = 90\%$, correlation among repeated measures = 0.5, nonsphericity correction $\varepsilon = 1$, number of measurements=3, and number of groups=2. Therefore, the sample size of n=40 was obtained. After allowing for a 15% dropout rate, a minimum total of 46 participants are needed. **Participants** Recruitment The participants will be recruited from the Department of Rehabilitation Medicine of Sichuan University West China Hospital in Chengdu, Sichuan Province, China. After carefully screening the inclusion and exclusion criteria, voluntary participants are required to provide written informed consent before the experiment. **Inclusion** criteria

2					
3 4 5 6 7 8 9 10 11 12 13 14 15	141	Participants will be considered for inclusion if they meet the following criteria:			
	142	(1) A diagnosis of a stroke according to the <i>Diagnostic criteria of cerebrovascular diseases in</i>			
	143	China (version 2019). ²³			
	144	(2) Aged between 18 and 65 years.			
	145	(3) First-ever unilateral stroke confirmed by imaging examination.			
	146	(4) Subacute stroke participants with the stroke onset ranged from 2 weeks to 6 months. ¹⁸			
16 17 18	147	(5) Having motor deficit and balance dysfunction, with the Fugl-Meyer assessment scale			
19 20	148	score for lower extremities (FMA-LE) <34 points and BBS score <56 points. ¹⁹			
21 22	149	Exclusion criteria			
23 24 25	150	Participants will be excluded if they meet any of the following criteria:			
26 27	151	(1) Diagnosis of coexisting other neurological diseases.			
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	152	(2) Injury of cerebellum or brain stem.			
	153	(3) Having contraindications of iTBS (e.g., history of seizures, intracranial metallic implants,			
	154	microprocessor implants in the body, suffering from tumorous, and pregnancy)			
	155	(4) Cognitive impairment with the mini-mental state examination (MMSE) score<27.			
	156				
	157	Interventions			
	158	All enrolled participants will receive 1 session of cerebellar vermis iTBS or sham stimulation			
	159	from Monday to Friday, always before routine conventional physical therapy, for a total of 15			
	160	sessions. The experimental group patients will receive cerebellar vermis iTBS coupled with			
	161	conventional physical therapy, and the control group patients will receive sham stimulation			
	162	coupled with conventional physical therapy. The whole intervention period will last three			
	163	consecutive weeks in total.			
55 56 57	164				
58 59	165	Cerebellar vermis iTBS stimulation			
60		7			

The stimulation protocol will strictly adhere to the safety guidelines and recommendations endorsed by the International Federation for Clinical Neurophysiology in 2021.²⁴ We will use a Magstim Rapid2 stimulator (The Magstim Company Limited) connected to a 70 mm figure-of-8 Double Rapid2 Air Cooled Coil (P/N 3910-00) to stimulate the cerebellar vermis (Figure 3). The center of the coil will be placed tangentially to the target scalp and the coil current direction will point downward, iTBS is applied over the cerebellar vermis, 1 cm inferior to the inion.²⁵ We will use a neuronavigation system (BrainSightt, Rogue Research Inc.) coupled with a Polaris Vicra infrared camera to ensure that cerebellar vermis iTBS is applied over the same spot across different sessions in the same participant (Figure 3). The pattern of iTBS consists of 600 pulses containing 3 pulses at 50Hz repeated at a rate of 5Hz, with 20 trains of 10 bursts given at 8s intervals.²⁶ The standard stimulus intensity is set at 80% of the active motor threshold (AMT), which is the lowest intensity evoking at least five out of ten motor-evoked potentials (MEP) with a peak to peak amplitude >200 μ V in the abductor pollicis brevis muscle during 10% of maximum voluntary contraction measuring by a dynamometer.²⁰ If the participant cannot tolerate the preset standard stimulus intensity, the stimulator output intensity is set to the participant's maximum tolerated intensity (MTI).²⁷

183 Sham stimulation

In the control group, participants are treated identically except for using the Magstim's sham coil (P/N 3950-00) to realize the sham stimulation.²⁸ The sham coil has the same external appearance, parameters and application methods to simulate the sensation produced by the real coil without induction of a magnetic field. Therefore, it can sufficiently ensure that the patients remain blind to the intervention.

190 Conventional physical therapy

Page 9 of 46

1

BMJ Open

After receiving cerebellar vermis iTBS or sham stimulation, all participants will receive

2 3 4	191
5 6	192
7 8	193
9 10 11	194
12 13	195
14 15	196
16 17 18	197
19 20	198
21 22	199
23 24 25	200
25 26 27	201
28 29	202
30 31 32	203
32 33 34	204
35 36	205
37 38	206
39 40 41	207
42 43	208
44 45	209
46 47 48	210
49 50	211
51 52	212
53 54 55	213
55 56 57	214
58 59	215
60	

conventional physical therapy, including limb positioning, balance exercise, trunk control, postural and transfer training, lasting 50 min per session during intervention phase. Discontinuing allocated interventions criteria Participants will stop receiving any interventions if any of the following events occurs: (1) Serious adverse events happen during the stimulation, such as epilepsy, severe headache, persistent tinnitus and syncope. (2) Participants withdraw from the trial. (3) Participants are not compliant with the allocation and intervention plan. (4) Participants join in extra studies during the trial. (5) Group exposure for participants and outcomes evaluators lead to the failure of blindness. *Improving adherence strategies* In order to improve the participant compliance, the researcher in charge of the trial will contact the participants regularly to clarify the rehabilitation progress and discuss the subsequent physical therapy program. Additionally, patients who complete the entire procedure in accordance with the protocol are to be provided with a subject fee and an additional free rehabilitation consultation. Once the participant drops out, the specific reasons for withdrawal will be recorded. **Outcome Measures** At the day of enrollment, the basic characteristics information of participants, including age, gender, type of stroke, lesion site, course of diseases, degree of neurological deficit assessed by National Institutes of Health Stroke Scale (NIHSS), and cognitive function assessed by 9

216	MMSE, are documented. The outcome assessments are performed at the treatments site before
217	intervention as a baseline (T0), after 3 weeks of intervention (T1) and after 3 weeks of follow-
218	up (T3). The primary outcomes are BBS and trunk impairment scale (TIS) scores. The
219	secondary outcomes are balance tests via the Balance Master system, muscle activation of
220	trunk and lower limbs via the surface electromyography (sEMG) recording, cerebral cortex
221	oxygen concentrations via the resting-state functional near-infrared spectroscopy (fNIRS),
222	FMA-LE scores, and Barthel index (BI) scores. Each assessment is performed by a
223	professional clinician or by a qualified physical therapist who is blinded to the experimental
224	condition of the participant.
225	Primary outcomes
226	1. BBS
227	The BBS is a well-validated scale of balance among individuals with neurological disease. ²⁹ It
228	has high reliability and internal validity, with the intraclass correlation coefficient (ICC) for
229	inter-measure reliability and intra-measure reliability is 0.97 and 0.98, respectively. ³⁰ This
230	scale is a 14-item measure with a total score of 56, and the score of each item ranges from 0
231	(poor balance) to 4 (good balance). ³¹
232	2. TIS
233	TIS is a scale designed to assess motor impairment of the trunk after stroke, illustrating the
234	most promising performance in psychometric properties with satisfactory reliability and
235	validity. ³² It is a 17-item scale with a total score rates from 0 to 23 points to evaluate static
236	and dynamic sitting balance and trunk coordination for stroke patients. ³³ A higher score
237	indicates better trunk control.
238	
239	Secondary outcomes
0.40	

1. balance tests via the Balance Master system

BMJ Open

 The assessments of dynamic balance and postural control abilities are performed by sensory
organization test (SOT), limits of stability (LOS), and rhythmic weight shift (RWS) via the
Smart Equitest Balance Master System® (NeuroCom Int., Inc., Clackamas, Oregon, USA).
(Figure 4)

1.1 SOT: The SOT evaluates postural control when participants undergo different somatosensory, visual, and vestibular feedback perturbations. When testing, inaccurate interference information delivered to the patient's eyes, feet, and joints are controlled through calibrated sway referencing of the support surface and/or visual surround. The participant is required to maintain balance to keep their center of gravity (COG) as steady as possible. A composite equilibrium score is provided to characterize the participant's overall level of performance through six conditions described in Table 1. During SOT, each trial lasts for 20 s and is repeated three times.^{34 35}

 Table 1. Sensory organization test

Condition	Vision	Surface	Surround	Interference
1	Eyes open	Stable	Fixed	Null
2	Eyes closed	Stable	Fixed	Vision
3	Eyes open	Stable	Unfixed	Vision
4	Eyes open	Unstable	Fixed	Somatosensation
5	Eyes closed	Unstable	Fixed	Somatosensation and Vision
6	Eyes open	Unstable	Unfixed	Somatosensation and Vision

1.2 LOS: The LOS quantifies the voluntary ability to shift the COG towards eight different
directions, which are forward, forward-right, right, backward-right, backward, backward-left,
left, and forward -left. When the test is performed, a real-time display of their COG position
in relation to targets placed at the center of the base of support and the stability limits is
shown. Once the command is given, the participant needs to move the COG as quickly (up to
8 seconds) and accurately as possible from a central position out towards one of eight

260 targets.³⁶

1.3 RWS: The RWS evaluates the participant's ability to perform rhythmic movements of
their COG moves from left to right (lateral) and forward to backward (anterior/posterior)
between two targets at three different speeds (slow, medium and fast).³⁷ Movement velocity
and directional control are measured in each direction and speed.

266 2. sEMG recordings

The sEMG recordings will be conducted in accordance with SENIAM guidelines.³⁸ A 20-channel wireless BTS-FREEEMG 300 (BTS Biomechanics Ltd, Italy) is used to collect the sEMG signals of the following muscles: bilateral rectus abdominis (RA), external oblique muscle (EO), erector spinae (longissimus), rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) and soleus (Table 2 and Figure 5 illustrate the sensor locations on individual muscles). Before starting, the skin should be cleaned using 75% alcohol and would be shaved if needed to ensure a maximum skin impedance below $5k\Omega$. After skin preparation, the participant has to be placed in the starting posture that depends on the muscle at which the electrodes will be placed. A pair of pre-gelled electrodes certified for a medical use and complying with the directive 93/42/EEC (amended by 2007/47/EC) are placed on the belly of the target muscle with an interelectrode distance of 2 cm.³⁹ When the electrodes are placed and fixed, a certified physical therapist will teach the patient to perform the maximum voluntary isometric contraction (MVIC) of the target muscle. For individual muscles, we will record three 3s trails of MVIC with a 2min rest between each trail. sEMG signals are sampled at 1000 Hz. Collected data are synchronously transmitted to a BTS EMG-Analyzer (BTS Bioengineering) with the band-pass filtered from 20 to 500Hz. We will rectify and filter the recorded signal and extract the data of averaged electromyography (AEMG), root mean square (RMS), mean power frequency (MPF) and median frequency

1 2		
- 3 4	285	(MF) for subsequent analyses.
7 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 0 12 23 24 5 22 22 22 22 22 23 33 33 35 36 7 8 9 0 12 34 45 6 7 8 9 0 12 23 45 26 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	286	

Table 2. The sensor locations of sEMG on individual muscles*

Muscle	Starting posture of participant	Electrode placement		
		Location	Orientation	
RA	Supine or standing	At 2cm superior and 2-4cm lateral to the umbilicus	Vertical	
EO	Supine or standing	At 2 finger width above the anterior half of the iliac crest	In the direction of the line from the outside of the 5-12 ribs to the anterior half of the iliac crest	
longissimus	Prone with the lumbar vertebral columns slightly flexed	At 2 finger width lateral from the proc. spin. of L1.	Vertical	
RF	Sitting on a table with the knees in slight flexion and the upper body slightly bend backward	At 50% on the line from the anterior spina iliaca superior to the superior part of the patella	In the direction of the line from the anterior spina iliaca superior to the superior part of the patella	
BF	Lying on the belly with the face down with the thigh down on the table and the knees flexed (to less than 90 degrees) with the thigh in slight lateral rotation and the leg in slight lateral rotation with respect to the thigh	At 50% on the line between the ischial tuberosity and the lateral epicondyle of the tibia	In the direction of the line between the ischial tuberosity and the latera epicondyle of the tibia	
ТА	Supine or sitting	At 1/3 on the line between the tip of the fibula and the tip of the medial malleolus	In the direction of the line between the tip of the fibula and the tip of the medial malleolus	
		14		
	For peer review only - http:/	/bmjopen.bmj.com/site/about/guidelines.xhti	ml	

Page '	15	of	46
--------	----	----	----

1 2 3 4 5 6 7		soleus	Sitting with the knee approximately 90 degrees flexed and the heel / foot of the investigated leg on the floor	At 2/3 of the line between the medial condylis of the femur to the medial malleolus	In the direction of the line between the medial condylis to the medial malleolus
8 9		Abbreviatio	ons: sEMG, surface electromyography; RA, rectus	abdominis; EO, external oblique muscle;	RF, rectus femoris; BF, biceps
10 11		femoris; TA	A, tibialis anterior.		
12 13 14		* According	g to the SENIAM recommendations for sensor loc	eations for muscles.	
14 15 16	287				
17 18	288				
19 20					
21 22					
23 24 25					
25 26 27					
28 29					
30 31					
32 33					
34 35					
36 37 38					
38 39 40				45	
41 42				15	
43 44			For peer review only - http	p://bmjopen.bmj.com/site/about/guidelines.xhtr	ml
45 46					

3. resting-state fNIRS

A multichannel fNIRS system with 24 sources and 24 detectors (NirScan, HuiChuang, China) will be used to record changes of oxygenated hemoglobin (HbO2), deoxygenated Hb and total Hb of the cerebral cortex when the participant is at rest. Relevant parameters are set as follows: the wavelengths are between 730 and 850 nm, the source-detector distance is 3 cm, and the sampling frequency is over 11Hz. The international 10/20 system is referenced for identifying optodes on the bilateral prefrontal and parietal lobes.⁴⁰ Collected fNIRS data are analyzed by the NirSpark software package with the band-pass filtered from 0.01 to 0.1 Hz. Extract the mean HbO2 value of each channel for statistical analyses.

299 4. FMA-LE

The lower extremity function of stroke patients is assessed by FMA-LE, which has good interrater reliability and concurrent validity.⁴¹ The maximum score of this 17-item scale is 34. Each item is scored on a 3-point ordinal scale, with 0 for inability, 1 for partial ability, and 2 for full ability to perform the required movement.⁴²

305 5. BI

The BI is a self-reported scale comprised of 10 items, including bathing, grooming, bladder management, bowel management, dressing, feeding, toilet use, transfers, ascending and descending stairs, and walking, to measure the basic activities of daily living (ADL). ⁴³ The total scores vary from 0 (totally dependent) to 100 (independent). This scale has good clinimetric properties and excellent inter-rater reliability with standardized administration in stroke patients.^{18 44}

313 Safety measurement

Page 17 of 46

1

BMJ Open

2		
3 4	314	Possible stimulation-related adverse events, such as headache, nausea, neck pain, seizure,
5 6	315	mood changes, fatigue, tinnitus, dizziness, sleepiness and syncope, are listed in the informed
7 8 9	316	consent. An adverse reaction record is used to monitor and report in detail after each
9 10 11	317	stimulation. In addition, any adverse events related to in conventional physical therapy will be
12 13	318	also recorded using the adverse event case report form (CRF).
14 15	319	
16 17 18	320	Randomization and blinding
19 20	321	The study is a randomized, double-blind, sham-controlled trial. Enrolled participants are
21 22	322	randomly signed based on the computer-generated random numbers that are concealed in
23 24 25	323	opaque numbered envelopes and opened in numerical order by a neutral non-involved
25 26 27	324	researcher. We plan to blind the participants and evaluators. Once blinding fails, the
28 29	325	participant will be removed. The sham coil is used to ensure the patients are blinded to the
30 31	326	intervention. Outcome evaluations will be conducted by a professional clinician or by a
32 33 34	327	qualified physical therapist who is blinded to the group assignment. An independent
35 36	328	researcher is designated to complete the data analysis. Unblinding will be carried out after the
37 38	329	data analysis is completed. In case of serious adverse events happen during interventions,
39 40 41	330	emergency unblinding will be also implemented.
42 43	331	
44 45	332	Data management and analysis
46 47 48	333	Data management
48 49 50	334	Data will be recorded on CRFs in a timely, complete and accurate manner. Two researchers
51 52	335	independently input data into the Excel software of computer and proofread each other. Thus,
53 54	336	electronic data will be stored and available by the relevant researcher only. The West China
55 56 57	337	Hospital Clinical Trials and Biomedical Ethics Committee of Sichuan University are
58 59	338	responsible for monitoring the safety and process of the study and has the right to terminate
60		17

the trial if serious advent events happened. All procedures will comply with theconfidentiality standards for medical data.

342 Statistical analysis

Statistical analyses will be performed using GraphPad Prism 8.4.3 (GraphPad Software, Inc., La Jolla, CA, USA) based on the Intention-To-Treat (ITT) principle. Missing data are imputed using the last observation carried forward approach. The Shapiro-Wilk test is conducted to evaluate the normal distribution of data. The level of significance is set at $\alpha =$ 0.05. Continuous variables, ordinal variables, and categorical variables are presented as mean (±standard deviation, SD), medians (interquartile range, IQR), and number (percentage, %), respectively. Based on different types of data, the independent-samples t test, Mann–Whitney U test, and chi-square test are used to compare the demographic and baseline data between groups. The two-way mixed measures analysis of variance (ANOVA) with group as a between-individual factor and time as a within-individual factor is performed for outcome measures analyses. Nonsphericity correct is conducted using the Greenhouse-Geisser correction if necessary, and Tukey's *post hoc* multiple comparison test is applied.

Patient and public involvement

Patients and the public are not involved in the study design, recruitment, implementation or
report. However, the study results will be disseminated to the public through academic papers
and conferences.

361 Ethical approval, trial registration and dissemination

The study was approved by the West China Hospital Clinical Trials and Biomedical Ethics
 Committee of Sichuan University on May 19, 2022 (ethics reference: 2022 (573)), and will be

Page 19 of 46

1 2

BMJ Open

3			
4			
5			
6			
7			
/ ი			
8			
9			
	0		
	1		
1	2		
1	3		
1			
	5		
	6		
	2		
1	/		
	8		
	9		
	0		
2	1		
2	2		
	3		
	4		
	5		
	6		
2			
	8		
2	9		
3	0		
3	1		
3			
	3		
	3 4		
	5		
	6		
	7		
3	8		
3	9		
4	0		
4	1		
4			
4			
	4		
	5		
	6		
4	7		
4	8		
4	9		
	0		
5	1		
5	2		
5	2 3		
с Г	د م		
5	4		
5	5		
5	6		
5			
5	8		
5	9		

60

364 conducted in accordance with the Declaration of Helsinki.

This protocol was registered on June 16, 2022, in the Chinese Clinical Trial Registry with the registration number is ChiCTR2200061225. All participants will be fully informed of the study procedures and sign the informed consent voluntarily before inclusion (see Appendix). The private information of all participants will be kept confidential through securing in a locked cabinet and only accessible to researchers of the study. However, the results of this study will be published in peer-reviewed journals and disseminated in academic conferences.

372 **Discussion**

371

At present, there is no research has revealed the effect and potential mechanism of cerebellar
vermis iTBS stimulation on balance in subacute stroke patients. This prospective single-center
double-blind randomized controlled clinical trial with 3-week intervention and 3-week
follow-up is designed to confirm its effectiveness.

Our study will comprehensively assess the trunk control and balance function by clinical 377 378 scales, balance tests via the Smart Equitest Balance Master System and sEMG measurements. 379 Additionally, we will also collect the concentration of HbO2 in cerebral cortex via the restingstate fNIRS. Integrated data results sufficiently verify the research hypothesis. 380 381 For trunk control, the scores of TIS reveal the motor impairment of the trunk for stroke patients. sEMG signal reflects the activation of muscles directly and contains information 382 about movement intention generated by the brain.⁴⁵ AEMG represents the degree of muscle 383 384 activation and the synchronization of activated motor units. RMS quantifies the effort of the muscle. MPF and MF are kinds of frequency domain features and indicate muscle fatigue.⁴⁶⁴⁷ 385

386 For balance function, the scores of BBS reflect the overall performance of static and dynamic

387 balance. Accurate integration of sensory information is critical to maintaining balance. The

388 composite equilibrium score of SOT characterizes the impairments of individual sensory

systems.⁴⁸ Ability to voluntarily move the COG within the LOS is fundamental to mobility tasks. By LOS test, reaction time, movement velocities and excursions are recorded to measure the voluntary ability to shift the COG without losing balance. Reaction time reflects the ability of cognitive processing. Movement velocities indicate the high-level central nervous system function. Excursions can be restricted by biomechanical deficits.⁴⁹ Overall, limitations in the LOS are associated with instability during weight-shifting activities. RWS measures movement velocity and directional control during rhythmic movements. Rhythmic, reciprocal movement patterns are required in daily activities. Stroke patients with disrupted normal rhythmic movement control are exhibit reduced velocities and/or poor directional control ability.⁵⁰

For cortical activation, fNIRS is a widespread non-invasive measurement which provides
real-time monitoring hemodynamic signals to reflect the changes of brain activation.⁵¹
Increased HbO2 is positively correlated with cortical excitability. Besides, balance function
and postural stability are positively related to the changes of HbO2 signals in the bilateral
SMA in stroke patients.⁵² Additionally, our previous work have revealed single-session
cerebellar vermis iTBS can increase the bilateral SMA excitability during the balance tasks in
healthy adults.²¹

We hypothesize that cerebellar vermis iTBS can promote the activation of muscles in trunk and lower limbs, and increase the excitability of SMA to improve trunk control and balance function in patients after stroke. Cerebellar vermis plays an important role in balance and motor control. SMA contributes to anticipatory postural adjustments and postural stability during gait initiation.⁵³ iTBS consists of high-frequency stimulation bursts to strongly modulate the neural activity of cerebellar vermis. Given that studies in humans have shown iTBS drives acute changes to motor behavior and neuronal excitability.⁵⁴ The possible mechanism has been reported by an animal study that iTBS can promote neural structural

Page 21 of 46

1	
2 3 4	414
5 6	415
7 8	416
9 10 11	417
12 13	418
14 15	419
16 17 18	420
19 20	421
21 22	422
23 24 25	423
26 27	424
28 29	425
30 31 32	426
33 34	427
35 36 37	428
37 38 39	429
40 41	430
42 43 44	431
44 45 46	432
47 48	433
49 50 51	434
52 53	435
54 55 56	436
50 57 58	437
59	438
60	

414	remodeling and functional recovery by enhancing neurogenesis and migration via miR-551b-
415	5p/BDNF/TrkB pathway.55 The study of cerebellar vermis stimulation was first reported in
416	1995, which investigated its effects on saccade metrics in man via TMS. ⁵⁶ At present,
417	researchers reported that cerebellar vermis is a safe and well-tolerated brain stimulation
418	technology having a potential therapeutic effect on schizophrenia.57 In addition, cerebellar
419	vermis rTMS can induce a suppressive effect on pharyngeal motor cortical activity and
420	swallowing behavior.58 However, limited researches have reported that cerebellar vermis
421	plays an important role in postural response and balance stability. ^{13 59} Therefore, we hopefully
422	identify the effectiveness of cerebellar vermis iTBS in trunk control and balance function for
423	subacute stroke individuals. Our results may provide valuable information to develop a novel
424	treatment method for the rehabilitation of balance dysfunction after stroke.
425	
426	Author contributions: Conceptualization, validation, and original draft: YC.
426 427	Author contributions: Conceptualization, validation, and original draft: YC. Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG
427	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG
427 428	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was
427 428 429	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was
427 428 429 430	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was responsible for the manuscript. All authors read and approved the final manuscript.
427 428 429 430 431	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was responsible for the manuscript. All authors read and approved the final manuscript. Funding: This work was supported by the National Natural Science Foundation of China
427 428 429 430 431 432	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was responsible for the manuscript. All authors read and approved the final manuscript. Funding: This work was supported by the National Natural Science Foundation of China
427 428 429 430 431 432 433	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was responsible for the manuscript. All authors read and approved the final manuscript. Funding: This work was supported by the National Natural Science Foundation of China grant number NSFC 82172540.

1 2		
3 4	439	References
5	440	1. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and
6 7	441	injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-
8 9	442	2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet
10	443	2018;392(10159):1859-922. doi: 10.1016/s0140-6736(18)32335-3 [published Online
11 12	444	First: 2018/11/13]
13 14	445	2. Hankey GJ. Stroke. Lancet 2017;389(10069):641-54. doi: 10.1016/s0140-6736(16)30962-x
15 16	446	[published Online First: 2016/09/18]
17	447	3. Komiya M, Maeda N, Narahara T, et al. Effect of 6-Week Balance Exercise by Real-Time
18 19	448	Postural Feedback System on Walking Ability for Patients with Chronic Stroke: A
20 21	449	Pilot Single-Blind Randomized Controlled Trial. Brain Sci 2021;11(11) doi:
22	450	10.3390/brainsci11111493 [published Online First: 2021/11/28]
23 24	451	4. Zhang Y, Wang C, Yang J, et al. Comparing the Effects of Short-Term Liuzijue Exercise
25 26	452	and Core Stability Training on Balance Function in Patients Recovering From Stroke:
27	453	A Pilot Randomized Controlled Trial. Front Neurol 2022;13:748754. doi:
28 29	454	10.3389/fneur.2022.748754 [published Online First: 2022/03/05]
30 31	455	5. Chen Y, Gao Q, He CQ, et al. Effect of Virtual Reality on Balance in Individuals With
32	456	Parkinson Disease: A Systematic Review and Meta-Analysis of Randomized
33 34	457	Controlled Trials. Phys Ther 2020;100(6):933-45. doi: 10.1093/ptj/pzaa042 [published
35 36	458	Online First: 2020/03/12]
37	459	6. Luque-Moreno C, Kiper P, Solís-Marcos I, et al. Virtual Reality and Physiotherapy in Post-
38 39	460	Stroke Functional Re-Education of the Lower Extremity: A Controlled Clinical Trial
40 41	461	on a New Approach. J Pers Med 2021;11(11) doi: 10.3390/jpm11111210 [published
42 43	462	Online First: 2021/11/28]
44	463	7. Marchesi G, Ballardini G, Barone L, et al. Modified Functional Reach Test: Upper-Body
45 46	464	Kinematics and Muscular Activity in Chronic Stroke Survivors. Sensors (Basel)
47 48	465	2021;22(1) doi: 10.3390/s22010230 [published Online First: 2022/01/12]
49	466	8. Schröder J, Saeys W, Yperzeele L, et al. Time Course and Mechanisms Underlying
50 51	467	Standing Balance Recovery Early After Stroke: Design of a Prospective Cohort Study
52 53	468	With Repeated Measurements. Front Neurol 2022;13:781416. doi:
54 55	469	10.3389/fneur.2022.781416 [published Online First: 2022/03/11]
56	470	9. Karthikbabu S, Verheyden G. Relationship between trunk control, core muscle strength and
57 58	471	balance confidence in community-dwelling patients with chronic stroke. <i>Top Stroke</i>
59 60		
50		22

1		
2 3	472	Rehabil 2021;28(2):88-95. doi: 10.1080/10749357.2020.1783896 [published Online
4 5	473	First: 2020/06/24]
6 7	474	10. D'Angelo E. Physiology of the cerebellum. <i>Handb Clin Neurol</i> 2018;154:85-108. doi:
8	475	10.1016/B978-0-444-63956-1.00006-0 [published Online First: 2018/06/16]
9 10	476	11. Roostaei T, Nazeri A, Sahraian MA, et al. The human cerebellum: a review of physiologic
11 12	477	neuroanatomy. Neurol Clin 2014;32(4):859-69. doi: 10.1016/j.ncl.2014.07.013
13 14	478	[published Online First: 2014/12/03]
15	479	12. De Bartolo P, Florenzano F, Burello L, et al. Activity-dependent structural plasticity of
16 17	480	Purkinje cell spines in cerebellar vermis and hemisphere. Brain structure & function
18 19	481	2015;220(5):2895-904. doi: 10.1007/s00429-014-0833-6 [published Online First:
20 21	482	2014/07/16]
22	483	13. Lam CK, Tokuno CD, Staines WR, et al. The direction of the postural response to a
23 24	484	vestibular perturbation is mediated by the cerebellar vermis. Exp Brain Res
25 26	485	2016;234(12):3689-97. doi: 10.1007/s00221-016-4766-6 [published Online First:
27 28	486	2016/09/08]
29	487	14. Marfeo A. Neuroanatomy Through Clinical Cases: Inc. Publishers 2010.
30 31	488	15. Ilg W, Giese MA, Gizewski ER, et al. The influence of focal cerebellar lesions on the
32 33	489	control and adaptation of gait. Brain 2008;131(Pt 11):2913-27. doi:
34 35	490	10.1093/brain/awn246 [published Online First: 2008/10/07]
36	491	16. Ille S, Kelm A, Schroeder A, et al. Navigated repetitive transcranial magnetic stimulation
37 38	492	improves the outcome of postsurgical paresis in glioma patients - A randomized,
39 40	493	double-blinded trial. Brain Stimul 2021;14(4):780-87. doi: 10.1016/j.brs.2021.04.026
41 42	494	[published Online First: 2021/05/14]
43	495	17. Chen SC, Yang LY, Adeel M, et al. Transcranial electrostimulation with special
44 45	496	waveforms enhances upper-limb motor function in patients with chronic stroke: a pilot
46 47	497	randomized controlled trial. J Neuroeng Rehabil 2021;18(1):106. doi:
48 49	498	10.1186/s12984-021-00901-8 [published Online First: 2021/07/02]
50	499	18. Chen Y, Wei QC, Zhang MZ, et al. Cerebellar Intermittent Theta-Burst Stimulation
51 52	500	Reduces Upper Limb Spasticity After Subacute Stroke: A Randomized Controlled
53 54	501	Trial. Front Neural Circuits 2021;15:655502. doi: 10.3389/fncir.2021.655502
55	502	[published Online First: 2021/11/16]
56 57	503	19. Liao LY, Xie YJ, Chen Y, et al. Cerebellar Theta-Burst Stimulation Combined With
58 59	504	Physiotherapy in Subacute and Chronic Stroke Patients: A Pilot Randomized
60		23

1		
2 3	505	Controlled Trial. Neurorehabil Neural Repair 2021;35(1):23-32. doi:
4 5	506	10.1177/1545968320971735 [published Online First: 2020/11/10]
6 7	507	20. Xie YJ, Wei QC, Chen Y, et al. Cerebellar Theta Burst Stimulation on Walking Function
8 9	508	in Stroke Patients: A Randomized Clinical Trial. Front Neurosci 2021;15:688569. doi:
10	509	10.3389/fnins.2021.688569 [published Online First: 2021/11/13]
11 12	510	21. Tan H-X, Wei Q-C, Chen Y, et al. The Immediate Effects of Intermittent Theta Burst
13 14	511	Stimulation of the Cerebellar Vermis on Cerebral Cortical Excitability During a
15	512	Balance Task in Healthy Individuals: A Pilot Study. Frontiers in Human Neuroscience
16 17	513	2021;15 doi: 10.3389/fnhum.2021.748241
18 19	514	22. Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard
20 21	515	protocol items for clinical trials. Ann Intern Med 2013;158(3):200-7. doi:
22	516	10.7326/0003-4819-158-3-201302050-00583 [published Online First: 2013/01/09]
23 24	517	23. Chinese Society of Neurology CSS. Diagnostic criteria of cerebrovascular diseases in
25 26	518	China (version 2019). Chinese Journal of Neurology 2019;52(09):710-15. doi:
27 28	519	10.3760/cma.j.issn.1006?7876.2019.09.003
29	520	24. Rossi S, Antal A, Bestmann S, et al. Safety and recommendations for TMS use in healthy
30 31	521	subjects and patient populations, with updates on training, ethical and regulatory
32 33	522	issues: Expert Guidelines. Clin Neurophysiol 2021;132(1):269-306. doi:
34 35	523	10.1016/j.clinph.2020.10.003 [published Online First: 2020/11/28]
36	524	25. Garg S, Sinha VK, Tikka SK, et al. The efficacy of cerebellar vermal deep high frequency
37 38	525	(theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A
39 40	526	randomized rater blind-sham controlled study. Psychiatry Res 2016;243:413-20. doi:
41 42	527	10.1016/j.psychres.2016.07.023 [published Online First: 2016/07/28]
43	528	26. Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor
44 45	529	cortex. Neuron 2005;45(2):201-6. doi: 10.1016/j.neuron.2004.12.033 [published
46 47	530	Online First: 2005/01/25]
48	531	27. Spampinato D, Ibáñez J, Spanoudakis M, et al. Cerebellar transcranial magnetic
49 50	532	stimulation: The role of coil type from distinct manufacturers. Brain Stimul
51 52	533	2020;13(1):153-56. doi: 10.1016/j.brs.2019.09.005 [published Online First:
53 54	534	2019/10/22]
55	535	28. Kumar N, Vishnubhatla S, Wadhawan AN, et al. A randomized, double blind, sham-
56 57	536	controlled trial of repetitive transcranial magnetic stimulation (rTMS) in the treatment
58 59	537	of negative symptoms in schizophrenia. Brain Stimul 2020;13(3):840-49. doi:
60		24

Page 25 of 46

1		
2 3	538	10.1016/j.brs.2020.02.016 [published Online First: 2020/04/15]
4 5	539	29. Meseguer-Henarejos AB, Rubio-Aparicio M, López-Pina JA, et al. Characteristics that
6 7	540	affect score reliability in the Berg Balance Scale: a meta-analytic reliability
8	541	generalization study. Eur J Phys Rehabil Med 2019;55(5):570-84. doi:
9 10	542	10.23736/s1973-9087.19.05363-2 [published Online First: 2019/04/09]
11 12	543	30. Hyun SJ, Lee J, Lee BH. The Effects of Sit-to-Stand Training Combined with Real-Time
13 14	544	Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients
15	545	with Stroke: A Randomized Controlled Trial. Int J Environ Res Public Health
16 17	546	2021;18(22) doi: 10.3390/ijerph182212229 [published Online First: 2021/11/28]
18 19	547	31. Chou HY, Lo YC, Tsai YW, et al. Increased Anxiety and Depression Symptoms in Post-
20 21	548	Acute Care Patients with Stroke during the COVID-19 Pandemic. Int J Environ Res
22	549	Public Health 2021;19(1) doi: 10.3390/ijerph19010162 [published Online First:
23 24	550	2022/01/12]
25 26	551	32. Zhao J, Chau JPC, Zang Y, et al. Psychometric properties of the Chinese version of the
27 28	552	Trunk Impairment Scale in people with a stroke. Health Qual Life Outcomes
29	553	2021;19(1):85. doi: 10.1186/s12955-021-01730-y [published Online First:
30 31	554	2021/03/12]
32 33	555	33. Thijs L, Voets E, Wiskerke E, et al. Technology-supported sitting balance therapy versus
34 35	556	usual care in the chronic stage after stroke: a pilot randomized controlled trial. J
36	557	Neuroeng Rehabil 2021;18(1):120. doi: 10.1186/s12984-021-00910-7 [published
37 38	558	Online First: 2021/07/30]
39 40	559	34. Yin L, Liu K, Liu C, et al. Effect of Kinesiology Tape on Muscle Activation of Lower
41	560	Extremity and Ankle Kinesthesia in Individuals With Unilateral Chronic Ankle
42 43	561	Instability. Front Physiol 2021;12:786584. doi: 10.3389/fphys.2021.786584
44 45	562	[published Online First: 2022/01/04]
46 47	563	35. Bultitude JH, Pidgeon DM, LeBlanc PR, et al. Two weeks of twice-daily prism adaptation
48	564	treatment does not improve posture or gait in Parkinson's disease: a double-blind
49 50	565	randomized controlled trial. Trials 2021;22(1):846. doi: 10.1186/s13063-021-05832-2
51 52	566	[published Online First: 2021/11/27]
53 54	567	36. Kolářová B, Janura M, Svoboda Z, et al. Postural Control Strategies and Balance-Related
55	568	Factors in Individuals with Traumatic Transtibial Amputations. Sensors (Basel)
56 57	569	2021;21(21) doi: 10.3390/s21217284 [published Online First: 2021/11/14]
58 59	570	37. Rossi-Izquierdo M, Santos-Pérez S, Faraldo-García A, et al. Impact of obesity in elderly
60		25

1		
2 3	571	patients with postural instability. Aging Clin Exp Res 2016;28(3):423-8. doi:
4 5	572	10.1007/s40520-015-0414-4 [published Online First: 2015/07/19]
6 7	573	38. Hermens HJ, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for
8 9	574	SEMG sensors and sensor placement procedures. Journal of Electromyography and
10	575	Kinesiology 2000;10(5):361-74. doi: 10.1016/s1050-6411(00)00027-4
11 12	576	39. Shen Y, Chen L, Zhang L, et al. Effectiveness of a Novel Contralaterally Controlled
13 14	577	Neuromuscular Electrical Stimulation for Restoring Lower Limb Motor Performance
15	578	and Activities of Daily Living in Stroke Survivors: A Randomized Controlled Trial.
16 17	579	Neural Plast 2022;2022:5771634. doi: 10.1155/2022/5771634 [published Online
18 19	580	First: 2022/01/25]
20 21	581	40. Sun W, Wu X, Zhang T, et al. Narrowband Resting-State fNIRS Functional Connectivity
22	582	in Autism Spectrum Disorder. Front Hum Neurosci 2021;15:643410. doi:
23 24	583	10.3389/fnhum.2021.643410 [published Online First: 2021/07/03]
25 26	584	41. Wang YL, Lin GH, Huang YJ, et al. Refining 3 Measures to Construct an Efficient
27 28	585	Functional Assessment of Stroke. Stroke 2017;48(6):1630-35. doi:
29	586	10.1161/strokeaha.116.015516 [published Online First: 2017/05/05]
30 31	587	42. Akazawa N, Kishi M, Hino T, et al. Increased intramuscular adipose tissue of the
32 33	588	quadriceps is related to decreased activities of daily living in patients who have had a
34 35	589	stroke. Nutrition 2021;90:111277. doi: 10.1016/j.nut.2021.111277 [published Online
36	590	First: 2021/05/20]
37 38	591	43. Liu F, Tsang RC, Zhou J, et al. Relationship of Barthel Index and its Short Form with the
39 40	592	Modified Rankin Scale in acute stroke patients. J Stroke Cerebrovasc Dis
41 42	593	2020;29(9):105033. doi: 10.1016/j.jstrokecerebrovasdis.2020.105033 [published
43	594	Online First: 2020/08/19]
44 45	595	44. Harrison JK, McArthur KS, Quinn TJ. Assessment scales in stroke: clinimetric and
46 47	596	clinical considerations. Clin Interv Aging 2013;8:201-11. doi: 10.2147/cia.S32405
48	597	[published Online First: 2013/02/27]
49 50	598	45. Qing Z, Lu Z, Cai Y, et al. Elements Influencing sEMG-Based Gesture Decoding: Muscle
51 52	599	Fatigue, Forearm Angle and Acquisition Time. Sensors (Basel) 2021;21(22) doi:
53 54	600	10.3390/s21227713 [published Online First: 2021/11/28]
55	601	46. Wei P, Zhang J, Wang B, et al. Surface Electromyography and Electroencephalogram-
56 57	602	Based Gait Phase Recognition and Correlations Between Cortical and Locomotor
58 59	603	Muscle in the Seven Gait Phases. Front Neurosci 2021;15:607905. doi:
60		26

1 2		
3	604	10.3389/fnins.2021.607905 [published Online First: 2021/06/08]
4 5 6 7	605	47. Alhusuny A, Cook M, Khalil A, et al. The relationship between visual impairments and
	606	activity of the neck/shoulder muscles among surgeons during simulated surgical tasks.
8 9	607	Surg Endosc 2022 doi: 10.1007/s00464-021-08913-0 [published Online First:
10	608	2022/01/09]
11 12	609	48. Acuña SA, Tyler ME, Thelen DG. Individuals with Chronic Mild-to-Moderate Traumatic
13 14	610	Brain Injury Exhibit Decreased Neuromuscular Complexity During Gait.
15	611	Neurorehabil Neural Repair 2022:15459683221081064. doi:
16 17	612	10.1177/15459683221081064 [published Online First: 2022/03/25]
18 19	613	49. Carvalho GF, Becnel AR, Miske C, et al. Postural control impairment in patients with
20 21	614	headaches-A systematic review and meta-analysis. Headache 2022;62(3):241-70. doi:
22	615	10.1111/head.14281 [published Online First: 2022/03/23]
23 24	616	50. Chen CL, Chen FF, Lin CH, et al. Effect of Anterior Ankle-Foot Orthoses on Weight
25 26	617	Shift in Persons With Stroke. Arch Phys Med Rehabil 2015;96(10):1795-801. doi:
27 28	618	10.1016/j.apmr.2015.05.003 [published Online First: 2015/05/23]
29	619	51. Kinoshita S, Tamashiro H, Okamoto T, et al. Association between imbalance of cortical
30 31	620	brain activity and successful motor recovery in sub-acute stroke patients with upper
32 33	621	limb hemiparesis: a functional near-infrared spectroscopy study. Neuroreport
34 35	622	2019;30(12):822-27. doi: 10.1097/wnr.000000000001283 [published Online First:
36	623	2019/07/10]
37 38	624	52. Fujimoto H, Mihara M, Hattori N, et al. Cortical changes underlying balance recovery in
39 40	625	patients with hemiplegic stroke. Neuroimage 2014;85 Pt 1:547-54. doi:
41 42	626	10.1016/j.neuroimage.2013.05.014 [published Online First: 2013/05/21]
43	627	53. Richard A, Van Hamme A, Drevelle X, et al. Contribution of the supplementary motor
44 45	628	area and the cerebellum to the anticipatory postural adjustments and execution phases
46 47	629	of human gait initiation. Neuroscience 2017;358:181-89. doi:
48	630	10.1016/j.neuroscience.2017.06.047 [published Online First: 2017/07/05]
49 50	631	54. Tang AD, Bennett W, Bindoff AD, et al. Subthreshold repetitive transcranial magnetic
51 52	632	stimulation drives structural synaptic plasticity in the young and aged motor cortex.
53 54	633	Brain Stimul 2021;14(6):1498-507. doi: 10.1016/j.brs.2021.10.001 [published Online
55	634	First: 2021/10/16]
56 57	635	55. Wang L, Zhou Y, Chen X, et al. Long-term iTBS promotes neural structural and
58 59	636	functional recovery by enhancing neurogenesis and migration via miR-551b-
60		27

1 2		
3	637	5p/BDNF/TrkB pathway in a rat model of cerebral ischemia-reperfusion injury. Brain
4 5	638	Res Bull 2022;184:46-55. doi: 10.1016/j.brainresbull.2022.03.002 [published Online
6 7	639	First: 2022/03/09]
8 9	640	56. Hashimoto M, Ohtsuka K. Transcranial magnetic stimulation over the posterior
10	641	cerebellum during visually guided saccades in man. Brain 1995;118 (Pt 5):1185-93.
11 12	642	doi: 10.1093/brain/118.5.1185 [published Online First: 1995/10/01]
13 14	643	57. Escelsior A, Belvederi Murri M, Calcagno P, et al. Effectiveness of Cerebellar Circuitry
15 16	644	Modulation in Schizophrenia: A Systematic Review. The Journal of nervous and
17	645	mental disease 2019;207(11):977-86. doi: 10.1097/nmd.0000000000001064
18 19	646	[published Online First: 2019/09/11]
20 21	647	58. Sasegbon A, Niziolek N, Zhang M, et al. The Effects of Midline Cerebellar rTMS on
22	648	Human Pharyngeal Cortical Activity in the Intact Swallowing Motor System.
23 24	649	Cerebellum 2021;20(1):101-15. doi: 10.1007/s12311-020-01191-x [published Online
25 26	650	First: 2020/09/27]
27 28	651	59. Colnaghi S, Honeine JL, Sozzi S, et al. Body Sway Increases After Functional
29	652	Inactivation of the Cerebellar Vermis by cTBS. Cerebellum 2017;16(1):1-14. doi:
31	653	10.1007/s12311-015-0758-5 [published Online First: 2016/01/19]
32 33	654	
27 28 29 30 31 32	655	

Legends

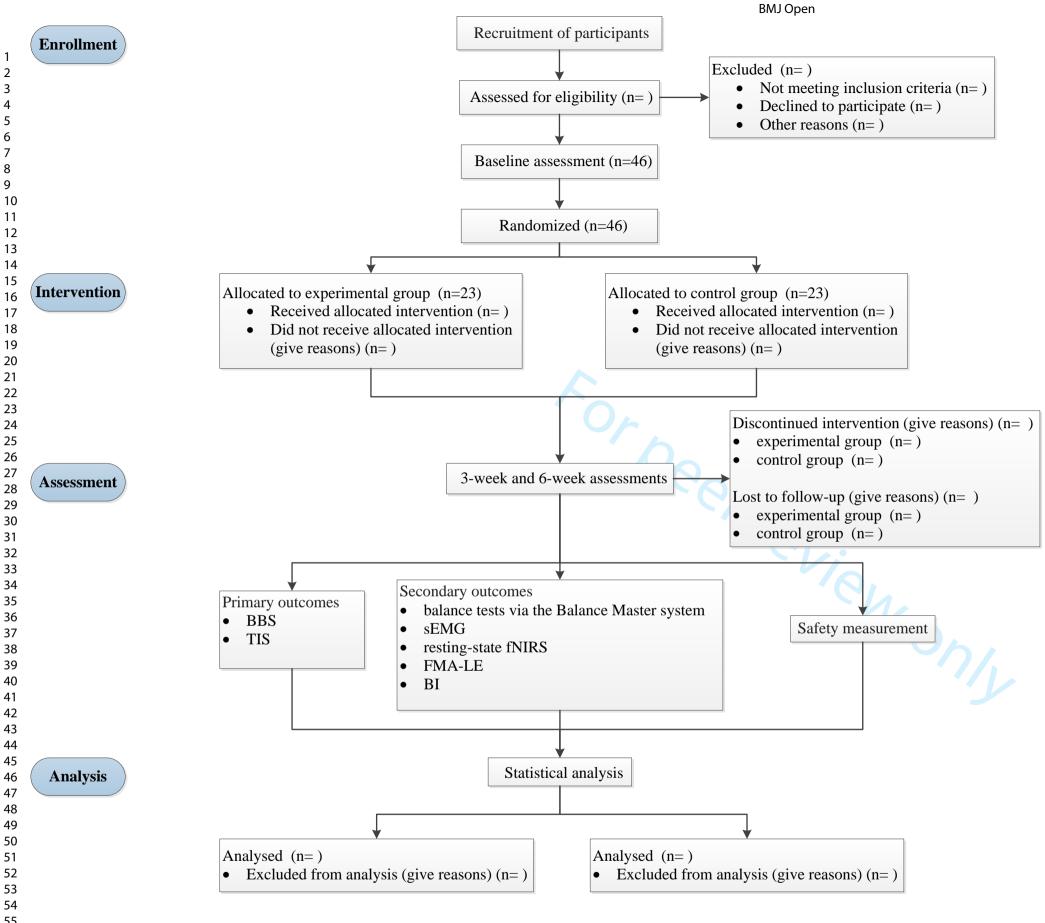
Figure 1. The flow diagram of the study design.

biceps femoris, F. tibialis anterior, G. soleus

Figure 4. The Smart Equitest Balance Master System®.

Figure 2. The schedule of enrolment, interventions, and assessments.

Figure 3. The Magstim Rapid2 stimulator with a BrainSight neuronavigation system.


Figure 5. The sensor locations on individual muscles for sEMG recording (A. rectus

abdominis, B. external oblique muscle, C. rector spinae (longissimus), D. rectus femoris, E.

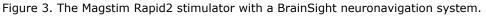
1

2	
3 4	656
4 5	
6	657
7	
8 9	658
9 10	
11	659
12	660
13 14	660
15	661
16	001
17	662
18 19	
20	663
21	
22	
23 24	
24 25	
26	
27	
28	
29 30	
31	
32	
33	
34 35	
35 36	
37	
38	
39	
40	
41 42	
42	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

usele, .ior, G. soleu.

Page 30 of 46

1 2 3 4 5 6 7 8 9	
10	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	
28 29 30 31	
32 33 34 35 36 37 38 39	
40 41 42 43 44 45 46 47	
47 48 49 50 51 52 53 54	
55 56 57 58 59 60	


Figure 2. The schedule of enrolment, interventions, and assessments.

	Enrolment	Allocation	Post-allocation					
TIMEPOINT	-t ₁	0	W1	W2	<i>W3</i>	W4	W5	W6
ENROLMENT:								
Eligibility screen	Х							
Informed consent	Х							
Ethical approval and trial registration	X							
Allocation	X	Х						
INTERVENTIONS:	6							
cerebellar vermis iTBS and conventional physical therapy	ee							
sham stimulation and conventional physical therapy		(0)						
ASSESSMENTS:		1						
basic characteristics information		X						
BBS		X			X			X
TIS		X		5	X			X
balance tests via the Balance Master system		Х			X			X
sEMG		Х			X			X
resting-state fNIRS		X			X			Х
FMA-LE		X			X			X
BI		Х			X			X
Safety measurement			X	X	X	X	X	X

W, week; iTBS, intermittent theta-burst stimulation; BBS, Berg balance scale; TIS, trunk impairment scale; sEMG, surface electromyography; fNIRS, functional near-infrared spectroscopy; FMA-LE, Fugl-Meyer assessment scale score for lower extremities; BI, Barthel index.

for peer teriew only

1066x1422mm (72 x 72 DPI)

Figure 4. The Smart Equitest Balance Master System®.

1066x1422mm (72 x 72 DPI)

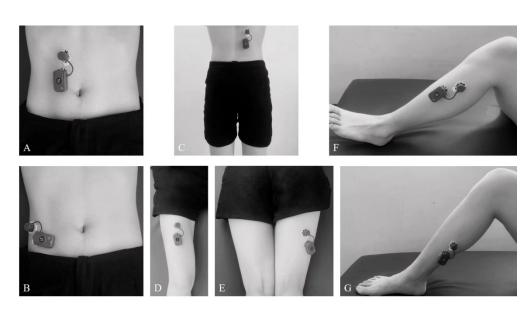


Figure 5. The sensor locations on individual muscles for sEMG recording (A. rectus abdominis, B. external oblique muscle, C. rector spinae (longissimus), D. rectus femoris, E. biceps femoris, F. tibialis anterior, G. soleus)

654x359mm (72 x 72 DPI)

Appendix. Informed Consent Form

	West China Hospita	l, Sichuan University	7
Participant Informed Consent			
Name:	Gender:	Age:	Inpatient ID:

Title of study: The effectiveness of cerebellar vermis intermittent theta burst stimulation in improving trunk control and balance function for subacute stroke patients: a randomized controlled trial

Investigator: Qiang Gao

Funding: NSFC 82172540 from the National Natural Science Foundation of China

What is the study about?

The aim of the study is to determine the effects of cerebellar vermis intermittent theta-burst stimulation (iTBS) on trunk control, muscle activation and balance function in stroke patients. We will recruit 46 patients who meet the inclusion criteria as follows: (1) a diagnosis of a stroke according to the Diagnostic criteria of cerebrovascular diseases in China (version 2019), (2) aged between 18 and 65 years, (3) first-ever unilateral stroke confirmed by imaging examination, (4) subacute stroke participants with the stroke onset ranged from 2 weeks to 6 months, (5) having motor deficit and balance dysfunction, with the Fugl-Meyer assessment scale score for lower extremities (FMA-LE) <34 points and BBS score <56 points. Patients were excluded if they presented one of the following: (1) coexisting other neurological diseases, (2) injury of cerebellar or brain stem, (3) having contraindications of iTBS (e.g., history of seizures, intracranial metallic implants, microprocessor implants in the body, suffering from tumorous, and pregnancy), (4) cognitive impairment with the mini-mental state examination (MMSE) score<27.

How long will I be in the study?

Your part in the study will last **6 weeks** with 3 weeks of intervention and 3 weeks of follow-up (excluding assessment).

What will happen in this study?

You will be randomized into either the experimental or control group according to the random number table. If you assigned to the experimental group will receive cerebellar vermis iTBS after routine daily conventional physical therapy, otherwise you will receive sham stimulation after routine daily conventional physical therapy. The overall intervention periods are five days a week for three consecutive weeks. You will be assessed before treatment, after 3 weeks of intervention and after 3 weeks of follow-up. The measures including clinical scales, balance tests via the Balance Master system, and the surface electromyography recording.

If you are eligible and wish to join the study, you must sign this consent form. If you do not sign the consent form you cannot join the study.

We will review this consent form with you. You will be given enough time to review the consent and have all your questions about the study answered. We will give you a signed copy of the consent for your records before treatment in person.

Study stuff will not know which group or study treatment you are assigned to. You should not join the study if you are not willing to take the study treatment (or join the group) you are assigned to.

What if I have questions?

You can contact the therapist at working hours if you have questions about the study. Qiang Gao (the director of therapists) is in charge of the study.

Do I have to be in the study?

You decide if you want to be in the study. Deciding not to take part will not affect your relationship with your therapist. If your therapist is an investigator for the study, you may get a second opinion from another therapist not involved in the study.

You can leave the study at any time and you do not have to give a reason. Leaving the study will not affect your relationship with your therapist.

The study investigators may ask you to leave the study if it is in your best interest. The study investigator may ask you to leave the study if you do not follow the study rules.

What if I don't want to be in the study?

You can choose not to be in the study and you do not have to give a reason. You can choose to (talk to your doctor/therapist about other options, investigate outside resources on your own, etc.).

Are there any costs?

All study-related treatments are free.

Will I be paid for being in the study?

You will not be paid for being in the study.

Are there any risks?

There is always a small risk of a breech of confidentiality to your personal health information. However, these risks have been addressed and minimized as much as is possible.

You will be told about any new information that may affect your willingness to participate in the study.

There are some possible risks and side effects as follows: headache, nausea, neck pain, seizure, mood changes, fatigue, tinnitus, dizziness, sleepiness and syncope.

If you experience any side effects while on the study contact investigator (Qiang Gao) at any time as soon as possible.

What if I feel I've been hurt by taking part in the study?

If you feel you have been injured or harmed by taking part in this study, please contact investigator (Qiang Gao) at any time. If you feel you were harmed while taking part in this study, you may be treated at West China Hospital, Sichuan University. However, West China Hospital does not offer to pay the cost of this treatment.

If you feel your rights have been violated or you have harmed by this study, please contact your therapist.

Are there any benefits?

It is possible you may receive some benefit from cerebellar vermis iTBS and conventional physical therapy. iTBS is a novel form of rTMS, which can produce long-term potentiation and is more rapid and efficacious than standard rTMS. Cerebellar vermis is a cardinal structure involved in balance and motor control, which is responsible for regulating the trunk, head, neck and proximal limb muscles to control posture and maintain balance. There is no guarantee, however, that you will receive any benefit at all. Your participation will help us learn more about the effects of cerebellar vermis iTBS on trunk control, muscle activation and balance function in subacute stroke patients.

Your privacy is important

Protecting your privacy is very important to us.

During this study we will ask about your (past) and (current) medical history. This information will be used to determine your eligibility for the study and provide data for the study. Your personal health information will be kept private and only authorized study staff will have access to this information. We will use a study number instead of your name. All paper forms will be kept in a locked, secure office. All electronic data will be stored on password-protected computers. Your name will not be used in any publications or presentations about this study.

During the study, you may not be given access to medical information about you that is part of the study. When the study is over, you may request certain medical information collected about you that is part of your study medical record.

None of your personal information will be shared outside of West China Hospital.

By signing this consent form, you are stating that we can use your health information in the ways mentioned above for this study. You are not waiving any of your legal right by signing this form.

You have the right to take away your permission to use your health information collected as part of the study. In order to do this, you must send a written request to: Qiang Gao, department of rehabilitation, West China hospital, Sichuan University

Once your letter is received, no additional information about you will be collected from you for this study. Any data that were collected before we receive your letter will continue to be used for the study. Taking away your permission to use your health information will not affect your relationship with West China Hospital.

We are collecting only the personal health information that we need for the specific

Page 41 of 46	BMJ Open
1	
2 3	
4 5	purpose of this study. Your personal health information cannot be used for
6	additional research purpose.
7 8	
9 10	The West China hospital may be required to provide copies of your personal
11 12	information to government agencies as required by law.
13 14	
15	Your permission to use your identifiable health information when the study is
16 17	complete.
18 19	Signatures:
20 21	By signing this consent form, it means the following:
22 23	
24 25	 I know my rights have not been waived by signing.
26 27	• I have had all of my questions answered and I know whom to ask if I have more
28	questions.
29 30	• I have read this form and understand it.
31 32	• I want to join the study.
33 34	• I know I can leave the study at any time and do not have to give a reason.
35 36	
37 38	<u>'_</u>
39	Signature of Participant Date
40 41	
42 43	
44 45	
46 47	
48	
49 50	
51 52	
53 54	
55 56	
57 58	
59	
60	
	For poor roviow only, http://bmionon.hmi.com/cito/about/quidolings.yhtml

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	ltem No	Description	Page
Administrative inf	ormation		
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	2, 17-18
	2b	All items from the World Health Organization Trial Registration Data Set	nil
Protocol version	3	Date and version identifier	nil
Funding	4	Sources and types of financial, material, and other support	20
Roles and	5a	Names, affiliations, and roles of protocol contributors	Title page, 2
responsibilities	5b	Name and contact information for the trial sponsor	Title page
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	20
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	nil
Introduction			
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	3-4
	6b	Explanation for choice of comparators	4
Objectives	7	Specific objectives or hypotheses	4
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	4

Methods: Participant	ts, inte	rventions, and outcomes	
Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	5
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	6
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	6-8
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	8
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	8
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	6-7
Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	9-15
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	5, Fig.2
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	5
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	5-6
Methods: Assignme	nt of in	terventions (for controlled trials)	
Allocation:			

1 2 3 4 5 6 7 8 9	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	16
10 11 12 13 14	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	16
15 16 17 18	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	16
19 20 21 22	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	16
23 24 25 26		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	16
27 28 29	Methods: Data colle	ection, n	nanagement, and analysis	
 30 31 32 33 34 35 36 37 38 	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	16
39 40 41 42 43 44		18b	Plans to promote participant retention and complete follow- up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	16-17
45 46 47 48 49 50 51	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	16
52 53 54 55	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	17
56 57 58 59 60		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	17

1 2 3 4		20c	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	17			
5 6	Methods: Monitoring						
7 8 9 10 11 12 13 14	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	16			
15 16 17 18		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	16			
19 20 21 22 23	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	15-16			
24 25 26 27	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	16			
28 29	Ethics and dissemir	ation					
30 31 32 33	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	17-18			
34 35 36 37 38	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	nil			
39 40 41 42 43	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	18			
44 45 46 47		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	not applicable			
48 49 50 51 52 53	Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	18			
54 55 56	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	20			
57 58 59 60	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	16			

1 2 3 4	Ancillary and post- trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	nil
5 6 7 8 9 10 11	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	18
12 13 14		31b	Authorship eligibility guidelines and any intended use of professional writers	nil
15 16 17		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	nil
18 19	Appendices			
20 21 22 23	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	Supplementary material
23 24 25 26 27 28	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	not applicable
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 34 55 56 57	Elaboration for import	ant clari ecklist is	hat this checklist be read in conjunction with the SPIRIT 2013 fication on the items. Amendments to the protocol should be tr is copyrighted by the SPIRIT Group under the Creative Commo <u>D Unported</u> " license.	acked and

BMJ Open

The effectiveness of cerebellar vermis intermittent theta burst stimulation in improving trunk control and balance function for subacute stroke patients: a randomized controlled trial protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066356.R1
Article Type:	Protocol
Date Submitted by the Author:	05-Nov-2022
Complete List of Authors:	Chen, Yi; Sichuan University West China Hospital, Su, Wei; Sichuan University, Department of Rehabilitation Medicine Gui, Chen-Fan; Sichuan University, Department of Rehabilitation Medicine Guo, Qi-Fan; Sichuan University, Department of Rehabilitation Medicine Tan, Hui-Xin; Sichuan University, Department of Rehabilitation Medicine He, Lin; Sichuan University West China Hospital Jiang, Han-Hong; Sichuan University, Department of Rehabilitation Medicine Wei, Qing-Chuan; Sichuan University, Department of Rehabilitation Medicine Gao, Qiang ; Sichuan University, Department of Rehabilitation Medicine
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Neurology
Keywords:	Stroke < NEUROLOGY, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Motor neurone disease < NEUROLOGY

SCHOLARONE[™] Manuscripts

1	
2	
2	
3	
4	
3 4 5 6 7 8	
2	
6	
7	
8	
9	
9 10	
10	
11	
12	
13	
14	
17	
15	
16	
17	
18	
12 13 14 15 16 17 18 19	
17	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
33 34 35 36	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1	The effectiveness of cerebellar vermis intermittent theta burst
2	stimulation in improving trunk control and balance function for
3	subacute stroke patients: a randomized controlled trial protocol
4	Yi Chen ^{1,2} , Wei Su ^{1,2} , Chen-Fan Gui ^{1,2} , Qi-Fan Guo ^{1,2} , Hui-Xin Tan ^{1,2} , Lin He ^{1,2} , Han-Hong
5	Jiang ^{1,2} , Qing-Chuan Wei ^{1,2} , Qiang Gao ^{1,2*}
6	¹ Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu,
7	Sichuan, China
8	² Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
9	* Correspondence:
10	Qiang Gao, MD, PhD, Rehabilitation Medicine Center, West China Hospital, Sichuan
11	University, No. 37, Guo Xue Xiang, 610041, Chengdu, Sichuan Province, China. Tel: +86
12	18980605992. Fax: +86-028-86298045. Email: <u>gaoqiang_hxkf@163.com</u> .
13	
14 15	Word count: 3980 words

2 3	16	
4 5	17	Abstract
6 7 8	18	Introduction Balance impairments frequently occur in stroke patients. Achieving effective
9 10	19	core trunk stability is the key to improving balance ability. However, there is still a lack of
11 12	20	advanced well-defined rehabilitation protocols for balance improvement in stroke patients.
13 14 15	21	Intermittent theta-burst stimulation (iTBS) is a noninvasive brain activity modulation strategy
16 17	22	that can produce long-term potentiation. The cerebellar vermis is a fundamental structure
18 19	23	involved in balance and motor control. However, no study has demonstrated the therapeutic
20 21 22	24	effect and potential mechanism of cerebellar vermis iTBS on balance in individuals with
23 24	25	stroke.
25 26	26	Methods and Analysis This study will be a prospective single-centre double-blind
27 28 29	27	randomized controlled clinical trial with a 3-week intervention and 3-week follow-up.
30 31	28	Eligible participants will be randomly allocated to the experimental group or the control
32 33	29	group in a 1:1 ratio. After routine conventional physical therapy, patients in the experimental
34 35	30	group will receive cerebellar vermis iTBS, whereas patients in the control group will receive
36 37 38	31	sham stimulation. The overall intervention period will be five days a week for three
39 40	32	consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks postintervention
41 42	33	(T1) and at the 3-week follow-up (T3). The primary outcomes are Berg Balance Scale (BBS)
43 44 45	34	and Trunk Impairment Scale (TIS) scores. The secondary outcomes are balance tests scores
46 47	35	via the Balance Master system, muscle activation of the trunk and lower limbs via the surface
48 49	36	electromyography (sEMG) recordings, cerebral cortex oxygen concentrations measured via
50 51 52	37	the resting-state functional near-infrared spectroscopy (fNIRS), and Fugl-Meyer Assessment
52 53 54	38	of Lower Extremity (FMA-LE) and Barthel index (BI) scores.
55 56	39	Ethics and Dissemination This study was approved by the West China Hospital Clinical
57 58	40	Trials and Biomedical Ethics Committee of Sichuan University. The trial registration number

BMJ Open

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59

60

52

41 is ChiCTR2200065369. All participants will sign the informed consent form voluntarily. The
42 results of this study will be published in peer-reviewed journals and disseminated at academic
43 conferences.

44

45 Strengths and limitations of this study

- 46 > Our study comprehensively assesses the trunk control and balance function by clinical
 47 scales, balance tests via the Smart Equitest Balance Master System, and surface
 48 electromyography (sEMG) measurements.
- 49 > Resting-state functional near-infrared spectroscopy (fNIRS) will be used to collect the
 50 concentration of HbO2 in the cerebral cortex.
- 51 \succ This study lacks a long-term follow-up assessment.

53 Introduction

Stroke is the third most common cause of disability worldwide.¹ The incidents, prevalence, 54 and disability-adjusted life-years of stroke have increased over the past two decades², and are 55 56 considered to place heavy economic burdens on society. Balance impairments frequently occur in patients with stroke, with a reported incidence ranging from 61% to 83%³. The main 57 manifestations are postural instability, weak trunk control, and difficulty shifting weight,⁴ 58 which ultimately result in falls, poor mobility, decreased physical activity, and reduced 59 quality of life in patients.⁵ Therefore, improvement of balance function is a cardinal 60 61 requirement in patients with stroke.

62 The trunk plays a fundamental role in trunk control, balance, and mobility during sitting and
63 transferring.⁶ The synchronized activity of trunk muscles is necessary for maintaining
64 dynamic balance. In addition, proper trunk muscle control is essential for stabilizing distal

Page 4 of 43

limbs.⁷ Muscle weakness of the lower limbs is associated with decreased standing balance
control.⁸ Impaired trunk control and core muscle weakness attenuate balance and physical
function in individuals after stroke.⁹ Therefore, achieving effective core trunk stability is
crucial to improving balance ability after stroke.

The cerebellum, a central brain structure located in the posterior cranial fossa, works in concert with the cerebral cortex, brainstem, and spinal cord and is involved in motor control.¹⁰ ¹¹ It consists of two lateral hemispheres and the cerebellar vermis. The cerebellar vermis is a fundamental structure involved in balance and motor processing,^{12 13} and is responsible for regulating the trunk, head, neck and proximal limb muscles to control posture and maintain balance.¹⁴ Balance dysfunction in cerebellar disorders is most likely caused by lesions of the medial zone of the cerebellum.¹⁵ At present, the main clinical interventions to improve the balance function in stroke rehabilitation are muscle strength training or balance training. The activation of the cerebellar vermis in the central nervous system through neuromodulation with noninvasive brain stimulation has great potential for enhancing balance function in stroke patients.

Repetitive transcranial magnetic stimulation (rTMS) is a safe, reliable, and standardized noninvasive brain activity modulation strategy to regulate cortical excitability and facilitate neural plasticity.¹⁶ Intermittent theta-burst stimulation (iTBS) is a novel form of rTMS that can produce long-term potentiation and is more rapid and efficacious than standard rTMS.¹⁷ Previously published studies revealed that iTBS over the cerebellar hemisphere could promote gait and balance recovery in patients with chronic ischemic stroke.¹⁸ Similarly, our research group recently provided evidence that iTBS over the cerebellar hemisphere could promote upper limb spasticity, balance, and walking performance recovery in poststroke patients.¹⁹⁻²¹ However, one of the results indicated that the difference in Berg Balance Scale (BBS) scores between the cerebellar iTBS group and the sham stimulation group weas 1.58

Page 5 of 43

BMJ Open

points, which did not reach the minimal clinically important difference.²² Therefore, the
identification of a more effective stimulation target for improving balance function after
stroke is necessary. No study has demonstrated the therapeutic effect and potential
mechanism of cerebellar vermis iTBS on balance in individuals with stroke. Our preliminary
pilot study found that cerebellar vermis iTBS contributed to increasing the excitability of the
bilateral supplementary motor areas (SMAs) during balance tasks in healthy adults.²³

Objective

Since no clinical research verifying the effectiveness of cerebellar vermis iTBS stimulation has been reported, a randomized controlled double-blind trial will be conducted to determine the effects of cerebellar vermis iTBS on trunk control, muscle activation and balance function in subacute ischemic stroke patients. We hypothesize that cerebellar vermis iTBS can promote the activation of trunk and lower limb muscles and increase the excitability of SMAs to improve trunk control and balance function in patients with subacute ischemic stroke.

105 Methods

106 Study design and setting

This study will be a prospective single-centre double-blind randomized controlled clinical trial with a 3-week intervention and 3-week follow-up. The protocol strictly follows the Standard Protocol Items: Recommendations for Intervention Trials (SPIRIT) 2013 Statement.²⁴ Eligible participants will be randomly allocated to the experimental group or control group in a 1:1 ratio. After routine conventional physical therapy, patients assigned to the experimental group will receive cerebellar vermis iTBS, whereas patients assigned to the control group will receive sham stimulation. The overall intervention period will be five days a week for three consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks

postintervention (T1), and at the 3-week follow-up (T3). The whole study will be performed

at the Department of Rehabilitation Medicine of Sichuan University West China Hospital

(Chengdu, Sichuan Province, China). Figure 1 shows the flow diagram of the study design.

We plan to start subject recruitment on the 1st of December 2022 and complete the trial in December 2025. Figure 2 illustrates the study schedule. Sample size calculation The sample size calculation was conducted via G*power of 3.1.9.2 based on the result of the BBS score in our published study, which indicated an estimated effect size of $f=0.38^{20}$ Other parameters were set as follows: a significance level of α =0.05 (two tails), power (1- β) =90%, correlation among repeated measures=0.5, nonsphericity correction ε =1, number of measurements=3, and number of groups=2. Therefore, a sample size of n=40 was obtained. After allowing for a 15% dropout rate, a minimum total of 46 participants is needed. ien **Participants** Recruitment The participants will be recruited from the Department of Rehabilitation Medicine of Sichuan University West China Hospital in Chengdu, Sichuan Province, China. After carefully screening the inclusion and exclusion criteria, voluntary participants will be required to provide written informed consent before the experiment. Inclusion criteria Participants will be considered for inclusion if they meet the following criteria: (1) A diagnosis of ischemic stroke according to the *Diagnostic criteria of cerebrovascular* diseases in China (version 2019).²⁵ (2) Aged between 18 and 65 years.

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16	
17	
18	
19 20	
20	
21	
20 21 22 23	
23	
24	
25	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

(3) First-ever unilateral ischemic stroke confirmed by imaging examination. 140 141 (4) Subacute stroke participants with the stroke onset ranging from 2 weeks to 6 months.²⁶⁻²⁸ (5) Having motor deficit and balance dysfunction, with a Fugl-Meyer Assessment for Lower 142 Extremities (FMA-LE) score <34 points and BBS score <56 points.²⁰ 143 **Exclusion** criteria 144 Participants will be excluded if they meet any of the following criteria: 145 (1) Diagnosis of coexisting other neurological diseases. 146 (2) Injury of cerebellum or brain stem. 147 (3) Having contraindications for iTBS (e.g., history of seizures, intracranial metallic implants, 148 149 microprocessor implants in the body, tumours, and pregnancy) 150 (4) Cognitive impairment defined as a Mini-Mental State Examination (MMSE) score<27. (5) Treatment with benzodiazepines, baclofen, antiepileptics and antidepressants. 151 152 Interventions 153 All enrolled participants will receive 1 session of cerebellar vermis iTBS or sham stimulation 154 before routine conventional physical therapy from Monday to Friday, with a total of 15 155 sessions. Patients in the experimental group will receive cerebellar vermis iTBS coupled with 156 157 conventional physical therapy, and those in the control group will receive sham stimulation coupled with conventional physical therapy. The whole intervention period will last for a total 158 of three consecutive weeks. 159 160 Cerebellar vermis iTBS stimulation 161 162 The stimulation protocol will strictly adhere to the safety guidelines and recommendations

endorsed by the International Federation for Clinical Neurophysiology in 2021.²⁹ We will use
a Magstim Rapid2 stimulator (The Magstim Company Limited) connected to a 70 mm figure-

of-8 Double Rapid2 Air Cooled Coil (P/N 3910-00) to stimulate the cerebellar vermis (Figure 3). The centre of the coil will be placed tangentially to the target scalp area, and the coil current direction will point downwards. iTBS will be applied over the cerebellar vermis, 1 cm inferior to the inion.³⁰ We will use a neuronavigation system (BrainSightt, Rogue Research Inc.) coupled with a Polaris Vicra infrared camera to ensure that cerebellar vermis iTBS is applied over the same spot for the same participant across different sessions (Figure 3). The pattern of iTBS consists of 600 pulses containing 3 pulses at 50 Hz repeated at a rate of 5 Hz, with 20 trains of 10 bursts given at 8 seconds intervals.³¹ The standard stimulus intensity will be set at 80% of the active motor threshold (AMT), which is the lowest intensity evoking at least five out of ten motor-evoked potentials (MEPs) with a peak-to-peak amplitude $\geq 200 \mu V$ in the abductor pollicis brevis muscle during 10% of the maximum voluntary contraction measured by a dynamometer.²¹ If the participant cannot elicit MEPs or cannot tolerate the preset standard stimulus intensity, the stimulator output intensity will be set to the participant's maximum tolerated intensity.³²

180 Sham stimulation

Participants in the control group will be treated identically to those in the experimental group,
except the Magstim sham coil (P/N 3950-00) will be used to deliver the sham stimulation.³³
The sham coil has the same external appearance, parameters and application methods for
stimulating the sensation produced by the real coil without inducing a magnetic field.
Therefore, it can sufficiently ensure that the patients remain blinded to the intervention.

Conventional physical therapy

After receiving cerebellar vermis iTBS or sham stimulation, all participants will receive
conventional physical therapy, including limb positioning, balance exercise, trunk control,

BMJ Open

2 3 4	190	and postural and transfer training, with each session lasting 50 minutes during the intervention
5 6	191	phase.
7 8	192	
9 10 11	193	Criteria for discontinuing the allocated interventions
12 13	194	Interventions will be discontinued for participants if any of the following events occur:
14 15	195	(1) Serious adverse events, such as epilepsy, severe headache, persistent tinnitus and syncope,
16 17 18	196	occur during the stimulation.
19 20	197	(2) Participants withdraw from the trial.
21 22	198	(3) Participants are not compliant with the allocation and intervention plan.
23 24 25	199	(4) Participants join in additional studies during the trial.
26 27	200	(5) Group exposure for participants and outcome evaluators lead to the failure of blindness.
28 29	201	
30 31 32	202	Improving adherence strategies
33 34	203	To improve the participant compliance, the researcher in charge of the trial will contact the
35 36	204	participants regularly to clarify their rehabilitation progress and discuss the subsequent
37 38 39	205	physical therapy programme. Additionally, patients who complete the entire procedure in
40 41	206	accordance with the protocol will be provided with a subject fee and an additional free
42 43	207	rehabilitation consultation. If a participant drops out, the specific reasons for withdrawal will
44 45 46	208	be recorded.
46 47 48	209	
49 50	210	Outcome Measures
51 52	211	On the day of enrolment, the basic characteristics of the participants, including age, sex, type
53 54 55	212	of stroke, lesion site, course of disease, degree of neurological deficit as assessed by the
56 57	213	National Institutes of Health Stroke Scale (NIHSS), and cognitive function as assessed by the
58 59	214	MMSE, will be documented. The outcome assessments will be conducted at the treatment site
60		9

at T0, T1 and T3. The primary outcomes are BBS and Trunk Impairment Scale (TIS) scores.
The secondary outcomes are balance tests via the Balance Master system, muscle activation
of the trunk and lower limbs via the surface electromyography (sEMG) recordings, cerebral
cortex oxygen concentrations measured via the resting-state functional near-infrared
spectroscopy (fNIRS), FMA-LE scores, and Barthel Index (BI) scores. Each assessment will
be performed by a professional clinician or by a qualified physical therapist who will be
blinded to the experimental condition of the participant.

- 223 Primary outcomes
- *1. BBS*

The BBS is a well-validated scale for assessing balance among individuals with neurological disease.³⁴ It has high reliability and internal validity, with an intraclass correlation coefficient for inter-measure reliability and intra-measure reliability of 0.97 and 0.98, respectively.³⁵ This scale is a 14-item measure with a total score of 56, and the score of each item ranges from 0 (poor balance) to 4 (good balance).³⁶

230 2. TIS

The TIS is a scale designed to assess motor impairment of the trunk after stroke,

demonstrating the most promising performance in psychometric properties with satisfactory
reliability and validity.³⁷ It is a 17-item scale used to evaluate static and dynamic sitting
balance and trunk coordination for stroke patients, with a total score ranging from 0 to 23

235 points.³⁸ A higher score indicates better trunk control.

237 Secondary outcomes

238 1. Balance tests via the Balance Master system

239 The assessments of dynamic balance and postural control abilities will be performed by the

BMJ Open

 Sensory Organization Test (SOT), Limits of Stability (LOS), and Rhythmic Weight Shift
(RWS) via the Smart Equitest Balance Master System® (NeuroCom Int., Inc., Clackamas,
Oregon, USA). (Figure 4)

1.1 SOT: The SOT evaluates postural control when participants undergo different somatosensory, visual, and vestibular feedback perturbations. During testing, inaccurate interference information is delivered to the patient's eyes, feet, and joints and is controlled through calibrated sway referencing of the support surface and/or visual surroundings. The participant is required to maintain balance to keep their centre of gravity (COG) as steady as possible. A composite equilibrium score is provided to characterize the participant's overall level of performance through the six conditions described in Table 1. During the SOT, each trial lasts for 20 seconds and is repeated three times.^{39 40}

 Table 1. Sensory Organization Test

Condition	Vision	Surface	Surround	Interference
1	Eyes open	Stable	Fixed	Null
2	Eyes closed	Stable	Fixed	Vision
3	Eyes open	Stable	Unfixed	Vision
4	Eyes open	Unstable	Fixed	Somatosensation
5	Eyes closed	Unstable	Fixed	Somatosensation and Vision
6	Eyes open	Unstable	Unfixed	Somatosensation and Vision

1.2 LOS: The LOS quantifies the voluntary ability to shift the COG in eight different
directions: forwards, forwards-right, right, backwards-right, backwards, backwards-left, left,
and forwards-left. When the test is performed, a real-time display of the participant's COG
position in relation to targets placed at the centre of the base of support and the stability limits
is shown. Once the command is given, the participant must move their COG from a central
position out towards one of the eight targets as quickly (up to 8 seconds) and accurately as

possible.41

1.3 RWS: The RWS evaluates a participant's ability to perform rhythmic movements of their COG from left to right (lateral) and forwards to backwards (anterior/posterior) between two targets at three different speeds (slow, medium and fast).⁴² Movement velocity and directional control are measured for each direction and speed.

2. sEMG recordings

The sEMG recordings will be conducted in accordance with the Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM) guidelines.⁴³ A 20-channel wireless BTS-FREEEMG 300 (BTS Biomechanics Ltd, Italy) will be used to collect the sEMG signals of the following muscles: bilateral rectus abdominis (RA), external oblique muscle (EO), erector spinae (longissimus), rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) and soleus (Table 2 and Figure 5 illustrate the sensor locations on the individual muscles). Before starting, the skin will be cleaned using 75% alcohol and would be shaved if needed to ensure a maximum skin impedance below 5 k Ω . After skin preparation, the participant will be put into the starting posture, depending on the muscle at which the electrodes will be placed. A pair of pre-gelled electrodes certified for medical use and in compliance with the directive 93/42/EEC (amended by 2007/47/EC) will be placed on the belly of the target muscle with an interelectrode distance of 2 cm.⁴⁴ When the electrodes are placed and fixed, a certified physical therapist will teach the patient to perform the maximum voluntary isometric contraction (MVIC) of the target muscle. For individual muscles, we will record three we will record three 3 seconds MVIC trials with a 2 minutes rest period between each trial. sEMG signals will be sampled at 1000 Hz. Collected data will be synchronously transmitted to a BTS EMG-Analyzer (BTS Bioengineering) with the bandpass filtered from 20 to 500 Hz. We will rectify and filter the recorded signal and extract the data of averaged electromyography (AEMG), root mean square (RMS), mean power frequency (MPF) and

1 2		
3 4	283	median frequency (MF) data for subsequent analyses.
4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 9 20 22 22 22 22 22 22 23 31 32 33 43 56 37 83 9 00 11 22 33 44 56 7 89 00 11 22 32 42 56 78 90 31 22 33 34 56 78 39 40 12 34 45 46 74 84 90 51 52 53 54 55 56 75 85 960	284	

Table 2. The sensor locations on individual muscles for sEMG recordings *

Muscle	Starting posture of participant	Electrode placement		
		Location	Orientation	
RA	Supine or standing	2 cm superior and 2-4 cm lateral to the umbilicus	Vertical	
EO	Supine or standing	At a 2-finger width above the anterior half of the iliac crest	In the direction of the line from the outside of the 5-12 ribs to the anterior half of the iliac crest	
Longissimus	Prone with the lumbar vertebral columns slightly flexed	At a 2-finger width lateral from the proc. spin. of L1.	Vertical	
RF	Sitting on a table with the knees in slight flexion and the upper body bend slightly backwards	At 50% on the line from the anterior spina iliaca superior to the superior part of the patella	In the direction of the line from the anterior spina iliaca superior to the superior part of the patella	
BF	Lying on the belly with the face down with the thigh down on the table, the knees flexed (to less than 90 degrees), the thigh in a slight lateral rotation and the leg in a slight lateral rotation with respect to the thigh	At 50% on the line between the ischial tuberosity and the lateral epicondyle of the tibia	In the direction of the line between the ischial tuberosity and the latera epicondyle of the tibia	
ТА	Supine or sitting	At 1/3 on the line between the tip of the fibula and the tip of the medial malleolus	In the direction of the line between the tip of the fibula and the tip of the medial malleolus	
		14		
	For peer review only - http://	/bmjopen.bmj.com/site/about/guidelines.xht	ml	

1 2 3 4 5 6 7		Soleus	Sitting with the knee flexed approximately 90 degrees and the heel/foot of the investigated leg on the floor	At 2/3 of the line between the medial condyle of the femur to the medial malleolus	In the direction of the line between the medial condyle to the medial malleolus
8 9		Abbreviatio	ons: sEMG, surface electromyography; RA, rectus a	bdominis; EO, external oblique muscle;	RF, rectus femoris; BF, biceps
10 11		femoris; TA	A, tibialis anterior.		
12 13 14		* According	g to the SENIAM recommendations for sensor locat	tions for muscles.	
15 16	285			tions for muscles.	
17 18	286				
19 20 21					
21 22 23					
24 25					
26 27					
28 29					
30 31 32					
33 34					
35 36					
37 38					
39 40				15	
41 42 42					
43 44 45			For peer review only - http://	/bmjopen.bmj.com/site/about/guidelines.xhti	nl
45 46					

287 3. Resting-state fNIRS

A multichannel fNIRS system with 24 sources and 24 detectors (NirScan, HuiChuang, China) will be used to record changes in oxygenated haemoglobin (HbO2), deoxygenated Hb and total Hb of the cerebral cortex when the participant is at rest. Relevant parameters will be set as follows: the wavelengths are between 730 and 850 nm, the source-detector distance is 3 cm, and the sampling frequency is over 11 Hz. The international 10/20 system is referenced for identifying optodes on the bilateral prefrontal and parietal lobes.⁴⁵ Collected fNIRS data will be analyses by the NirSpark software package with the bandpass filtering from 0.01 to 0.1 Hz. The mean HbO2 value of each channel will be extracted for statistical analyses.

4. FMA-LE

The lower extremity function of stroke patients will be assessed by FMA-LE, which has good interrater reliability and concurrent validity.⁴⁶ The maximum score of this 17-item scale is 34 points. Each item is scored on a 3-point ordinal scale, with 0 points for inability, 1 point for partial ability, and 2 points for full ability to perform the required movement.⁴⁷

301 5. BI

The BI is a self-reported scale comprising of 10 items, including bathing, grooming, bladder management, bowel management, dressing, feeding, toilet use, transfers, ascending and descending stairs, and walking, to measure basic activities of daily living. ⁴⁸ The total scores vary from 0 (totally dependent) to 100 (independent). This scale has good clinimetric properties and excellent interrater reliability with standardized administration for stroke patients.^{19 49}

309 Safety measurements

Possible stimulation-related adverse events, such as headache, nausea, neck pain, seizure,
 mood changes, fatigue, tinnitus, dizziness, sleepiness and syncope, are listed in the informed

Page 17 of 43

1

BMJ Open

2	
2	
4	
6	
7	
5 4 5 6 7 8 9	
10	
11 12	
13	
14 15	
16 17	
17 19	
18 19	
20	
21 22	
23	
24 25	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	
27 28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
40 47	
48 49	
49 50	
51	
52 53	
54	
55 56	
57	•
58	

312	consent form. An adverse reaction record will be used to monitor and provide detailed reports
313	after each stimulation. In addition, any adverse events related to in conventional physical
314	therapy will also be recorded using the adverse event case report form (CRF).
315	
316	Randomization and blinding
317	The study will be a randomized, double-blind, sham-controlled trial. Enrolled participants will
318	be randomly assigned based on the computer-generated random numbers that are concealed in
319	opaque numbered envelopes and opened in numerical order by a neutral noninvolved
320	researcher. We plan to blind the participants and evaluators. If blinding fails, the participants
321	will be removed. A sham coil will be used to ensure that the patients are blinded to the
322	intervention. Outcome evaluations will be conducted by a professional clinician or by a
323	qualified physical therapist who is blinded to the group assignment. An independent
324	researcher will be designated to complete the data analysis. Unblinding will be carried out
325	after the data analysis is completed. In the case of serious adverse events occurring during
326	interventions, emergency unblinding will also be implemented.
327	
328	Data management and analysis
329	Data management
330	Data will be recorded on CRFs in a timely, complete and accurate manner. Two researchers
331	will independently input data into Excel software and cross-check each other. Thus, electronic
332	data will be stored and available to the relevant researcher only. The West China Hospital

Clinical Trials and Biomedical Ethics Committee of Sichuan University are responsible for

monitoring the safety and process of the study and have the right to terminate the trial if

serious advent events occur. All procedures will comply with the confidentiality standards for

⁵⁸ 336 medical data.

1		
2 3 4	337	
5 6	338	Statistical analysis
7 8 9	339	Statistical analyses will be performed using GraphPad Prism 8.4.3 (GraphPad Software, Inc.,
9 10 11	340	La Jolla, CA, USA) based on the intention-to-treat principle. Missing data will be imputed
12 13	341	using the last observation carried forwards approach. The Shapiro-Wilk test will be conducted
14 15	342	to evaluate the normal distribution of the data. The level of significance is set at $\alpha = 0.05$.
16 17 18	343	Continuous variables, ordinal variables, and categorical variables will be presented as mean
19 20	344	(±standard deviation, SD), medians (interquartile range, IQR), and number (percentage, %),
21 22	345	respectively. Based on different types of data, the independent-samples t test, Mann–Whitney
23 24 25 26 27 28 29 30 31 32	346	U test, and chi-square test will be used to compare demographic and baseline data between
	347	groups. Two-way mixed measures analysis of variance with group as the between-individual
	348	factor and time as the within-individual factor will be performed for outcome measures
	349	analyses. Nonsphericity correction will be conducted using the Greenhouse-Geisser correction
33 34	350	if necessary, and Tukey's post hoc multiple comparison test will be applied.
35 36	351	
37 38 39	352	Patient and public involvement
40 41	353	Patients and the public will not be involved in the study design, recruitment, implementation
42 43	354	or reporting. However, the study results will be disseminated to the public through academic
44 45	355	papers and conferences.
46 47 48	356	
49 50	357	Ethical approval, trial registration and dissemination
51 52	358	The study was approved by the West China Hospital Clinical Trials and Biomedical Ethics
53 54 55	359	Committee of Sichuan University on May 19, 2022 (ethics reference: 2022 (573)), and will be
56	000	

conducted in accordance with the Declaration of Helsinki.

This protocol was registered on November 3rd, 2022, in the Chinese Clinical Trial Registry

Page 19 of 43

BMJ Open

with the registration number ChiCTR2200065369. All participants will be fully informed of
the study procedures and sign the informed consent form voluntarily before inclusion (see the
Appendix). The private information of all participants will be kept confidential and securely
placed in a locked cabinet and will only be accessible to researchers of the study. However,
the results of this study will be published in peer-reviewed journals and disseminated at
academic conferences.

Discussion

At present, no research has revealed the effect and potential mechanism of cerebellar vermis
iTBS on balance in subacute stroke patients. This prospective single-centre double-blind
randomized controlled clinical trial with a 3-week intervention and 3-week follow-up is
designed to confirm its effectiveness.

Our study will comprehensively assess trunk control and balance function by clinical scales, balance tests via the Smart Equitest Balance Master System and sEMG measurements. Additionally, we will also collect the concentration of HbO2 in the cerebral cortex via resting-state fNIRS. The integrated data results will be sufficient verify the research hypothesis. For trunk control, the TIS scores can reveal motor impairment of the trunk in stroke patients. The sEMG signal directly reflects the activation of muscles directly and contains information about movement intentions generated by the brain.⁵⁰ AEMG represents the degree of muscle activation and the synchronization of activated motor units. RMS quantifies the effort of the muscle. MPF and MF are frequency domain features and indicate muscle fatigue.^{51 52} For balance function, the BBS score reflects the overall performance of static and dynamic balance. Accurate integration of sensory information is critical to maintaining balance. The composite equilibrium score of the SOT characterizes the impairments of individual sensory systems.⁵³ The ability to voluntarily move the COG within the LOS is fundamental to

mobility tasks. By the LOS test, reaction time, movement velocities and excursions are recorded to measure the voluntary ability to shift the COG without losing balance. Reaction time reflects the cognitive processing ability. Movement velocities indicate high-level central nervous system function. Excursions can be restricted by biomechanical deficits.⁵⁴ Overall, limitations in the LOS are associated with instability during weight-shifting activities. RWS measures movement velocity and directional control during rhythmic movements. Rhythmic, reciprocal movement patterns are required in daily activities. Stroke patients with disrupted normal rhythmic movement control exhibit reduced velocities and/or poor directional control ability.55

For cortical activation, fNIRS is a widespread noninvasive measurement that provides realtime monitoring of haemodynamic signals to reflect changes in brain activation.⁵⁶ Increased HbO2 is positively correlated with cortical excitability. In addition, balance function and postural stability are positively related to the changes in HbO2 signals in the bilateral SMAs in stroke patients.⁵⁷ Additionally, our previous work revealed that single-session cerebellar vermis iTBS can increase bilateral SMAs excitability during balance tasks in healthy adults.²³ We hypothesize that cerebellar vermis iTBS can promote the activation of muscles in the trunk and lower limbs, and increase the excitability of the SMAs to improve trunk control and balance function in patients after stroke. The cerebellar vermis plays an important role in postural tone, balance, and locomotion through descending spinal pathways since the vermis receives vestibulocerebellar and proprioceptive spinocerebellar afferents.⁵⁸ SMA contributes to anticipatory postural adjustments and postural stability during gait initiation.⁵⁹ iTBS consists of high-frequency stimulation bursts that strongly modulate the neural activity of the cerebellar vermis. Studies with humans have shown that iTBS drives acute changes to motor behaviour and neuronal excitability.⁶⁰ A possible mechanism has been reported by an animal study showing that iTBS can promote neural structural remodelling and functional recovery

Page 21 of 43

BMJ Open

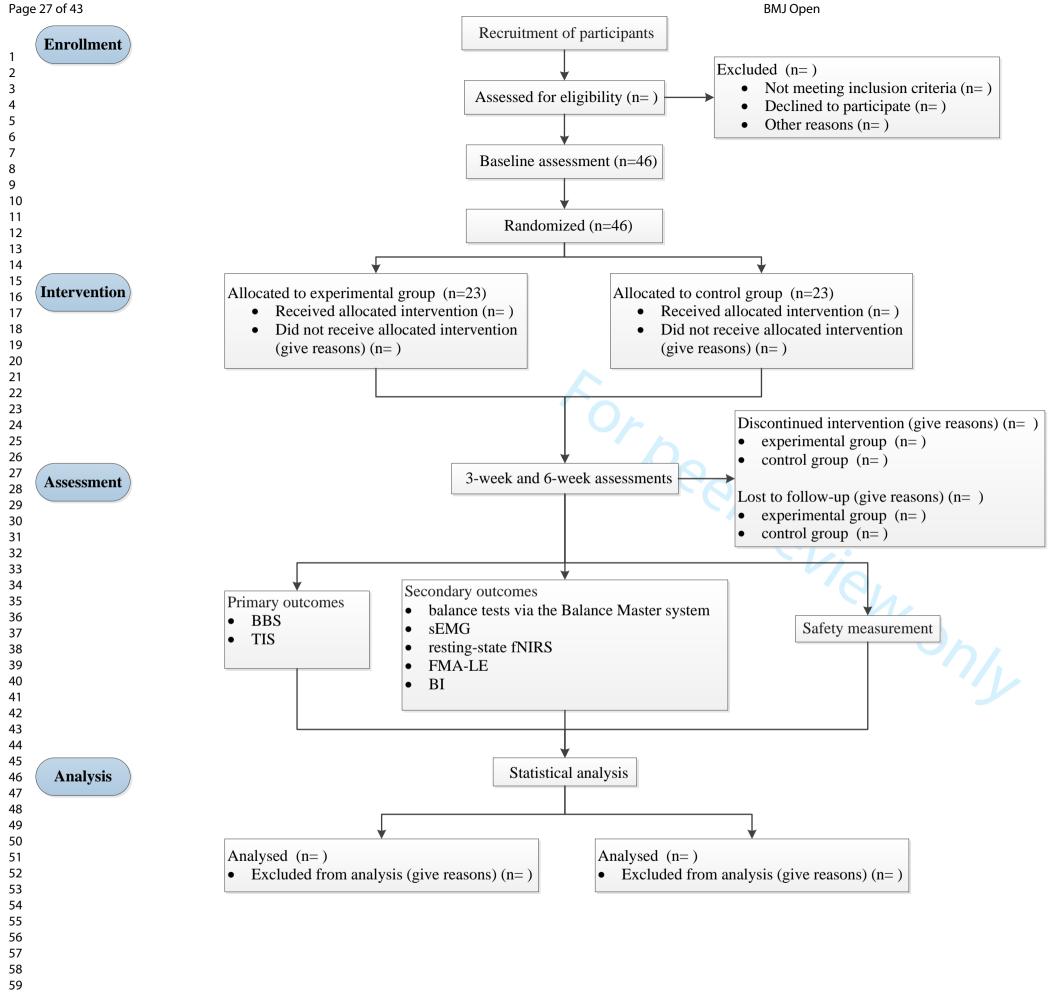
1	
2 3 4	412
5 6	413
7 8 9	414
10 11	415
12 13	416
14 15 16	417
17 18	418
19 20 21	419
21 22 23	420
24 25	421
26 27 28	422
20 29 30	423
31 32	424
33 34 35	425
36 37	426
38 39	427
40 41 42	428
43 44	429
45 46 47	430
47 48 49	431
50 51	432
52 53 54	433
55 56	434
57 58	435
59 60	436

412	by enhancing neurogenesis and migration via the miR-551b-5p/BDNF/TrkB pathway. ⁶¹ The
413	first study of cerebellar vermis stimulation was reported in 1995, which investigated its
414	effects on saccade metrics in a man via TMS. ⁶² At present, researchers have reported that
415	cerebellar vermis stimulation is a safe and well-tolerated brain stimulation technology with a
416	potential therapeutic effect on schizophrenia. ⁶³ In addition, cerebellar vermis rTMS can
417	induce a suppressive effect on pharyngeal motor cortical activity and swallowing behaviour. ⁶⁴
418	However, limited studies have reported that the cerebellar vermis plays an important role in
419	postural response and balance stability. ^{13 65} Therefore, we hope to identify the effectiveness of
420	cerebellar vermis iTBS in trunk control and balance function for subacute ischemic stroke
421	patients. Our results may provide valuable information for developing a novel treatment
422	method for the rehabilitation of balance dysfunction after stroke.
423	
424	Author contributions: Conceptualization, validation, and original draft: YC.
425	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG
426	and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was
427	responsible for the manuscript. All authors read and approved the final manuscript.
428	
429	Funding: This work was supported by the National Natural Science Foundation of China
430	grant number NSFC 82172540.
431	
432	Conflict of Interest: None.
433	
434	Acknowledgments: None.
425	

References

- 1. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392(10159):1859-922. doi: 10.1016/s0140-6736(18)32335-3 [published Online First: 2018/11/13]
 - 2. Hankey GJ. Stroke. Lancet 2017;389(10069):641-54. doi: 10.1016/s0140-6736(16)30962-x [published Online First: 2016/09/18]
 - 3. Komiya M, Maeda N, Narahara T, et al. Effect of 6-Week Balance Exercise by Real-Time Postural Feedback System on Walking Ability for Patients with Chronic Stroke: A Pilot Single-Blind Randomized Controlled Trial. Brain Sci 2021;11(11) doi: 10.3390/brainsci11111493 [published Online First: 2021/11/28]
 - 4. Zhang Y, Wang C, Yang J, et al. Comparing the Effects of Short-Term Liuzijue Exercise and Core Stability Training on Balance Function in Patients Recovering From Stroke: A Pilot Randomized Controlled Trial. Front Neurol 2022;13:748754. doi: 10.3389/fneur.2022.748754 [published Online First: 2022/03/05]
 - 5. Chen Y, Gao Q, He CQ, et al. Effect of Virtual Reality on Balance in Individuals With Parkinson Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys Ther 2020;100(6):933-45. doi: 10.1093/ptj/pzaa042 [published Online First: 2020/03/12]
 - 6. Luque-Moreno C, Kiper P, Solís-Marcos I, et al. Virtual Reality and Physiotherapy in Post-Stroke Functional Re-Education of the Lower Extremity: A Controlled Clinical Trial on a New Approach. J Pers Med 2021;11(11) doi: 10.3390/jpm11111210 [published Online First: 2021/11/28]
 - 7. Marchesi G, Ballardini G, Barone L, et al. Modified Functional Reach Test: Upper-Body Kinematics and Muscular Activity in Chronic Stroke Survivors. Sensors (Basel) 2021;22(1) doi: 10.3390/s22010230 [published Online First: 2022/01/12]
 - 8. Schröder J, Saeys W, Yperzeele L, et al. Time Course and Mechanisms Underlying Standing Balance Recovery Early After Stroke: Design of a Prospective Cohort Study With Repeated Measurements. Front Neurol 2022;13:781416. doi: 10.3389/fneur.2022.781416 [published Online First: 2022/03/11]
 - 9. Karthikbabu S, Verheyden G. Relationship between trunk control, core muscle strength and balance confidence in community-dwelling patients with chronic stroke. Top Stroke Rehabil 2021;28(2):88-95. doi: 10.1080/10749357.2020.1783896 [published Online First: 2020/06/24]
 - 10. D'Angelo E. Physiology of the cerebellum. Handb Clin Neurol 2018;154:85-108. doi: 10.1016/B978-0-444-63956-1.00006-0 [published Online First: 2018/06/16]
 - 11. Roostaei T, Nazeri A, Sahraian MA, et al. The human cerebellum: a review of physiologic neuroanatomy. Neurol Clin 2014;32(4):859-69. doi: 10.1016/j.ncl.2014.07.013 [published Online First: 2014/12/03]
 - 12. De Bartolo P, Florenzano F, Burello L, et al. Activity-dependent structural plasticity of Purkinje cell spines in cerebellar vermis and hemisphere. Brain structure & function 2015;220(5):2895-904. doi: 10.1007/s00429-014-0833-6 [published Online First: 2014/07/16]
 - 13. Lam CK, Tokuno CD, Staines WR, et al. The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis. Exp Brain Res 2016;234(12):3689-97. doi: 10.1007/s00221-016-4766-6 [published Online First: 2016/09/08]
 - 14. Marfeo A. Neuroanatomy Through Clinical Cases: Inc. Publishers 2010.
 - 15. Ilg W, Giese MA, Gizewski ER, et al. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 2008;131(Pt 11):2913-27. doi: 10.1093/brain/awn246 [published Online First: 2008/10/07]
 - 16. Ille S, Kelm A, Schroeder A, et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients - A randomized, double-blinded trial. Brain Stimul 2021;14(4):780-87. doi: 10.1016/j.brs.2021.04.026 [published Online First: 2021/05/14]
 - 17. Chen SC, Yang LY, Adeel M, et al. Transcranial electrostimulation with special waveforms enhances upper-limb motor function in patients with chronic stroke: a pilot randomized controlled trial. J Neuroeng *Rehabil* 2021;18(1):106. doi: 10.1186/s12984-021-00901-8 [published Online First: 2021/07/02]
 - 18. Koch G, Bonni S, Casula EP, et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol 2019;76(2):170-78. doi: 10.1001/jamaneurol.2018.3639 [published Online First: 2018/11/27]
 - 19. Chen Y, Wei QC, Zhang MZ, et al. Cerebellar Intermittent Theta-Burst Stimulation Reduces Upper Limb Spasticity After Subacute Stroke: A Randomized Controlled Trial. Front Neural Circuits 2021;15:655502. doi: 10.3389/fncir.2021.655502 [published Online First: 2021/11/16]
- 20. Liao LY, Xie YJ, Chen Y, et al. Cerebellar Theta-Burst Stimulation Combined With Physiotherapy in Subacute and Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Neurorehabil Neural Repair 2021;35(1):23-32. doi: 10.1177/1545968320971735 [published Online First: 2020/11/10]
- 21. Xie YJ, Wei QC, Chen Y, et al. Cerebellar Theta Burst Stimulation on Walking Function in Stroke Patients: A Randomized Clinical Trial. Front Neurosci 2021;15:688569. doi: 10.3389/fnins.2021.688569

2		
3	496	[published Online First: 2021/11/13]
4	497	22. Badke MB, Sherman J, Boyne P, et al. Tongue-based biofeedback for balance in stroke: results of an 8-week
5	498	pilot study. Arch Phys Med Rehabil 2011;92(9):1364-70. doi: 10.1016/j.apmr.2011.03.030 [published
6	499	Online First: 2011/09/01]
7	500	23. Tan H-X, Wei Q-C, Chen Y, et al. The Immediate Effects of Intermittent Theta Burst Stimulation of the
8	501	Cerebellar Vermis on Cerebral Cortical Excitability During a Balance Task in Healthy Individuals: A
9	502	Pilot Study. Frontiers in Human Neuroscience 2021;15 doi: 10.3389/fnhum.2021.748241
10	503	24. Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical
11	504	trials. Ann Intern Med 2013;158(3):200-7. doi: 10.7326/0003-4819-158-3-201302050-00583 [published
12	505	Online First: 2013/01/09]
13	506	25. Chinese Society of Neurology CSS. Diagnostic criteria of cerebrovascular diseases in China (version 2019).
14	507	Chinese Journal of Neurology 2019;52(09):710-15. doi: 10.3760/cma.j.issn.1006?7876.2019.09.003
15	508	26. Hayward KS, Kramer SF, Dalton EJ, et al. Timing and Dose of Upper Limb Motor Intervention After Stroke:
16	509	A Systematic Review. <i>Stroke</i> 2021;52(11):3706-17. doi: 10.1161/strokeaha.121.034348 [published
17	510	Online First: 2021/10/05]
18	511	27. Soulard J, Huber C, Baillieul S, et al. Motor tract integrity predicts walking recovery: A diffusion MRI study
19	512	in subacute stroke. <i>Neurology</i> 2020;94(6):e583-e93. doi: 10.1212/wnl.00000000008755 [published
20	513 514	Online First: 2020/01/04]
21	514 515	28. Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed definitions and a shared vision for new standards in stroke
22	516	recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. <i>Int J Stroke</i> 2017;12(5):444-50. doi: 10.1177/1747493017711816 [published Online First: 2017/07/13]
23	517	29. Rossi S, Antal A, Bestmann S, et al. Safety and recommendations for TMS use in healthy subjects and patient
24	518	populations, with updates on training, ethical and regulatory issues: Expert Guidelines. <i>Clin Neurophysiol</i>
25	519	2021;132(1):269-306. doi: 10.1016/j.clinph.2020.10.003 [published Online First: 2020/11/28]
26	520	30. Garg S, Sinha VK, Tikka SK, et al. The efficacy of cerebellar vermal deep high frequency (theta range)
27	521	repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham
28	522	controlled study. <i>Psychiatry Res</i> 2016;243:413-20. doi: 10.1016/j.psychres.2016.07.023 [published
29	523	Online First: 2016/07/28]
30	524	31. Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron
31	525	2005;45(2):201-6. doi: 10.1016/j.neuron.2004.12.033 [published Online First: 2005/01/25]
32	526	32. Spampinato D, Ibáñez J, Spanoudakis M, et al. Cerebellar transcranial magnetic stimulation: The role of coil
33	527	type from distinct manufacturers. Brain Stimul 2020;13(1):153-56. doi: 10.1016/j.brs.2019.09.005
34	528	[published Online First: 2019/10/22]
35	529	33. Kumar N, Vishnubhatla S, Wadhawan AN, et al. A randomized, double blind, sham-controlled trial of
36	530	repetitive transcranial magnetic stimulation (rTMS) in the treatment of negative symptoms in
37	531	schizophrenia. Brain Stimul 2020;13(3):840-49. doi: 10.1016/j.brs.2020.02.016 [published Online First:
38	532	2020/04/15]
39	533	34. Meseguer-Henarejos AB, Rubio-Aparicio M, López-Pina JA, et al. Characteristics that affect score reliability
40	534	in the Berg Balance Scale: a meta-analytic reliability generalization study. Eur J Phys Rehabil Med
41	535	2019;55(5):570-84. doi: 10.23736/s1973-9087.19.05363-2 [published Online First: 2019/04/09]
42	536	35. Hyun SJ, Lee J, Lee BH. The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on
43	537 538	Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled
44	536 539	Trial. Int J Environ Res Public Health 2021;18(22) doi: 10.3390/ijerph182212229 [published Online First: 2021/11/28]
45	539 540	2021/11/28] 36. Chou HY, Lo YC, Tsai YW, et al. Increased Anxiety and Depression Symptoms in Post-Acute Care Patients
46	540 541	with Stroke during the COVID-19 Pandemic. Int J Environ Res Public Health 2021;19(1) doi:
47	542	10.3390/ijerph19010162 [published Online First: $2022/01/12$]
48	543	37. Zhao J, Chau JPC, Zang Y, et al. Psychometric properties of the Chinese version of the Trunk Impairment
49	544	Scale in people with a stroke. <i>Health Qual Life Outcomes</i> 2021;19(1):85. doi: 10.1186/s12955-021-
50	545	01730-y [published Online First: 2021/03/12]
51	546	38. Thijs L, Voets E, Wiskerke E, et al. Technology-supported sitting balance therapy versus usual care in the
52	547	chronic stage after stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2021;18(1):120. doi:
53	548	10.1186/s12984-021-00910-7 [published Online First: 2021/07/30]
54	549	39. Yin L, Liu K, Liu C, et al. Effect of Kinesiology Tape on Muscle Activation of Lower Extremity and Ankle
55	550	Kinesthesia in Individuals With Unilateral Chronic Ankle Instability. Front Physiol 2021;12:786584. doi:
56	551	10.3389/fphys.2021.786584 [published Online First: 2022/01/04]
57	552	40. Bultitude JH, Pidgeon DM, LeBlanc PR, et al. Two weeks of twice-daily prism adaptation treatment does not
58	553	improve posture or gait in Parkinson's disease: a double-blind randomized controlled trial. Trials
59	554	2021;22(1):846. doi: 10.1186/s13063-021-05832-2 [published Online First: 2021/11/27]
60	555	41. Kolářová B, Janura M, Svoboda Z, et al. Postural Control Strategies and Balance-Related Factors in Individuals
		23


2		
3	556	with Traumatic Transtibial Amputations. Sensors (Basel) 2021;21(21) doi: 10.3390/s21217284
4	557	[published Online First: 2021/11/14]
5	558	42. Rossi-Izquierdo M, Santos-Pérez S, Faraldo-García A, et al. Impact of obesity in elderly patients with postural
6	559	instability. Aging Clin Exp Res 2016;28(3):423-8. doi: 10.1007/s40520-015-0414-4 [published Online
7	560	First: 2015/07/19]
8	561	43. Hermens HJ, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and
9	562	sensor placement procedures. Journal of Electromyography and Kinesiology 2000;10(5):361-74. doi:
10	563	10.1016/s1050-6411(00)00027-4
11	564	44. Shen Y, Chen L, Zhang L, et al. Effectiveness of a Novel Contralaterally Controlled Neuromuscular Electrical
12	565	Stimulation for Restoring Lower Limb Motor Performance and Activities of Daily Living in Stroke
13	566	Survivors: A Randomized Controlled Trial. Neural Plast 2022;2022:5771634. doi:
14	567	10.1155/2022/5771634 [published Online First: 2022/01/25]
15	568	45. Sun W, Wu X, Zhang T, et al. Narrowband Resting-State fNIRS Functional Connectivity in Autism Spectrum
16	569	Disorder. Front Hum Neurosci 2021;15:643410. doi: 10.3389/fnhum.2021.643410 [published Online
17	570	First: 2021/07/03]
18	571	46. Wang YL, Lin GH, Huang YJ, et al. Refining 3 Measures to Construct an Efficient Functional Assessment of
19	572	Stroke. Stroke 2017;48(6):1630-35. doi: 10.1161/strokeaha.116.015516 [published Online First: 2017/05/051
20	573	2017/05/05] 47. Alegravia N. Kishi M. Uina T. et al. Increased intromuscular adipase tissue of the quadricens is related to
21	574 575	47. Akazawa N, Kishi M, Hino T, et al. Increased intramuscular adipose tissue of the quadriceps is related to
22	576	decreased activities of daily living in patients who have had a stroke. <i>Nutrition</i> 2021;90:111277. doi: 10.1016/j.nut.2021.111277 [published Online First: 2021/05/20]
23	577	48. Liu F, Tsang RC, Zhou J, et al. Relationship of Barthel Index and its Short Form with the Modified Rankin
24	578	Scale in acute stroke patients. J Stroke Cerebrovasc Dis 2020;29(9):105033. doi:
25	579	10.1016/j.jstrokecerebrovasdis.2020.105033 [published Online First: 2020/08/19]
26	580	49. Harrison JK, McArthur KS, Quinn TJ. Assessment scales in stroke: clinimetric and clinical considerations.
27	581	<i>Clin Interv Aging</i> 2013;8:201-11. doi: 10.2147/cia.S32405 [published Online First: 2013/02/27]
28	582	50. Qing Z, Lu Z, Cai Y, et al. Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm
29	583	Angle and Acquisition Time. Sensors (Basel) 2021;21(22) doi: 10.3390/s21227713 [published Online
30	584	First: 2021/11/28]
31	585	51. Wei P, Zhang J, Wang B, et al. Surface Electromyography and Electroencephalogram-Based Gait Phase
32	586	Recognition and Correlations Between Cortical and Locomotor Muscle in the Seven Gait Phases. Front
33	587	Neurosci 2021;15:607905. doi: 10.3389/fnins.2021.607905 [published Online First: 2021/06/08]
34	588	52. Alhusuny A, Cook M, Khalil A, et al. The relationship between visual impairments and activity of the
35	589	neck/shoulder muscles among surgeons during simulated surgical tasks. Surg Endosc 2022 doi:
36	590	10.1007/s00464-021-08913-0 [published Online First: 2022/01/09]
37	591	53. Acuña SA, Tyler ME, Thelen DG. Individuals with Chronic Mild-to-Moderate Traumatic Brain Injury Exhibit
38	592	Decreased Neuromuscular Complexity During Gait. Neurorehabil Neural Repair
39	593	2022:15459683221081064. doi: 10.1177/15459683221081064 [published Online First: 2022/03/25]
40	594	54. Carvalho GF, Becnel AR, Miske C, et al. Postural control impairment in patients with headaches-A systematic
41	595	review and meta-analysis. Headache 2022;62(3):241-70. doi: 10.1111/head.14281 [published Online
42	596	First: 2022/03/23]
43	597	55. Chen CL, Chen FF, Lin CH, et al. Effect of Anterior Ankle-Foot Orthoses on Weight Shift in Persons With
44	598	Stroke. Arch Phys Med Rehabil 2015;96(10):1795-801. doi: 10.1016/j.apmr.2015.05.003 [published
45	599	Online First: 2015/05/23]
46	600 601	56. Kinoshita S, Tamashiro H, Okamoto T, et al. Association between imbalance of cortical brain activity and
47	602	successful motor recovery in sub-acute stroke patients with upper limb hemiparesis: a functional near- infrared spectroscopy study. <i>Neuroreport</i> 2019;30(12):822-27. doi: 10.1097/wnr.000000000001283
48	603	[published Online First: 2019/07/10]
49	604	57. Fujimoto H, Mihara M, Hattori N, et al. Cortical changes underlying balance recovery in patients with
50	605	hemiplegic stroke. <i>Neuroimage</i> 2014;85 Pt 1:547-54. doi: 10.1016/j.neuroimage.2013.05.014 [published
51	606	Online First: 2013/05/21]
52	607	58. Maiti B, Rawson KS, Tanenbaum AB, et al. Functional Connectivity of Vermis Correlates with Future Gait
53	608	Impairments in Parkinson's Disease. Movement disorders : official journal of the Movement Disorder
54	609	Society 2021;36(11):2559-68. doi: 10.1002/mds.28684 [published Online First: 2021/06/11]
55	610	59. Richard A, Van Hamme A, Drevelle X, et al. Contribution of the supplementary motor area and the cerebellum
56	611	to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience
57	612	2017;358:181-89. doi: 10.1016/j.neuroscience.2017.06.047 [published Online First: 2017/07/05]
58	613	60. Tang AD, Bennett W, Bindoff AD, et al. Subthreshold repetitive transcranial magnetic stimulation drives
59	614	structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021;14(6):1498-507. doi:
60	615	10.1016/j.brs.2021.10.001 [published Online First: 2021/10/16]
		24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	616 617 618 620 621 622 623 624 625 626 627 628 629 630 631 632	 Wang L, Zhou Y, Chen X, et al. Long-term iTBS promotes neural structural and functional recovery by enhancing neurogenesis and migration via miR-551b-5p/BDNF/TrkB pathway in a rat model of cerebral ischemia-reperfusion injury. <i>Brain Res Bull</i> 2022;184:46-55. doi: 10.1016/j.brainresbull.2022.03.002 [published Online First: 2022/03/09] Hashimoto M, Ohtsuka K. Transcranial magnetic stimulation over the posterior cerebellum during visually guided saccades in man. <i>Brain</i> 1995;118 (Pt 5):1185-93. doi: 10.1093/brain/118.5.1185 [published Online First: 1995/10/01] Escelsior A, Belvederi Murri M, Calcagno P, et al. Effectiveness of Cerebellar Circuitry Modulation in Schizophrenia: A Systematic Review. <i>The Journal of nervous and mental disease</i> 2019;207(11):977-86. doi: 10.1097/nmd.0000000000001064 [published Online First: 2019/09/11] Sasegbon A, Niziolek N, Zhang M, et al. The Effects of Midline Cerebellar rTMS on Human Pharyngeal Cortical Activity in the Intact Swallowing Motor System. <i>Cerebellum</i> 2021;20(1):101-15. doi: 10.1007/s12311-020-01191-x [published Online First: 2020/09/27] Colnaghi S, Honeine JL, Sozzi S, et al. Body Sway Increases After Functional Inactivation of the Cerebellar Vermis by cTBS. <i>Cerebellum</i> 2017;16(1):1-14. doi: 10.1007/s12311-015-0758-5 [published Online First: 2016/01/19]
20 21 22 23 24	633	
24 25 26 27		
28 29 30 31		
32 33 34		
35 36 37 38		
39 40 41		
42 43 44 45		
46 47 48		
49 50 51		
52 53 54		
55 56 57		
58 59		

634 Legends

- **Figure 1.** The flow diagram of the study design.
- **Figure 2.** The schedule of enrolment, interventions, and assessments.
- **Figure 3.** The Magstim Rapid2 stimulator with a BrainSight neuronavigation system.
- Figure 4. The Smart Equitest Balance Master System®.
- Figure 5. The sensor locations on individual muscles for sEMG recording (A. rectus
- abdominis, B. external oblique muscle, C. rector spinae (longissimus), D. rectus femoris, E.
- biceps femoris, F. tibialis anterior, G. soleus

Topper teries only

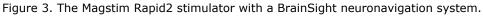
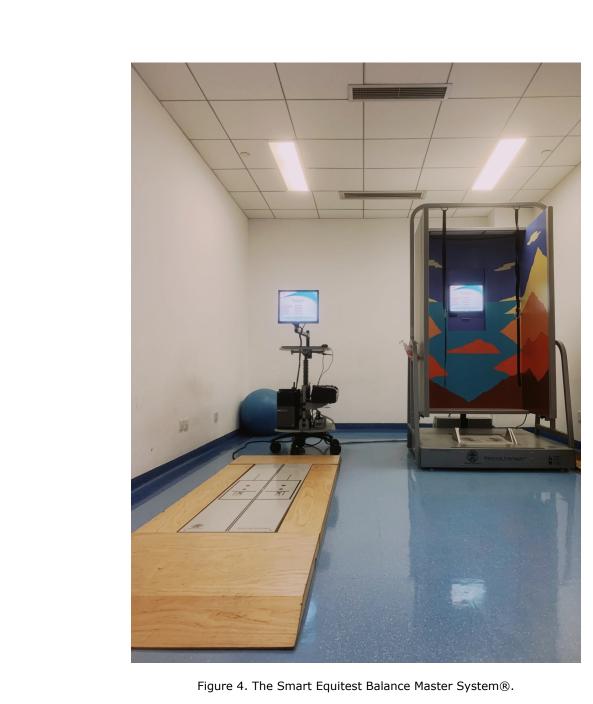

	Enrolment	Allocation		P	ost-all	ocatio	on	
TIMEPOINT	- <i>t</i> 1	0	W1	W2	<i>W3</i>	W4	W5	W6
ENROLMENT:								
Eligibility screen	X							
Informed consent	Х							
Ethical approval and trial registration	X							
Allocation	K	Х						
INTERVENTIONS:	0							
cerebellar vermis iTBS and conventional physical therapy	66							
sham stimulation and conventional physical therapy		(C	•		•			
ASSESSMENTS:								
basic characteristics information		X						
BBS		X			X			X
TIS		Х		5	X			Х
balance tests via the Balance Master system		Х			X			X
sEMG		Х			Х			Х
resting-state fNIRS		X			X			Х
FMA-LE		Х			X			Х
BI		Х			X			Х
Safety measurement			X	X	X	X	X	X

Figure 2. The schedule of enrolment, interventions, and assessments.


W, week; iTBS, intermittent theta-burst stimulation; BBS, Berg balance scale; TIS, trunk impairment scale; sEMG, surface electromyography; fNIRS, functional nearinfrared spectroscopy; FMA-LE, Fugl-Meyer assessment scale score for lower extremities; BI, Barthel index.

for peer teriew only

1066x1422mm (72 x 72 DPI)

1066x1422mm (72 x 72 DPI)

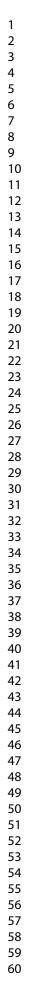


Figure 5. The sensor locations on individual muscles for sEMG recording (A. rectus abdominis, B. external oblique muscle, C. rector spinae (longissimus), D. rectus femoris, E. biceps femoris, F. tibialis anterior, G. soleus)

654x359mm (72 x 72 DPI)

Appendix. Informed Consent Form

	West China Hos	pital, Sichuan Ur	niversity		
	Participan	t Informed Conse	ent		
Name:	Name: Gender: Age: Inpatient ID:				
Title of study: The	effectiveness of c	erebellar vermis in	ntermittent theta burst		

stimulation in improving trunk control and balance function for subacute stroke patients: a randomized controlled trial

Investigator: Qiang Gao

Funding: NSFC 82172540 from the National Natural Science Foundation of China

What is the study about?

(1) The aim of the study is to determine the effects of cerebellar vermis intermittent theta-burst stimulation (iTBS) on trunk control, muscle activation and balance function in stroke patients. We will recruit 46 patients who meet the inclusion criteria as follows: (1) a diagnosis of ischemic stroke according to the *Diagnostic* criteria of cerebrovascular diseases in China (version 2019), (2) aged between 18 and 65 years, (3) first-ever unilateral ischemic stroke confirmed by imaging examination, (4) subacute stroke participants with the stroke onset ranging from 2 weeks to 6 months, (5) having motor deficit and balance dysfunction, with a Fugl-Meyer Assessment for Lower Extremities (FMA-LE) <34 points and BBS score <56 points. Patients were excluded if they presented one of the following: (1) diagnosis of coexisting other neurological diseases, (2) injury of cerebellar or brain stem, (3) having contraindications for iTBS (e.g., history of seizures, intracranial metallic implants, microprocessor implants in the body, tumours, and pregnancy), (4) cognitive impairment with a Mini-Mental State Examination (MMSE) score <27, (5) treatment with benzodiazepines, baclofen, antiepileptics and antidepressants.

How long will I be in the study?

Your part in the study will last **6 weeks** with 3 weeks of intervention and 3 weeks of follow-up (excluding assessment).

What will happen in this study?

You will be randomized into either the experimental or control group according to the random number table. If you assigned to the experimental group will receive cerebellar vermis iTBS after routine daily conventional physical therapy, otherwise you will receive sham stimulation after routine daily conventional physical therapy. The overall intervention periods are five days a week for three consecutive weeks. You will be assessed before treatment, after 3 weeks of intervention and after 3 weeks of follow-up. The measures including clinical scales, balance tests via the Balance Master system, and the surface electromyography recording.

If you are eligible and wish to join the study, you must sign this consent form. If you do not sign the consent form you cannot join the study.

We will review this consent form with you. You will be given enough time to review the consent and have all your questions about the study answered. We will give you a signed copy of the consent for your records before treatment in person.

Study stuff will not know which group or study treatment you are assigned to. You should not join the study if you are not willing to take the study treatment (or join the group) you are assigned to.

What if I have questions?

You can contact the therapist at working hours if you have questions about the study. Qiang Gao (the director of therapists) is in charge of the study.

Do I have to be in the study?

You decide if you want to be in the study. Deciding not to take part will not affect your relationship with your therapist. If your therapist is an investigator for the study, you may get a second opinion from another therapist not involved in the study.

You can leave the study at any time and you do not have to give a reason. Leaving the study will not affect your relationship with your therapist.

The study investigators may ask you to leave the study if it is in your best interest. The study investigator may ask you to leave the study if you do not follow the study rules.

What if I don't want to be in the study?

You can choose not to be in the study and you do not have to give a reason. You can choose to (talk to your doctor/therapist about other options, investigate outside resources on your own, etc.).

Are there any costs?

All study-related treatments are free.

Will I be paid for being in the study?

You will not be paid for being in the study.

Are there any risks?

There is always a small risk of a breech of confidentiality to your personal health information. However, these risks have been addressed and minimized as much as is possible.

You will be told about any new information that may affect your willingness to participate in the study.

There are some possible risks and side effects as follows: headache, nausea, neck pain, seizure, mood changes, fatigue, tinnitus, dizziness, sleepiness and syncope.

If you experience any side effects while on the study contact investigator (Qiang Gao) at any time as soon as possible.

What if I feel I've been hurt by taking part in the study?

If you feel you have been injured or harmed by taking part in this study, please contact investigator (Qiang Gao) at any time. If you feel you were harmed while taking part in this study, you may be treated at West China Hospital, Sichuan University. However, West China Hospital does not offer to pay the cost of this treatment.

If you feel your rights have been violated or you have harmed by this study, please contact your therapist.

Are there any benefits?

It is possible you may receive some benefit from cerebellar vermis iTBS and conventional physical therapy. iTBS is a novel form of rTMS, which can produce long-term potentiation and is more rapid and efficacious than standard rTMS. Cerebellar vermis is a cardinal structure involved in balance and motor control, which is responsible for regulating the trunk, head, neck and proximal limb muscles to control posture and maintain balance. There is no guarantee, however, that you will receive any benefit at all. Your participation will help us learn more about the effects of cerebellar vermis iTBS on trunk control, muscle activation and balance function in subacute stroke patients.

Your privacy is important

Protecting your privacy is very important to us.

During this study we will ask about your (past) and (current) medical history. This information will be used to determine your eligibility for the study and provide data for the study. Your personal health information will be kept private and only authorized study staff will have access to this information. We will use a study number instead of your name. All paper forms will be kept in a locked, secure office. All electronic data will be stored on password-protected computers. Your name will not be used in any publications or presentations about this study.

During the study, you may not be given access to medical information about you that is part of the study. When the study is over, you may request certain medical information collected about you that is part of your study medical record.

None of your personal information will be shared outside of West China Hospital.

By signing this consent form, you are stating that we can use your health information in the ways mentioned above for this study. You are not waiving any of your legal right by signing this form.

You have the right to take away your permission to use your health information collected as part of the study. In order to do this, you must send a written request to: Qiang Gao, department of rehabilitation, West China hospital, Sichuan University

Once your letter is received, no additional information about you will be collected from you for this study. Any data that were collected before we receive your letter will continue to be used for the study. Taking away your permission to use your

health information will not affect your relationship with West China Hospital.

We are collecting only the personal health information that we need for the specific purpose of this study. Your personal health information cannot be used for additional research purpose.

The West China hospital may be required to provide copies of your personal information to government agencies as required by law.

Your permission to use your identifiable health information when the study is complete.

Signatures:

By signing this consent form, it means the following:

- I know my rights have not been waived by signing.
- I have had all of my questions answered and I know whom to ask if I have more questions.
- I have read this form and understand it.
- I want to join the study.
- I know I can leave the study at any time and do not have to give a reason.

Signature of Participant

Date

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	ltem No	Description	Page
Administrative inf	ormation		
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	2, 17-18
	2b	All items from the World Health Organization Trial Registration Data Set	nil
Protocol version	3	Date and version identifier	nil
Funding	4	Sources and types of financial, material, and other support	20
Roles and	5a	Names, affiliations, and roles of protocol contributors	Title page, 2
responsibilities	5b	Name and contact information for the trial sponsor	Title page
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	20
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	nil
Introduction			
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	3-5
	6b	Explanation for choice of comparators	4
Objectives	7	Specific objectives or hypotheses	5
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	5-6

1 2	Methods: Participar	nts, inte	rventions, and outcomes	
3 4 5 6 7	Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	6
8 9 10 11 12	Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	6-7
13 14 15 16	Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	7-8
17 18 19 20 21 22		11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	9
23 24 25 26		11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	9
27 28 29 30		11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	7-8
31 32 33 34 35 36 37 38 39	Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	9-16
40 41 42 43 44 45	Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	5-6, Fig.2
46 47 48 49 50	Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	6
51 52 53 54	Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	6
55 56	Methods: Assignme	ent of in	terventions (for controlled trials)	
57 58 59 60	Allocation:			

1 2 3 4 5 6 7 8 9	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	16
10 11 12 13 14	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	16
15 16 17 18	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	16
19 20 21 22	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	16
23 24 25 26 27		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	16
28	Methods: Data colle	ection, n	nanagement, and analysis	
29 30 31 32 33 34 35 36 37 38	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	16
39 40 41 42 43 44		18b	Plans to promote participant retention and complete follow- up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	16-17
45 46 47 48 49 50 51	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	16
52 53 54 55	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	17
56 57 58 59 60		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	17

	1		i		i				i	1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	25 26 27 28	29 30 21	31 32 33	33 34 35	36 37 38	39 40 41 42 43 44 45 46 47	48 49 50 51 52	53 54 55	56 57	58 59 60

	20c	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	17
Methods: Monitoring	g		
Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	16
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	16
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	15-16
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	16-18
Ethics and dissemir	nation		
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	17-18
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	nil
Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	18
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	not applicable
Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	18
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	20
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	16-18

Ancillary and post- rial care30Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participationnilDissemination policy31aPlans for investigators and sponsor to communicate trial17-18	
Dissemination policy 31a Plans for investigators and sponsor to communicate trial 17-18	
results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	
31b Authorship eligibility guidelines and any intended use of nil professional writers	
31c Plans, if any, for granting public access to the full protocol, nil participant-level dataset, and statistical code	
Appendices	
nformed consent32Model consent form and other related documentation givenSupplenaterialsto participants and authorised surrogatesmaterial	ementary al
Biological specimens 33 Plans for collection, laboratory evaluation, and storage of not app biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	olicable
lated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons " <u>Attri-</u> <u>NonCommercial-NoDerivs 3.0 Unported</u> " license.	

BMJ Open

The effectiveness of cerebellar vermis intermittent theta burst stimulation in improving trunk control and balance function for patients with subacute stroke: a randomized controlled trial protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-066356.R2
Article Type:	Protocol
Date Submitted by the Author:	23-Dec-2022
Complete List of Authors:	Chen, Yi; Sichuan University West China Hospital, Su, Wei; Sichuan University, Department of Rehabilitation Medicine Gui, Chen-Fan; Sichuan University, Department of Rehabilitation Medicine Guo, Qi-Fan; Sichuan University, Department of Rehabilitation Medicine Tan, Hui-Xin; Sichuan University, Department of Rehabilitation Medicine He, Lin; Sichuan University West China Hospital Jiang, Han-Hong; Sichuan University, Department of Rehabilitation Medicine Wei, Qing-Chuan; Sichuan University, Department of Rehabilitation Medicine Gao, Qiang ; Sichuan University, Department of Rehabilitation Medicine
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Neurology
Keywords:	Stroke < NEUROLOGY, Protocols & guidelines < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Motor neurone disease < NEUROLOGY

SCHOLARONE[™] Manuscripts

1	
ว	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 7\end{array}$	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	The effectiveness of cerebellar vermis intermittent theta burst
2	stimulation in improving trunk control and balance function for
3	patients with subacute stroke: a randomized controlled trial
4	protocol
5	Yi Chen ^{1,2} , Wei Su ^{1,2} , Chen-Fan Gui ^{1,2} , Qi-Fan Guo ^{1,2} , Hui-Xin Tan ^{1,2} , Lin He ^{1,2} , Han-Hong
6	Jiang ^{1,2} , Qing-Chuan Wei ^{1,2} , Qiang Gao ^{1,2*}
7	¹ Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu,
8	Sichuan, China
9	² Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
10	* Correspondence:
11	Qiang Gao, MD, PhD, Rehabilitation Medicine Center, West China Hospital, Sichuan
12	University, No. 37, Guo Xue Xiang, 610041, Chengdu, Sichuan Province, China. Tel: +86
13	18980605992. Fax: +86-028-86298045. Email: <u>gaoqiang_hxkf@163.com</u> .
14	
15 16	Word count: 3999 words

2 3	17	
4	18	Abstract
5 6		
7 8	19	Introduction Balance impairments frequently occur after stroke. Achieving effective core
9 10	20	trunk stability is the key to improving balance ability. However, there is still a lack of
11 12	21	advanced well-defined rehabilitation protocols for balance improvement in patients with
13 14 15	22	stroke. Intermittent theta-burst stimulation (iTBS) is a noninvasive brain activity modulation
16 17	23	strategy that can produce long-term potentiation. The cerebellar vermis is a fundamental
18 19	24	structure involved in balance and motor control. However, no study has demonstrated the
20 21 22	25	therapeutic effect and potential mechanism of cerebellar vermis iTBS on balance after stroke.
22 23 24	26	Methods and Analysis This study will be a prospective single-centre double-blind
25 26	27	randomized controlled clinical trial with a 3-week intervention and 3-week follow-up.
27 28 29	28	Eligible participants will be randomly allocated to the experimental group or the control
29 30 31	29	group in a 1:1 ratio. After routine conventional physical therapy, patients in the experimental
32 33	30	group will receive cerebellar vermis iTBS, whereas patients in the control group will receive
34 35	31	sham stimulation. The overall intervention period will be five days a week for three
36 37 38	32	consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks postintervention
39 40	33	(T1) and at the 3-week follow-up (T2). The primary outcomes are Berg Balance Scale (BBS)
41 42	34	and Trunk Impairment Scale (TIS) scores. The secondary outcomes are balance tests scores
43 44 45	35	via the Balance Master system, muscle activation of the trunk and lower limbs via the surface
46 47	36	electromyography (sEMG) recordings, cerebral cortex oxygen concentrations measured via
48 49	37	the resting-state functional near-infrared spectroscopy (fNIRS), and Fugl-Meyer Assessment
50 51 52	38	of Lower Extremity (FMA-LE) and Barthel index (BI) scores.
52 53 54	39	Ethics and Dissemination This study was approved by the West China Hospital Clinical
55 56	40	Trials and Biomedical Ethics Committee of Sichuan University. The trial registration number

is ChiCTR2200065369. All participants will sign the informed consent form voluntarily. The

BMJ Open

2 3	42	results of this study will be published in peer-reviewed journals and disseminated at academic
4 5		
6 7	43	conferences.
8 9	44	
10 11 12	45	Strengths and limitations of this study
12 13 14	46	> Our study comprehensively assesses the trunk control and balance function by clinical
15 16	47	scales, balance tests via the Smart Equitest Balance Master System, and surface
17 18	48	electromyography (sEMG) measurements.
19 20 21	49	 Resting-state functional near-infrared spectroscopy (fNIRS) will be used to collect the
22 23	50	concentration of HbO2 in the cerebral cortex.
24 25	51	This study lacks a long-term follow-up assessment.
26 27 28	52	
29 30 31	53	Introduction
32 33	54	Stroke is the third most common cause of disability worldwide. ¹ The incidents, prevalence,
34 35	55	and disability-adjusted life-years of stroke have increased over the past two decades ² , and are
36 37 38	56	considered to place heavy economic burdens on society. Balance impairments frequently
39 40	57	occur in patients with stroke, with a reported incidence ranging from 61% to 83% ³ . The main
41 42	58	manifestations are postural instability, weak trunk control, and difficulty shifting weight, ⁴
43 44	59	which ultimately result in falls, poor mobility, decreased physical activity, and reduced
45 46 47	60	quality of life in patients. ⁵ Therefore, improvement of balance function is a cardinal
48 49	61	requirement in patients with stroke.
50 51	62	The trunk plays a fundamental role in trunk control, balance, and mobility during sitting and
52 53 54	63	transferring. ⁶ The synchronized activity of trunk muscles is necessary for maintaining
55 56	64	dynamic balance. In addition, proper trunk muscle control is essential for stabilizing distal
57 58 59	65	limbs.7 Muscle weakness of the lower limbs is associated with decreased standing balance
60		

control.⁸ Impaired trunk control and core muscle weakness attenuate balance and physical
function in individuals after stroke.⁹ Therefore, achieving effective core trunk stability is
crucial to improving balance ability after stroke.

The cerebellum, a central brain structure located in the posterior cranial fossa, works in concert with the cerebral cortex, brainstem, and spinal cord and is involved in motor control.¹⁰ ¹¹ It consists of two lateral hemispheres and the cerebellar vermis. The cerebellar vermis is a fundamental structure involved in balance and motor processing,^{12 13} and is responsible for regulating the trunk, head, neck and proximal limb muscles to control posture and maintain balance.¹⁴ Balance dysfunction in cerebellar disorders is most likely caused by lesions of the medial zone of the cerebellum.¹⁵ At present, the main clinical interventions to improve the balance function in stroke rehabilitation are muscle strength training or balance training. The activation of the cerebellar vermis in the central nervous system through neuromodulation with noninvasive brain stimulation has great potential for enhancing balance function in patients with stroke.

Repetitive transcranial magnetic stimulation (rTMS) is a safe, reliable, and standardized noninvasive brain activity modulation strategy to regulate cortical excitability and facilitate neural plasticity.¹⁶ Intermittent theta-burst stimulation (iTBS) is a novel form of rTMS that can produce long-term potentiation and is more rapid and efficacious than standard rTMS.¹⁷ Previously published studies revealed that iTBS over the cerebellar hemisphere could promote gait and balance recovery in patients with chronic ischemic stroke.¹⁸ Similarly, our research group recently provided evidence that iTBS over the cerebellar hemisphere could promote upper limb spasticity, balance, and walking performance recovery in patients with stroke.¹⁹⁻²¹ However, one of the results indicated that the difference in Berg Balance Scale (BBS) scores between the cerebellar iTBS group and the sham stimulation group weas 1.58 points, which did not reach the minimal clinically important difference.²² Therefore, the

Page 5 of 42

BMJ Open

91 identification of a more effective stimulation target for improving balance function after
92 stroke is necessary. No study has demonstrated the therapeutic effect and potential
93 mechanism of cerebellar vermis iTBS on balance in individuals with stroke. Our preliminary
94 pilot study found that cerebellar vermis iTBS contributed to increasing the excitability of the
95 bilateral supplementary motor areas (SMAs) during balance tasks in healthy adults.²³

Objective

Since no clinical research verifying the effectiveness of cerebellar vermis iTBS stimulation has been reported, a randomized controlled double-blind trial will be conducted to determine the effects of cerebellar vermis iTBS on trunk control, muscle activation and balance function in patients with subacute ischemic stroke. We hypothesize that cerebellar vermis iTBS can promote the activation of trunk and lower limb muscles and increase the excitability of SMAs to improve trunk control and balance function in patients with subacute ischemic stroke.

ien

105 Methods

106 Study design and setting

This study will be a prospective single-centre double-blind randomized controlled clinical trial with a 3-week intervention and 3-week follow-up. The protocol strictly follows the Standard Protocol Items: Recommendations for Intervention Trials (SPIRIT) 2013 Statement.²⁴ Eligible participants will be randomly allocated to the experimental group or control group in a 1:1 ratio. After routine conventional physical therapy, patients assigned to the experimental group will receive cerebellar vermis iTBS, whereas patients assigned to the control group will receive sham stimulation. The overall intervention period will be five days a week for three consecutive weeks. The outcomes will be measured at baseline (T0), 3 weeks postintervention (T1), and at the 3-week follow-up (T2). The whole study will be performed

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

at the Department of Rehabilitation Medicine of Sichuan University West China Hospital 116

117 (Chengdu, Sichuan Province, China). Figure 1 shows the flow diagram of the study design.

We plan to start subject recruitment on the 1st of December 2022 and complete the trial in 118

December 2025. Figure 2 illustrates the study schedule. 119

120

1

Sample size calculation 121

122 The sample size calculation was conducted via G*power of 3.1.9.2 based on the result of the BBS score in our published study, which indicated an estimated effect size of $f = 0.38^{20}$ Other 123 parameters were set as follows: a significance level of α =0.05 (two tails), power (1- β) =90%, 124 125 correlation among repeated measures=0.5, nonsphericity correction ε =1, number of measurements=3, and number of groups=2. Therefore, a sample size of n=40 was obtained. 126 127 After allowing for a 15% dropout rate, a minimum total of 46 participants is needed. erie 128

Participants 129

Recruitment 130

The participants will be recruited from the Department of Rehabilitation Medicine of Sichuan 131

University West China Hospital in Chengdu, Sichuan Province, China. After carefully 132

133 screening the inclusion and exclusion criteria, voluntary participants will be required to

provide written informed consent before the experiment. 134

135 Inclusion criteria

- 136 Participants will be considered for inclusion if they meet the following criteria:
- (1) A diagnosis of ischemic stroke according to the *Diagnostic criteria of cerebrovascular* 137
- diseases in China (version 2019).²⁵ 138
- 139 (2) Aged between 18 and 65 years.
- (3) First-ever unilateral ischemic stroke confirmed by imaging examination. 140

1 2		
2 3 4	141	(4) Participants with subacute stroke, the stroke onset ranging from 2 weeks to 6 months. ²⁶⁻²⁸
5 6	142	(5) Having motor deficit and balance dysfunction, with a Fugl-Meyer Assessment for Lower
7 8 9	143	Extremities (FMA-LE) score <34 points and BBS score <56 points. ²⁰
9 10 11	144	Exclusion criteria
12 13	145	Participants will be excluded if they meet any of the following criteria:
14 15 16	146	(1) Diagnosis of coexisting other neurological diseases.
10 17 18	147	(2) Injury of cerebellum or brain stem.
19 20	148	(3) Having contraindications for iTBS (e.g., history of seizures, intracranial metallic implants,
21 22 22	149	microprocessor implants in the body, tumours, and pregnancy)
23 24 25	150	(4) Cognitive impairment defined as a Mini-Mental State Examination (MMSE) score<27.
26 27	151	(5) Treatment with benzodiazepines, baclofen, antiepileptics and antidepressants.
28 29	152	
30 31 32	153	Interventions
33 34	154	All enrolled participants will receive 1 session of cerebellar vermis iTBS or sham stimulation
35 36	155	before routine conventional physical therapy from Monday to Friday, with a total of 15
37 38 39	156	sessions. Patients in the experimental group will receive cerebellar vermis iTBS coupled with
40 41	157	conventional physical therapy, and those in the control group will receive sham stimulation
42 43	158	coupled with conventional physical therapy. The whole intervention period will last for a total
44 45	159	of three consecutive weeks.
46 47 48	160	
49 50	161	Cerebellar vermis iTBS stimulation
51 52	162	The stimulation protocol will strictly adhere to the safety guidelines and recommendations
53 54 55	163	endorsed by the International Federation for Clinical Neurophysiology in 2021. ²⁹ We will use
56 57	164	a Magstim Rapid2 stimulator (The Magstim Company Limited) connected to a 70 mm figure-
58 59 60	165	of-8 Double Rapid2 Air Cooled Coil (P/N 3910-00) to stimulate the cerebellar vermis (Figure

3). The centre of the coil will be placed tangentially to the target scalp area, and the coil current direction will point downwards. iTBS will be applied over the cerebellar vermis, 1 cm inferior to the inion.³⁰ We will use a neuronavigation system (BrainSightt, Rogue Research Inc.) coupled with a Polaris Vicra infrared camera to ensure that cerebellar vermis iTBS is applied over the same spot for the same participant across different sessions (Figure 3). The pattern of iTBS consists of 600 pulses containing 3 pulses at 50 Hz repeated at a rate of 5 Hz. with 20 trains of 10 bursts given at 8 seconds intervals.³¹ The standard stimulus intensity will be set at 80% of the active motor threshold (AMT), which is the lowest intensity evoking at least five out of ten motor-evoked potentials (MEPs) with a peak-to-peak amplitude $>200 \mu V$ in the abductor pollicis brevis muscle during 10% of the maximum voluntary contraction measured by a dynamometer.²¹ If the participant cannot elicit MEPs or cannot tolerate the preset standard stimulus intensity, the stimulator output intensity will be set to the participant's maximum tolerated intensity.³² CLIP

Sham stimulation

Participants in the control group will be treated identically to those in the experimental group, except the Magstim sham coil (P/N 3950-00) will be used to deliver the sham stimulation.³³ The sham coil has the same external appearance, parameters and application methods for stimulating the sensation produced by the real coil without inducing a magnetic field. Therefore, it can sufficiently ensure that the patients remain blinded to the intervention.

Conventional physical therapy

After receiving cerebellar vermis iTBS or sham stimulation, all participants will receive conventional physical therapy, including limb positioning, balance exercise, trunk control, and postural and transfer training, with each session lasting 50 minutes during the intervention

BMJ Open

2		
3 4	191	phase.
5 6	192	
7 8 9	193	Criteria for discontinuing the allocated interventions
9 10 11	194	Interventions will be discontinued for participants if any of the following events occur:
12 13	195	(1) Serious adverse events, such as epilepsy, severe headache, persistent tinnitus and syncope,
14 15 16	196	occur during the stimulation.
17 18	197	(2) Participants withdraw from the trial.
19 20	198	(3) Participants are not compliant with the allocation and intervention plan.
21 22 22	199	(4) Participants join in additional studies during the trial.
23 24 25	200	(5) Group exposure for participants and outcome evaluators lead to the failure of blindness.
26 27	201	
28 29	202	Improving adherence strategies
30 31 32	203	To improve the participant compliance, the researcher in charge of the trial will contact the
33 34	204	participants regularly to clarify their rehabilitation progress and discuss the subsequent
35 36	205	physical therapy programme. Additionally, patients who complete the entire procedure in
37 38 39	206	accordance with the protocol will be provided with a subject fee and an additional free
40 41	207	rehabilitation consultation. If a participant drops out, the specific reasons for withdrawal will
42 43	208	be recorded.
44 45 46	209	
46 47 48	210	Outcome Measures
49 50	211	On the day of enrolment, the basic characteristics of the participants, including age, sex, type
51 52	212	of stroke, lesion site, course of disease, degree of neurological deficit as assessed by the
53 54 55	213	National Institutes of Health Stroke Scale (NIHSS), and cognitive function as assessed by the
55 56 57	214	MMSE, will be documented. The outcome assessments will be conducted at the treatment site
58	215	at T0, T1 and T2. The primary outcomes are BBS and Trunk Impairment Scale (TIS) scores.

The secondary outcomes are balance tests via the Balance Master system, muscle activation of the trunk and lower limbs via the surface electromyography (sEMG) recordings, cerebral cortex oxygen concentrations measured via the resting-state functional near-infrared spectroscopy (fNIRS), FMA-LE scores, and Barthel Index (BI) scores. Each assessment will be performed by a professional clinician or by a qualified physical therapist who will be blinded to the experimental condition of the participant.

Primary outcomes

1. BBS

The BBS is a well-validated scale for assessing balance among individuals with neurological disease.³⁴ It has high reliability and internal validity, with an intraclass correlation coefficient for inter-measure reliability and intra-measure reliability of 0.97 and 0.98, respectively.³⁵ This scale is a 14-item measure with a total score of 56, and the score of each item ranges from 0

(poor balance) to 4 (good balance).³⁶

2. TIS

The TIS is a scale designed to assess motor impairment of the trunk after stroke,

demonstrating the most promising performance in psychometric properties with satisfactory

reliability and validity.³⁷ It is a 17-item scale used to evaluate static and dynamic sitting

balance and trunk coordination for patients with stroke, with a total score ranging from 0 to

23 points.³⁸ A higher score indicates better trunk control.

Secondary outcomes

1. Balance tests via the Balance Master system

The assessments of dynamic balance and postural control abilities will be performed by the Sensory Organization Test (SOT), Limits of Stability (LOS), and Rhythmic Weight Shift

BMJ Open

(RWS) via the Smart Equitest Balance Master System® (NeuroCom Int., Inc., Clackamas,
Oregon, USA). (Figure 4)

1.1 SOT: The SOT evaluates postural control when participants undergo different somatosensory, visual, and vestibular feedback perturbations. During testing, inaccurate interference information is delivered to the patient's eyes, feet, and joints and is controlled through calibrated sway referencing of the support surface and/or visual surroundings. The participant is required to maintain balance to keep their centre of gravity (COG) as steady as possible. A composite equilibrium score is provided to characterize the participant's overall level of performance through the six conditions described in Table 1. During the SOT, each trial lasts for 20 seconds and is repeated three times.^{39 40}

Table 1. Sensory Organization Test

Condition	Vision	Surface	Surround	Interference
1	Eyes open	Stable	Fixed	Null
2	Eyes closed	Stable	Fixed	Vision
3	Eyes open	Stable	Unfixed	Vision
4	Eyes open	Unstable	Fixed	Somatosensation
5	Eyes closed	Unstable	Fixed	Somatosensation and Vision
6	Eyes open	Unstable	Unfixed	Somatosensation and Vision

1.2 LOS: The LOS quantifies the voluntary ability to shift the COG in eight different
directions: forwards, forwards-right, right, backwards-right, backwards, backwards-left, left,
and forwards-left. When the test is performed, a real-time display of the participant's COG
position in relation to targets placed at the centre of the base of support and the stability limits
is shown. Once the command is given, the participant must move their COG from a central
position out towards one of the eight targets as quickly (up to 8 seconds) and accurately as

1.3 RWS: The RWS evaluates a participant's ability to perform rhythmic movements of their
 COG from left to right (lateral) and forwards to backwards (anterior/posterior) between two
 targets at three different speeds (slow, medium and fast).⁴² Movement velocity and directional
 control are measured for each direction and speed.

263 2. sEMG recordings

The sEMG recordings will be conducted in accordance with the Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles (SENIAM) guidelines.⁴³ A 20-channel wireless BTS-FREEEMG 300 (BTS Biomechanics Ltd, Italy) will be used to collect the sEMG signals of the following muscles: bilateral rectus abdominis (RA), external oblique muscle (EO), erector spinae (longissimus), rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) and soleus (Table 2 and Figure 5 illustrate the sensor locations on the individual muscles). Before starting, the skin will be cleaned using 75% alcohol and would be shaved if needed to ensure a maximum skin impedance below 5 k Ω . After skin preparation, the participant will be put into the starting posture, depending on the muscle at which the electrodes will be placed. A pair of pre-gelled electrodes certified for medical use and in compliance with the directive 93/42/EEC (amended by 2007/47/EC) will be placed on the belly of the target muscle with an interelectrode distance of 2 cm.⁴⁴ When the electrodes are placed and fixed, a certified physical therapist will teach the patient to perform the maximum voluntary isometric contraction (MVIC) of the target muscle. For individual muscles, we will record three we will record three 3 seconds MVIC trials with a 2 minutes rest period between each trial. sEMG signals will be sampled at 1000 Hz. Collected data will be synchronously transmitted to a BTS EMG-Analyzer (BTS Bioengineering) with the bandpass filtered from 20 to 500 Hz. We will rectify and filter the recorded signal and extract the data of averaged electromyography (AEMG), root mean square (RMS), mean power frequency (MPF) and median frequency (MF) data for subsequent analyses.

Table 2. The sensor locations on individual muscles for sEMG recordings *

Muscle	Starting posture of participant	Electrode placement			
		Location	Orientation		
RA	Supine or standing	2 cm superior and 2-4 cm lateral to the umbilicus	Vertical		
EO	Supine or standing	At a 2-finger width above the anterior half of the iliac crest	In the direction of the line from the outside of the 5-12 ribs to the anterior half of the iliac crest		
Longissimus	Prone with the lumbar vertebral columns slightly flexed	At a 2-finger width lateral from the proc. spin. of L1.	Vertical		
RF	Sitting on a table with the knees in slight flexion and the upper body bend slightly backwards	At 50% on the line from the anterior spina iliaca superior to the superior part of the patella	In the direction of the line from the anterior spina iliaca superior to the superior part of the patella		
BF	Lying on the belly with the face down with the thigh down on the table, the knees flexed (to less than 90 degrees), the thigh in a slight lateral rotation and the leg in a slight lateral rotation with respect to the thigh	At 50% on the line between the ischial tuberosity and the lateral epicondyle of the tibia	In the direction of the line between the ischial tuberosity and the latera epicondyle of the tibia		
ТА	Supine or sitting	At 1/3 on the line between the tip of the fibula and the tip of the medial malleolus	In the direction of the line between the tip of the fibula and the tip of the medial malleolus		
		14			
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

1 2 3 4 5 6 7		Soleus	Sitting with the knee flexed approximately 90 degrees and the heel/foot of the investigated leg on the floor	At 2/3 of the line between the medial condyle of the femur to the medial malleolus	In the direction of the line between the medial condyle to the medial malleolus
8 9		Abbreviatio	ons: sEMG, surface electromyography; RA, rectus a	bdominis; EO, external oblique muscle;	RF, rectus femoris; BF, biceps
10 11		femoris; TA	A, tibialis anterior.		
12 13 14		* According	g to the SENIAM recommendations for sensor locat	tions for muscles.	
15 16	285			tions for muscles.	
17 18	286				
19 20					
21 22 23					
23 24 25					
26 27					
28 29					
30 31					
32 33 34					
34 35 36					
37 38					
39 40				15	
41 42					
43 44			For peer review only - http://	/bmjopen.bmj.com/site/about/guidelines.xhtr	nl
45 46					

287 3. Resting-state fNIRS

A multichannel fNIRS system with 24 sources and 24 detectors (NirScan, HuiChuang, China) will be used to record changes in oxygenated haemoglobin (HbO2), deoxygenated Hb and total Hb of the cerebral cortex when the participant is at rest. Relevant parameters will be set as follows: the wavelengths are between 730 and 850 nm, the source-detector distance is 3 cm, and the sampling frequency is over 11 Hz. The international 10/20 system is referenced for identifying optodes on the bilateral prefrontal and parietal lobes.⁴⁵ Collected fNIRS data will be analyses by the NirSpark software package with the bandpass filtering from 0.01 to 0.1 Hz. The mean HbO2 value of each channel will be extracted for statistical analyses.

4. FMA-LE

The lower extremity function of patients with stroke will be assessed by FMA-LE, which has good interrater reliability and concurrent validity.⁴⁶ The maximum score of this 17-item scale is 34 points. Each item is scored on a 3-point ordinal scale, with 0 points for inability, 1 point for partial ability, and 2 points for full ability to perform the required movement.⁴⁷

301 5. BI

The BI is a self-reported scale comprising of 10 items, including bathing, grooming, bladder
management, bowel management, dressing, feeding, toilet use, transfers, ascending and
descending stairs, and walking, to measure basic activities of daily living. ⁴⁸ The total scores
vary from 0 (totally dependent) to 100 (independent). This scale has good clinimetric
properties and excellent interrater reliability with standardized administration for patients with
stroke.^{19 49}

309 Safety measurements

310 Possible stimulation-related adverse events, such as headache, nausea, neck pain, seizure,

311 mood changes, fatigue, tinnitus, dizziness, sleepiness and syncope, are listed in the informed

Page 17 of 42

1

BMJ Open

2 3 4	312
5 6	313
7 8	314
9 10 11	315
11 12 13	316
14 15	317
16 17	318
18 19	319
20 21 22	320
22 23 24	321
25 26	322
27 28	323
29 30	
31 32 33	324
33 34 35	325
36 37	326
38 39	327
40 41	328
42 43	329
44 45 46	330
47 48	331
49 50	332
51 52	333
53 54 55	334
55 56 57	335
58 59	336

60

consent form. An adverse reaction record will be used to monitor and provide detailed reports

The study will be a randomized, double-blind, sham-controlled trial. Enrolled participants will

be randomly assigned based on the computer-generated random numbers that are concealed in

researcher. We plan to blind the participants and evaluators. If blinding fails, the participants

opaque numbered envelopes and opened in numerical order by a neutral noninvolved

will be removed. A sham coil will be used to ensure that the patients are blinded to the

intervention. Outcome evaluations will be conducted by a professional clinician or by a

researcher will be designated to complete the data analysis. Unblinding will be carried out

after the data analysis is completed. In the case of serious adverse events occurring during

Data will be recorded on CRFs in a timely, complete and accurate manner. Two researchers

data will be stored and available to the relevant researcher only. The West China Hospital

Clinical Trials and Biomedical Ethics Committee of Sichuan University are responsible for

serious advent events occur. All procedures will comply with the confidentiality standards for

monitoring the safety and process of the study and have the right to terminate the trial if

will independently input data into Excel software and cross-check each other. Thus, electronic

qualified physical therapist who is blinded to the group assignment. An independent

interventions, emergency unblinding will also be implemented.

313 after each stimulation. In addition, any adverse events related to in conventional physical

therapy will also be recorded using the adverse event case report form (CRF).

Randomization and blinding

Data management and analysis

Data management

medical data.

1		
2 3 4	337	
5 6	338	Statistical analysis
7 8	339	Statistical analyses will be performed using GraphPad Prism 8.4.3 (GraphPad Software, Inc.,
9 10 11	340	La Jolla, CA, USA) based on the intention-to-treat principle. Missing data will be imputed
12 13	341	using the last observation carried forwards approach. The Shapiro-Wilk test will be conducted
14 15	342	to evaluate the normal distribution of the data. The level of significance is set at $\alpha = 0.05$.
16 17 18	343	Continuous variables, ordinal variables, and categorical variables will be presented as mean
19 20	344	(±standard deviation, SD), medians (interquartile range, IQR), and number (percentage, %),
21 22	345	respectively. Based on different types of data, the independent-samples t test, Mann–Whitney
23 24 25	346	U test, and chi-square test will be used to compare demographic and baseline data between
26 27	347	groups. Two-way mixed measures analysis of variance with group as the between-individual
28 29	348	factor and time as the within-individual factor will be performed for outcome measures
30 31 32	349	analyses. Nonsphericity correction will be conducted using the Greenhouse-Geisser correction
33 34	350	if necessary, and Tukey's post hoc multiple comparison test will be applied.
35 36	351	
37 38 30	352	Patient and public involvement
39 40 41	353	Patients and the public will not be involved in the study design, recruitment, implementation
42 43	354	or reporting. However, the study results will be disseminated to the public through academic
44 45	355	papers and conferences.
46 47 48	356	
49 50	357	Ethical approval, trial registration and dissemination
51 52	358	The study was approved by the West China Hospital Clinical Trials and Biomedical Ethics
53 54 55	359	Committee of Sichuan University on May 19, 2022 (ethics reference: 2022 (573)), and will be
55	000	

conducted in accordance with the Declaration of Helsinki.

This protocol was registered on November 3rd, 2022, in the Chinese Clinical Trial Registry

BMJ Open

with the registration number ChiCTR2200065369. This trial is a sub-project of the National Natural Science Foundation of China with the registration number is ChiCTR2200061225. All participants will be fully informed of the study procedures and sign the informed consent form voluntarily before inclusion (see the Appendix). The private information of all participants will be kept confidential and securely placed in a locked cabinet and will only be accessible to researchers of the study. However, the results of this study will be published in peer-reviewed journals and disseminated at academic conferences. Discussion At present, no research has revealed the effect and potential mechanism of cerebellar vermis

iTBS on balance in patients with subacute stroke. This prospective single-centre double-blind
randomized controlled clinical trial with a 3-week intervention and 3-week follow-up is
designed to confirm its effectiveness.

Our study will comprehensively assess trunk control and balance function by clinical scales, balance tests via the Smart Equitest Balance Master System and sEMG measurements. Additionally, we will also collect the concentration of HbO2 in the cerebral cortex via restingstate fNIRS. The integrated data results will be sufficient verify the research hypothesis. For trunk control, the TIS scores can reveal motor impairment of the trunk in patients with stroke. The sEMG signal directly reflects the activation of muscles directly and contains information about movement intentions generated by the brain.⁵⁰ AEMG represents the degree of muscle activation and the synchronization of activated motor units. RMS quantifies the effort of the muscle. MPF and MF are frequency domain features and indicate muscle fatigue.51 52 For balance function, the BBS score reflects the overall performance of static and dynamic

balance. Accurate integration of sensory information is critical to maintaining balance. The

BMJ Open

composite equilibrium score of the SOT characterizes the impairments of individual sensory systems.⁵³ The ability to voluntarily move the COG within the LOS is fundamental to mobility tasks. By the LOS test, reaction time, movement velocities and excursions are recorded to measure the voluntary ability to shift the COG without losing balance. Reaction time reflects the cognitive processing ability. Movement velocities indicate high-level central nervous system function. Excursions can be restricted by biomechanical deficits.⁵⁴ Overall, limitations in the LOS are associated with instability during weight-shifting activities. RWS measures movement velocity and directional control during rhythmic movements. Patients with disrupted normal rhythmic movement control exhibit reduced velocities and/or poor directional control ability.⁵⁵

For cortical activation, fNIRS is a widespread noninvasive measurement that provides realtime monitoring of haemodynamic signals to reflect changes in brain activation.⁵⁶ Increased
HbO2 is positively correlated with cortical excitability. In addition, balance function and
postural stability are positively related to the changes in HbO2 signals in the bilateral SMAs
in patients with stroke.⁵⁷ Additionally, our previous work revealed that single-session
cerebellar vermis iTBS can increase bilateral SMAs excitability during balance tasks in
healthy adults.²³

We hypothesize that cerebellar vermis iTBS can promote the activation of muscles in the trunk and lower limbs, and increase the excitability of the SMAs to improve trunk control and balance function in patients after stroke. The cerebellar vermis plays an important role in postural tone, balance, and locomotion through descending spinal pathways since the vermis receives vestibulocerebellar and proprioceptive spinocerebellar afferents.⁵⁸ SMA contributes to anticipatory postural adjustments and postural stability during gait initiation.⁵⁹ iTBS consists of high-frequency stimulation bursts that strongly modulate the neural activity of the cerebellar vermis. Studies with humans have shown that iTBS drives acute changes to motor

Page 21 of 42

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
$\begin{array}{c}2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\3\end{array}$	
21	
22	
23	
24	
25	
26	
27	
28	
29	
31	
31 32 33 34 35 36 37	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

412	behaviour and neuronal excitability. ⁶⁰ A possible mechanism has been reported by an animal
413	study showing that iTBS can promote neural structural remodelling and functional recovery
414	by enhancing neurogenesis and migration via the miR-551b-5p/BDNF/TrkB pathway. ⁶¹ The
415	first study of cerebellar vermis stimulation was reported in 1995, which investigated its
416	effects on saccade metrics in a man via TMS. ⁶² At present, researchers have reported that
417	cerebellar vermis stimulation is a safe and well-tolerated brain stimulation technology with a
418	potential therapeutic effect on schizophrenia. ⁶³ In addition, cerebellar vermis rTMS can
419	induce a suppressive effect on pharyngeal motor cortical activity and swallowing behaviour. ⁶⁴
420	However, limited studies have reported that the cerebellar vermis plays an important role in
421	postural response and balance stability. ^{13 65} Therefore, we hope to identify the effectiveness of
422	cerebellar vermis iTBS in trunk control and balance function for patients with subacute
423	ischemic stroke. Our results may provide valuable information for developing a novel
424	treatment method for the rehabilitation of balance dysfunction after stroke.
425	
426	Author contributions: Conceptualization, validation, and original draft: YC.
427	Recruitment: LH, HHJ, and QCW. Data collection: YC, WS, and HXT. Data analysis: CFG
428	and QFG. Manuscript review and editing: CFG and QG. QG designed the trial and was
429	responsible for the manuscript. All authors read and approved the final manuscript.
430	
431	Funding: This work was supported by the National Natural Science Foundation of China
432	grant number NSFC 82172540.
433	
434	Conflict of Interest: None.
435	

436 Acknowledgments: None.

5	
6	437
7	400

References

- 440
 441
 441
 441
 442
 442
 443
 443
 444
 444
 444
 444
 445
 446
 446
 447
 447
 448
 448
 449
 449
 449
 440
 440
 440
 441
 441
 441
 442
 442
 443
 444
 444
 444
 444
 444
 444
 444
 444
 445
 446
 447
 448
 448
 448
 449
 449
 449
 440
 440
 440
 441
 441
 441
 441
 441
 441
 442
 443
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
 444
- 444 2. Hankey GJ. Stroke. *Lancet* 2017;389(10069):641-54. doi: 10.1016/s0140-6736(16)30962-x [published Online First: 2016/09/18]
- 3. Komiya M, Maeda N, Narahara T, et al. Effect of 6-Week Balance Exercise by Real-Time Postural Feedback
 System on Walking Ability for Patients with Chronic Stroke: A Pilot Single-Blind Randomized
 Controlled Trial. *Brain Sci* 2021;11(11) doi: 10.3390/brainsci11111493 [published Online First: 2021/11/28]
- 4. Zhang Y, Wang C, Yang J, et al. Comparing the Effects of Short-Term Liuzijue Exercise and Core Stability Training on Balance Function in Patients Recovering From Stroke: A Pilot Randomized Controlled Trial. *Front Neurol* 2022;13:748754. doi: 10.3389/fneur.2022.748754 [published Online First: 2022/03/05]
- 5. Chen Y, Gao Q, He CQ, et al. Effect of Virtual Reality on Balance in Individuals With Parkinson Disease: A
 Systematic Review and Meta-Analysis of Randomized Controlled Trials. *Phys Ther* 2020;100(6):933-45.
 doi: 10.1093/ptj/pzaa042 [published Online First: 2020/03/12]
 - 6. Luque-Moreno C, Kiper P, Solís-Marcos I, et al. Virtual Reality and Physiotherapy in Post-Stroke Functional Re-Education of the Lower Extremity: A Controlled Clinical Trial on a New Approach. J Pers Med 2021;11(11) doi: 10.3390/jpm11111210 [published Online First: 2021/11/28]
 - Marchesi G, Ballardini G, Barone L, et al. Modified Functional Reach Test: Upper-Body Kinematics and Muscular Activity in Chronic Stroke Survivors. *Sensors (Basel)* 2021;22(1) doi: 10.3390/s22010230 [published Online First: 2022/01/12]
- 8. Schröder J, Saeys W, Yperzeele L, et al. Time Course and Mechanisms Underlying Standing Balance Recovery
 Early After Stroke: Design of a Prospective Cohort Study With Repeated Measurements. *Front Neurol* 2022;13:781416. doi: 10.3389/fneur.2022.781416 [published Online First: 2022/03/11]
- 9. Karthikbabu S, Verheyden G. Relationship between trunk control, core muscle strength and balance confidence in community-dwelling patients with chronic stroke. *Top Stroke Rehabil* 2021;28(2):88-95. doi: 10.1080/10749357.2020.1783896 [published Online First: 2020/06/24]
- 468 10. D'Angelo E. Physiology of the cerebellum. *Handb Clin Neurol* 2018;154:85-108. doi: 10.1016/B978-0-444-63956-1.00006-0 [published Online First: 2018/06/16]
- 470 11. Roostaei T, Nazeri A, Sahraian MA, et al. The human cerebellum: a review of physiologic neuroanatomy.
 471 *Neurol Clin* 2014;32(4):859-69. doi: 10.1016/j.ncl.2014.07.013 [published Online First: 2014/12/03]
- 472 12. De Bartolo P, Florenzano F, Burello L, et al. Activity-dependent structural plasticity of Purkinje cell spines in cerebellar vermis and hemisphere. *Brain structure & function* 2015;220(5):2895-904. doi: 10.1007/s00429-014-0833-6 [published Online First: 2014/07/16]
- 475
 476
 476
 476
 476
 476
 477
 476
 477
 476
 477
 476
 477
 476
 477
 477
 478
 479
 479
 479
 470
 470
 470
 470
 470
 470
 471
 471
 472
 473
 473
 474
 474
 475
 475
 475
 476
 477
 477
 478
 478
 478
 479
 479
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
- 478 14. Marfeo A. Neuroanatomy Through Clinical Cases: Inc. Publishers 2010.
- 479 15. Ilg W, Giese MA, Gizewski ER, et al. The influence of focal cerebellar lesions on the control and adaptation
 480 of gait. *Brain* 2008;131(Pt 11):2913-27. doi: 10.1093/brain/awn246 [published Online First: 2008/10/07]
- 481
 482
 482
 483
 16. Ille S, Kelm A, Schroeder A, et al. Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients A randomized, double-blinded trial. *Brain Stimul* 2021;14(4):780-87. doi: 10.1016/j.brs.2021.04.026 [published Online First: 2021/05/14]
- 484
 485
 485
 486
 486
 17. Chen SC, Yang LY, Adeel M, et al. Transcranial electrostimulation with special waveforms enhances upperlimb motor function in patients with chronic stroke: a pilot randomized controlled trial. *J Neuroeng Rehabil* 2021;18(1):106. doi: 10.1186/s12984-021-00901-8 [published Online First: 2021/07/02]
- 487
 488
 488
 56
 489
 489
 18. Koch G, Bonni S, Casula EP, et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol 2019;76(2):170-78. doi: 10.1001/jamaneurol.2018.3639 [published Online First: 2018/11/27]
- 490
 491
 491
 60
 492
 491
 492
 492
 493
 494
 495
 495
 495
 496
 497
 498
 498
 499
 499
 490
 491
 492
 492
 493
 494
 494
 495
 495
 496
 497
 497
 498
 498
 498
 498
 499
 499
 490
 490
 491
 491
 492
 492
 493
 494
 494
 495
 495
 496
 497
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 499
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498

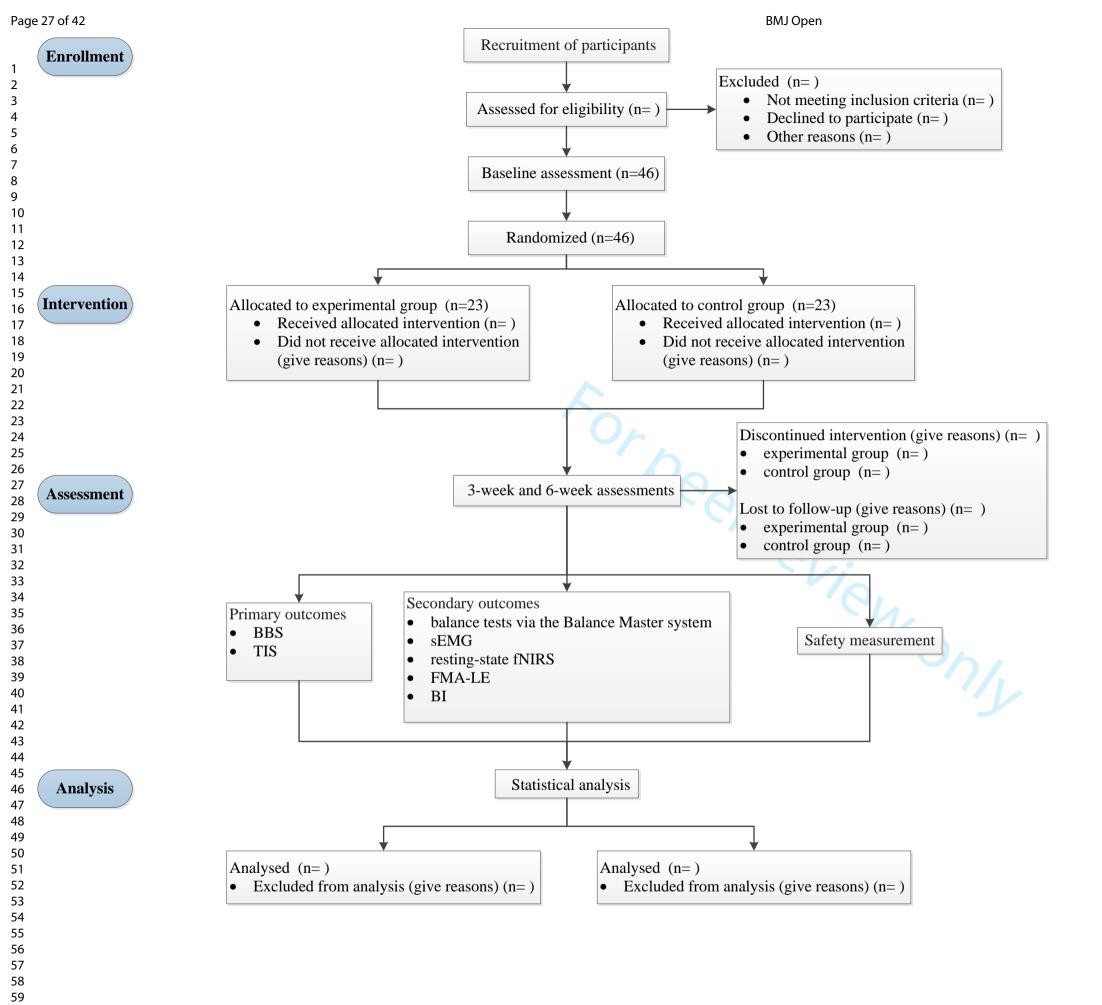
3	493	20. Liao LY, Xie YJ, Chen Y, et al. Cerebellar Theta-Burst Stimulation Combined With Physiotherapy in Subacute
4	494	and Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Neurorehabil Neural Repair
5	495	2021;35(1):23-32. doi: 10.1177/1545968320971735 [published Online First: 2020/11/10]
6	496	21. Xie YJ, Wei QC, Chen Y, et al. Cerebellar Theta Burst Stimulation on Walking Function in Stroke Patients:
7	497	A Randomized Clinical Trial. Front Neurosci 2021;15:688569. doi: 10.3389/fnins.2021.688569
8	498	[published Online First: 2021/11/13]
	499	22. Badke MB, Sherman J, Boyne P, et al. Tongue-based biofeedback for balance in stroke: results of an 8-week
9	500	
10		pilot study. Arch Phys Med Rehabil 2011;92(9):1364-70. doi: 10.1016/j.apmr.2011.03.030 [published
11	501	Online First: $2011/09/01$]
12	502	23. Tan H-X, Wei Q-C, Chen Y, et al. The Immediate Effects of Intermittent Theta Burst Stimulation of the
13	503	Cerebellar Vermis on Cerebral Cortical Excitability During a Balance Task in Healthy Individuals: A
14	504	Pilot Study. Frontiers in Human Neuroscience 2021;15 doi: 10.3389/fnhum.2021.748241
15	505	24. Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical
16	506	trials. Ann Intern Med 2013;158(3):200-7. doi: 10.7326/0003-4819-158-3-201302050-00583 [published
17	507	Online First: 2013/01/09]
	508	25. Chinese Society of Neurology CSS. Diagnostic criteria of cerebrovascular diseases in China (version 2019).
18	509	Chinese Journal of Neurology 2019;52(09):710-15. doi: 10.3760/cma.j.issn.1006?7876.2019.09.003
19	510	26. Hayward KS, Kramer SF, Dalton EJ, et al. Timing and Dose of Upper Limb Motor Intervention After Stroke:
20	511	A Systematic Review. Stroke 2021;52(11):3706-17. doi: 10.1161/strokeaha.121.034348 [published
21	512	Online First: 2021/10/05]
22	513	27. Soulard J, Huber C, Baillieul S, et al. Motor tract integrity predicts walking recovery: A diffusion MRI study
23	514	in subacute stroke. <i>Neurology</i> 2020;94(6):e583-e93. doi: 10.1212/wnl.00000000008755 [published
24	515	Online First: 2020/01/04]
25	516	28. Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed definitions and a shared vision for new standards in stroke
26	517	
20		recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke
	518	2017;12(5):444-50. doi: 10.1177/1747493017711816 [published Online First: 2017/07/13]
28	519	29. Rossi S, Antal A, Bestmann S, et al. Safety and recommendations for TMS use in healthy subjects and patient
29	520	populations, with updates on training, ethical and regulatory issues: Expert Guidelines. <i>Clin Neurophysiol</i>
30	521	2021;132(1):269-306. doi: 10.1016/j.clinph.2020.10.003 [published Online First: 2020/11/28]
31	522	30. Garg S, Sinha VK, Tikka SK, et al. The efficacy of cerebellar vermal deep high frequency (theta range)
32	523	repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham
33	524	controlled study. Psychiatry Res 2016;243:413-20. doi: 10.1016/j.psychres.2016.07.023 [published
34	525	Online First: 2016/07/28]
35	526	31. Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron
36	527	2005;45(2):201-6. doi: 10.1016/j.neuron.2004.12.033 [published Online First: 2005/01/25]
37	528	32. Spampinato D, Ibáñez J, Spanoudakis M, et al. Cerebellar transcranial magnetic stimulation: The role of coil
	529	type from distinct manufacturers. Brain Stimul 2020;13(1):153-56. doi: 10.1016/j.brs.2019.09.005
38	530	[published Online First: 2019/10/22]
39	531	33. Kumar N, Vishnubhatla S, Wadhawan AN, et al. A randomized, double blind, sham-controlled trial of
40	532	repetitive transcranial magnetic stimulation (rTMS) in the treatment of negative symptoms in
41	533	schizophrenia. <i>Brain Stimul</i> 2020;13(3):840-49. doi: 10.1016/j.brs.2020.02.016 [published Online First:
42	534	2020/04/15]
43	535	34. Meseguer-Henarejos AB, Rubio-Aparicio M, López-Pina JA, et al. Characteristics that affect score reliability
44	536	in the Berg Balance Scale: a meta-analytic reliability generalization study. Eur J Phys Rehabil Med
45	537	2019;55(5):570-84. doi: 10.23736/s1973-9087.19.05363-2 [published Online First: 2019/04/09]
46	538	
47		35. Hyun SJ, Lee J, Lee BH. The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on
48	539	Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled
49	540	Trial. Int J Environ Res Public Health 2021;18(22) doi: 10.3390/ijerph182212229 [published Online First:
	541	2021/11/28]
50	542	36. Chou HY, Lo YC, Tsai YW, et al. Increased Anxiety and Depression Symptoms in Post-Acute Care Patients
51	543	with Stroke during the COVID-19 Pandemic. Int J Environ Res Public Health 2021;19(1) doi:
52	544	10.3390/ijerph19010162 [published Online First: 2022/01/12]
53	545	37. Zhao J, Chau JPC, Zang Y, et al. Psychometric properties of the Chinese version of the Trunk Impairment
54	546	Scale in people with a stroke. Health Qual Life Outcomes 2021;19(1):85. doi: 10.1186/s12955-021-
55	547	01730-y [published Online First: 2021/03/12]
56	548	38. Thijs L, Voets E, Wiskerke E, et al. Technology-supported sitting balance therapy versus usual care in the
57	549	chronic stage after stroke: a pilot randomized controlled trial. J Neuroeng Rehabil 2021;18(1):120. doi:
58	550	10.1186/s12984-021-00910-7 [published Online First: 2021/07/30]
59	551	39. Yin L, Liu K, Liu C, et al. Effect of Kinesiology Tape on Muscle Activation of Lower Extremity and Ankle
59 60	552	Kinesthesia in Individuals With Unilateral Chronic Ankle Instability. Front Physiol 2021;12:786584. doi:
00		23
		20

Page 24 of 42

BMJ Open

 40. Bultitude JH, Pidgeon DM, LeBlanc PR, et al. Two weeks of twice-daily prism adaptation treatment does not improve posture or gait in Parkinson's disease: a double-blind randomized controlled trial. Trials

10.3389/fphys.2021.786584 [published Online First: 2022/01/04]

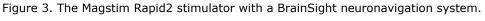

- 2021;22(1):846. doi: 10.1186/s13063-021-05832-2 [published Online First: 2021/11/27]
- 41. Kolářová B, Janura M, Svoboda Z, et al. Postural Control Strategies and Balance-Related Factors in Individuals with Traumatic Transtibial Amputations. Sensors (Basel) 2021;21(21) doi: 10.3390/s21217284 [published Online First: 2021/11/14]
 - 42. Rossi-Izquierdo M, Santos-Pérez S, Faraldo-García A, et al. Impact of obesity in elderly patients with postural instability. Aging Clin Exp Res 2016;28(3):423-8. doi: 10.1007/s40520-015-0414-4 [published Online First: 2015/07/19]
 - 43. Hermens HJ, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology 2000;10(5):361-74. doi: 10.1016/s1050-6411(00)00027-4
 - 44. Shen Y, Chen L, Zhang L, et al. Effectiveness of a Novel Contralaterally Controlled Neuromuscular Electrical Stimulation for Restoring Lower Limb Motor Performance and Activities of Daily Living in Stroke Neural Plast 2022;2022:5771634. Survivors: А Randomized Controlled Trial. doi: 10.1155/2022/5771634 [published Online First: 2022/01/25]
 - 45. Sun W, Wu X, Zhang T, et al. Narrowband Resting-State fNIRS Functional Connectivity in Autism Spectrum Disorder. Front Hum Neurosci 2021;15:643410. doi: 10.3389/fnhum.2021.643410 [published Online First: 2021/07/03]
 - 46. Wang YL, Lin GH, Huang YJ, et al. Refining 3 Measures to Construct an Efficient Functional Assessment of Stroke. Stroke 2017;48(6):1630-35. doi: 10.1161/strokeaha.116.015516 [published Online First: 2017/05/05]
 - 47. Akazawa N, Kishi M, Hino T, et al. Increased intramuscular adipose tissue of the quadriceps is related to decreased activities of daily living in patients who have had a stroke. Nutrition 2021;90:111277. doi: 10.1016/j.nut.2021.111277 [published Online First: 2021/05/20]
 - 48. Liu F, Tsang RC, Zhou J, et al. Relationship of Barthel Index and its Short Form with the Modified Rankin Scale in acute stroke patients. J Stroke Cerebrovasc Dis 2020;29(9):105033. doi: 10.1016/j.jstrokecerebrovasdis.2020.105033 [published Online First: 2020/08/19]
 - 49. Harrison JK, McArthur KS, Quinn TJ. Assessment scales in stroke: clinimetric and clinical considerations. Clin Interv Aging 2013;8:201-11. doi: 10.2147/cia.S32405 [published Online First: 2013/02/27]
 - 50. Qing Z, Lu Z, Cai Y, et al. Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time. Sensors (Basel) 2021;21(22) doi: 10.3390/s21227713 [published Online First: 2021/11/28]
 - 51. Wei P, Zhang J, Wang B, et al. Surface Electromyography and Electroencephalogram-Based Gait Phase Recognition and Correlations Between Cortical and Locomotor Muscle in the Seven Gait Phases. Front Neurosci 2021;15:607905. doi: 10.3389/fnins.2021.607905 [published Online First: 2021/06/08]
 - 52. Alhusuny A, Cook M, Khalil A, et al. The relationship between visual impairments and activity of the neck/shoulder muscles among surgeons during simulated surgical tasks. Surg Endosc 2022 doi: 10.1007/s00464-021-08913-0 [published Online First: 2022/01/09]
 - 53. Acuña SA, Tyler ME, Thelen DG. Individuals with Chronic Mild-to-Moderate Traumatic Brain Injury Exhibit During Neuromuscular Complexity Gait. Decreased Neurorehabil Neural Repair 2022:15459683221081064. doi: 10.1177/15459683221081064 [published Online First: 2022/03/25]
 - 54. Carvalho GF, Becnel AR, Miske C, et al. Postural control impairment in patients with headaches-A systematic review and meta-analysis. Headache 2022;62(3):241-70. doi: 10.1111/head.14281 [published Online First: 2022/03/23]
 - 55. Chen CL, Chen FF, Lin CH, et al. Effect of Anterior Ankle-Foot Orthoses on Weight Shift in Persons With Stroke. Arch Phys Med Rehabil 2015;96(10):1795-801. doi: 10.1016/j.apmr.2015.05.003 [published Online First: 2015/05/23]
 - 56. Kinoshita S, Tamashiro H, Okamoto T, et al. Association between imbalance of cortical brain activity and successful motor recovery in sub-acute stroke patients with upper limb hemiparesis: a functional nearinfrared spectroscopy study. Neuroreport 2019;30(12):822-27. doi: 10.1097/wnr.000000000001283 [published Online First: 2019/07/10]
 - 57. Fujimoto H, Mihara M, Hattori N, et al. Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage 2014;85 Pt 1:547-54. doi: 10.1016/j.neuroimage.2013.05.014 [published Online First: 2013/05/21]
- 58. Maiti B, Rawson KS, Tanenbaum AB, et al. Functional Connectivity of Vermis Correlates with Future Gait Impairments in Parkinson's Disease. Movement disorders : official journal of the Movement Disorder Society 2021;36(11):2559-68. doi: 10.1002/mds.28684 [published Online First: 2021/06/11]
- 59. Richard A, Van Hamme A, Drevelle X, et al. Contribution of the supplementary motor area and the cerebellum

2		
3	613	to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience
4	614	2017;358:181-89. doi: 10.1016/j.neuroscience.2017.06.047 [published Online First: 2017/07/05]
5	615	60. Tang AD, Bennett W, Bindoff AD, et al. Subthreshold repetitive transcranial magnetic stimulation drives
6	616	structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021;14(6):1498-507. doi:
7	617	10.1016/j.brs.2021.10.001 [published Online First: 2021/10/16]
8	618	61. Wang L, Zhou Y, Chen X, et al. Long-term iTBS promotes neural structural and functional recovery by
9	619	enhancing neurogenesis and migration via miR-551b-5p/BDNF/TrkB pathway in a rat model of cerebral
10	620	ischemia-reperfusion injury. Brain Res Bull 2022;184:46-55. doi: 10.1016/j.brainresbull.2022.03.002
11	621	[published Online First: 2022/03/09]
12	622	62. Hashimoto M, Ohtsuka K. Transcranial magnetic stimulation over the posterior cerebellum during visually
13	623 624	guided saccades in man. Brain 1995;118 (Pt 5):1185-93. doi: 10.1093/brain/118.5.1185 [published
14	625	Online First: 1995/10/01] 63. Escelsior A, Belvederi Murri M, Calcagno P, et al. Effectiveness of Cerebellar Circuitry Modulation in
15	626	Schizophrenia: A Systematic Review. <i>The Journal of nervous and mental disease</i> 2019;207(11):977-86.
16	627	doi: 10.1097/nmd.00000000001064 [published Online First: 2019/09/11]
17	628	64. Sasegbon A, Niziolek N, Zhang M, et al. The Effects of Midline Cerebellar rTMS on Human Pharyngeal
18	629	Cortical Activity in the Intact Swallowing Motor System. <i>Cerebellum</i> 2021;20(1):101-15. doi:
19	630	10.1007/s12311-020-01191-x [published Online First: 2020/09/27]
20	631	
21	632	Vermis by cTBS. <i>Cerebellum</i> 2017;16(1):1-14. doi: 10.1007/s12311-015-0758-5 [published Online First:
22	633	2016/01/19]
23	634	
24 25	005	
25 26	635	
26 27		
27 28		
28 29		
30		
31		65. Colnaghi S, Honeine JL, Sozzi S, et al. Body Sway Increases After Functional Inactivation of the Cerebellar Vermis by cTBS. <i>Cerebellum</i> 2017;16(1):1-14. doi: 10.1007/s12311-015-0758-5 [published Online First: 2016/01/19]
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
45 46		
46 47		
47 48		
40 49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
		25

636 Legends

- **Figure 1.** The flow diagram of the study design.
- **Figure 2.** The schedule of enrolment, interventions, and assessments.
- **Figure 3.** The Magstim Rapid2 stimulator with a BrainSight neuronavigation system.
- Figure 4. The Smart Equitest Balance Master System®.
- Figure 5. The sensor locations on individual muscles for sEMG recording (A. rectus
- abdominis, B. external oblique muscle, C. rector spinae (longissimus), D. rectus femoris, E.
- 19 643 biceps femoris, F. tibialis anterior, G. soleus20

rocerteries ony



	Enrolment	Allocation	Post-allocation					
TIMEPOINT	-t ₁	0	W1	W2	W3	W4	W5	W6
ENROLMENT:								
Eligibility screen	Х							
Informed consent	Х							
Ethical approval and trial registration	X							
Allocation		Х						-
INTERVENTIONS:	4							
cerebellar vermis iTBS and conventional physical therapy sham stimulation and	Pe							
conventional physical therapy			•					
ASSESSMENTS:		0						
basic characteristics information		X						
BBS		X			Х			Х
TIS		X			Х			Х
balance tests via the Balance Master system		Х	C		X			X
sEMG		Х			Х			Х
resting-state fNIRS		Х			X			Х
FMA-LE		Х			Х			Х
BI		Х			Х			Х
Safety measurement			X	X	X	X	X	Х

Figure 2. The schedule of enrolment, interventions, and assessments.

W, week; iTBS, intermittent theta-burst stimulation; BBS, Berg balance scale; TIS, trunk impairment scale; sEMG, surface electromyography; fNIRS, functional nearinfrared spectroscopy; FMA-LE, Fugl-Meyer assessment scale score for lower extremities; BI, Barthel index.

1066x1422mm (72 x 72 DPI)

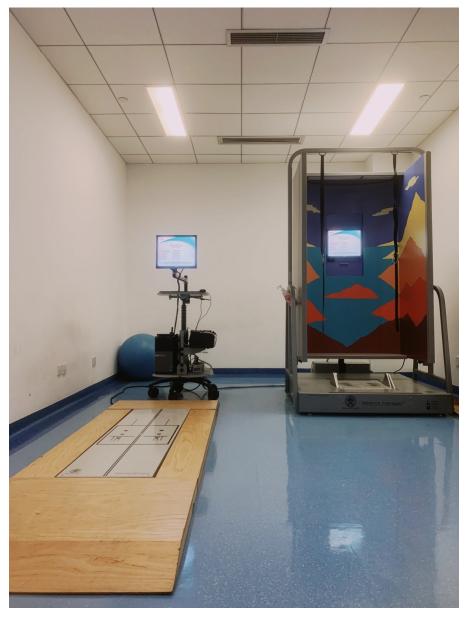


Figure 4. The Smart Equitest Balance Master System®.

1066x1422mm (72 x 72 DPI)

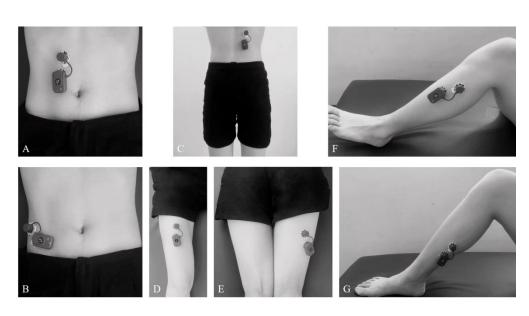


Figure 5. The sensor locations on individual muscles for sEMG recording (A. rectus abdominis, B. external oblique muscle, C. rector spinae (longissimus), D. rectus femoris, E. biceps femoris, F. tibialis anterior, G. soleus)

654x359mm (72 x 72 DPI)

Appendix. Informed Consent Form

	West China Ho	spital, Sichuan Un	iversity	
	Participar	it Informed Conse	nt	
Name:	Gender:	Age:	Inpatient ID:	
Title of study: The effectiveness of cerebellar vermis intermittent theta burst				

stimulation in improving trunk control and balance function for patients with subacute stroke: a randomized controlled trial

Investigator: Qiang Gao

Funding: NSFC 82172540 from the National Natural Science Foundation of China

What is the study about?

(1) The aim of the study is to determine the effects of cerebellar vermis intermittent theta-burst stimulation (iTBS) on trunk control, muscle activation and balance function in stroke patients. We will recruit 46 patients who meet the inclusion criteria as follows: (1) a diagnosis of ischemic stroke according to the *Diagnostic* criteria of cerebrovascular diseases in China (version 2019), (2) aged between 18 and 65 years, (3) first-ever unilateral ischemic stroke confirmed by imaging examination, (4) subacute stroke participants with the stroke onset ranging from 2 weeks to 6 months, (5) having motor deficit and balance dysfunction, with a Fugl-Meyer Assessment for Lower Extremities (FMA-LE) <34 points and BBS score <56 points. Patients were excluded if they presented one of the following: (1) diagnosis of coexisting other neurological diseases, (2) injury of cerebellar or brain stem, (3) having contraindications for iTBS (e.g., history of seizures, intracranial metallic implants, microprocessor implants in the body, tumours, and pregnancy), (4) cognitive impairment with a Mini-Mental State Examination (MMSE) score <27, (5) treatment with benzodiazepines, baclofen, antiepileptics and antidepressants.

How long will I be in the study?

Your part in the study will last **6 weeks** with 3 weeks of intervention and 3 weeks of follow-up (excluding assessment).

What will happen in this study?

You will be randomized into either the experimental or control group according to the random number table. If you assigned to the experimental group will receive cerebellar vermis iTBS after routine daily conventional physical therapy, otherwise you will receive sham stimulation after routine daily conventional physical therapy. The overall intervention periods are five days a week for three consecutive weeks. You will be assessed before treatment, after 3 weeks of intervention and after 3 weeks of follow-up. The measures including clinical scales, balance tests via the Balance Master system, and the surface electromyography recording.

If you are eligible and wish to join the study, you must sign this consent form. If you do not sign the consent form you cannot join the study.

We will review this consent form with you. You will be given enough time to review the consent and have all your questions about the study answered. We will give you a signed copy of the consent for your records before treatment in person.

Study stuff will not know which group or study treatment you are assigned to. You should not join the study if you are not willing to take the study treatment (or join the group) you are assigned to.

What if I have questions?

You can contact the therapist at working hours if you have questions about the study. Qiang Gao (the director of therapists) is in charge of the study.

Do I have to be in the study?

You decide if you want to be in the study. Deciding not to take part will not affect your relationship with your therapist. If your therapist is an investigator for the study, you may get a second opinion from another therapist not involved in the study.

You can leave the study at any time and you do not have to give a reason. Leaving the study will not affect your relationship with your therapist.

The study investigators may ask you to leave the study if it is in your best interest. The study investigator may ask you to leave the study if you do not follow the study rules.

What if I don't want to be in the study?

You can choose not to be in the study and you do not have to give a reason. You can choose to (talk to your doctor/therapist about other options, investigate outside resources on your own, etc.).

Are there any costs?

All study-related treatments are free.

Will I be paid for being in the study?

You will not be paid for being in the study.

Are there any risks?

There is always a small risk of a breech of confidentiality to your personal health information. However, these risks have been addressed and minimized as much as is possible.

 You will be told about any new information that may affect your willingness to participate in the study.

There are some possible risks and side effects as follows: headache, nausea, neck pain, seizure, mood changes, fatigue, tinnitus, dizziness, sleepiness and syncope.

If you experience any side effects while on the study contact investigator (Qiang Gao) at any time as soon as possible.

What if I feel I've been hurt by taking part in the study?

If you feel you have been injured or harmed by taking part in this study, please contact investigator (Qiang Gao) at any time. If you feel you were harmed while taking part in this study, you may be treated at West China Hospital, Sichuan University. However, West China Hospital does not offer to pay the cost of this treatment.

If you feel your rights have been violated or you have harmed by this study, please contact your therapist.

Are there any benefits?

It is possible you may receive some benefit from cerebellar vermis iTBS and conventional physical therapy. iTBS is a novel form of rTMS, which can produce long-term potentiation and is more rapid and efficacious than standard rTMS. Cerebellar vermis is a cardinal structure involved in balance and motor control, which is responsible for regulating the trunk, head, neck and proximal limb muscles to control posture and maintain balance. There is no guarantee, however, that you will receive any benefit at all. Your participation will help us learn more about the effects of cerebellar vermis iTBS on trunk control, muscle activation and balance function in subacute stroke patients.

Your privacy is important

Protecting your privacy is very important to us.

During this study we will ask about your (past) and (current) medical history. This information will be used to determine your eligibility for the study and provide data for the study. Your personal health information will be kept private and only authorized study staff will have access to this information. We will use a study number instead of your name. All paper forms will be kept in a locked, secure office. All electronic data will be stored on password-protected computers. Your name will not be used in any publications or presentations about this study.

During the study, you may not be given access to medical information about you that is part of the study. When the study is over, you may request certain medical information collected about you that is part of your study medical record.

None of your personal information will be shared outside of West China Hospital.

By signing this consent form, you are stating that we can use your health information in the ways mentioned above for this study. You are not waiving any of your legal right by signing this form.

You have the right to take away your permission to use your health information collected as part of the study. In order to do this, you must send a written request to: Qiang Gao, department of rehabilitation, West China hospital, Sichuan University

Once your letter is received, no additional information about you will be collected from you for this study. Any data that were collected before we receive your letter will continue to be used for the study. Taking away your permission to use your

health information will not affect your	relationship with West China Hospital.
We are collecting only the personal hea	lth information that we need for the spec
purpose of this study. Your personal he	alth information cannot be used for
additional research purpose.	
The West China hospital may be requir	ed to provide copies of your personal
information to government agencies as	required by law.
Your permission to use your identifiabl	e health information when the study is
complete.	
Signatures:	
By signing this consent form, it means	the following:
• I know my rights have not been wa	ived by signing.
• I have had all of my questions answ	vered and I know whom to ask if I have 1
questions.	
• I have read this form and understand	nd it.
• I want to join the study.	
• I know I can leave the study at any	time and do not have to give a reason.
Signature of Participant	Date

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	ltem No	Description	Page
Administrative inf	ormation		
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	2, 17-18
	2b	All items from the World Health Organization Trial Registration Data Set	nil
Protocol version	3	Date and version identifier	nil
Funding	4	Sources and types of financial, material, and other support	20
Roles and	5a	Names, affiliations, and roles of protocol contributors	Title page, 2
responsibilities	5b	Name and contact information for the trial sponsor	Title page
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	20
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	nil
Introduction			
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	3-5
	6b	Explanation for choice of comparators	4
Objectives	7	Specific objectives or hypotheses	5
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	5-6

Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	6
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	6-7
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	7-8
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	9
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	9
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	7-8
Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	9-16
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	5-6, Fig.
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	6
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	6
Methods: Assignme	nt of ir	nterventions (for controlled trials)	
Allocation:			

1 2 3 4 5 6 7 8 9	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	16			
10 11 12 13 14	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	16			
15 16 17 18	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	16			
19 20 21 22	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	16			
23 24 25 26 27		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	16			
28	Methods: Data collection, management, and analysis						
29 30 31 32 33 34 35 36 37 38	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	16			
39 40 41 42 43 44		18b	Plans to promote participant retention and complete follow- up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	16-17			
45 46 47 48 49 50 51	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	16			
52 53 54 55	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	17			
56 57 58 59 60		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	17			

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27		20c	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	17			
	Methods: Monitoring						
	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	16			
		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	16			
	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	15-16			
	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	16-18			
28 29	Ethics and dissemination						
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	17-18			
	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	nil			
	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	18			
		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	not applicable			
	Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	18			
	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	20			
	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	16-18			

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Ancillary and post- trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	nil
	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	17-18
		31b	Authorship eligibility guidelines and any intended use of professional writers	nil
		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	nil
18 19	Appendices			
20 21 22 23 24 25 26 27 28	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	Supplementary material
	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	not applicable
$\begin{array}{c} 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$	Elaboration for import	ant clari ecklist i	hat this checklist be read in conjunction with the SPIRIT 2013 fication on the items. Amendments to the protocol should be tr s copyrighted by the SPIRIT Group under the Creative Commo D Unported" license.	acked and