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Since the first reports of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) in humans in December 2019, 
numerous genetically distinct lineages have evolved. Among 
those, variants of concern (VOCs), especially Alpha and Delta 
variants, were associated with increased viral transmissibility 
and sparked new waves of infection, with Delta, first desig-
nated a VOC on 11th May 2021 (1), quickly becoming a glob-
ally dominant variant (2). On November 26th 2021, a new 
VOC – Omicron – was reported by the World Health Organi-
zation (WHO) (3). Omicron is a highly divergent variant and 
harbors a hitherto unprecedented number of mutations in its 
spike (S) glycoprotein (4). Fifteen mutations are located in 
the receptor-binding domain (RBD) and another eight mu-
tated sites are found in the N-terminal domain (NTD), both 
being immunodominant targets of neutralizing antibodies 
elicited by COVID-19 vaccines or by SARS-CoV-2 infection (5, 
6). Some amino acid changes (Δ69/70, T95I, G142D, Δ145, 
K417N, T478K, N501Y, and P681H) are shared mutations also 
found in the Alpha, Beta, Gamma or Delta VOCs and were 
described to lead to increased transmissibility, and to a typi-
cally mild partial escape from vaccine-induced humoral im-
munity (7–10). 

The BNT162b2 COVID-19 mRNA vaccine contains lipid na-
noparticle formulated mRNA that encodes the SARS-CoV-2 
spike glycoprotein from the parental Wuhan reference strain 
(11). Administration of two 30-μg doses of BNT162b2 was 
shown to have 95% efficacy in a Phase 3 trial (12), and shown 
to elicit strong antibody responses, effectively neutralizing the 

parental strain as well as diverse SARS-CoV-2 VOCs (13–15). 
As neutralizing antibody titers are strongly predictive with 
the degree of immune protection against symptomatic SARS-
CoV-2 infection (16), it is important to understand the effect 
of the new mutations in Omicron on recognition by neutral-
izing antibodies in convalescent and vaccinated individuals. 

To evaluate whether BNT162b2-elicited antibodies (11) are 
capable of neutralizing the Omicron variant, we used two or-
thogonal test systems: a pseudovirus neutralization test 
(pVNT) that has been shown to be in close concordance with 
live SARS-CoV-2 neutralization assays (17, 18) as well as a live 
SARS-CoV-2 neutralization test (VNT). For the former, we 
generated vesicular stomatitis virus (VSV)-SARS-CoV-2-S 
pseudoviruses bearing the spike proteins of either the Wuhan 
strain, Omicron, Beta (as a benchmark for partially reduced 
neutralization (7) without major impact on effectiveness (19, 
20)) or Delta (the predominant strain until mid-December 
2021). BNT162b2 immune sera from vaccinated individuals 
between 20-72 years of age (with over one third being 56 
years of age and older, table S1) were obtained from different 
clinical trials – the Phase 1/2 trial BNT162-01 (NCT04380701); 
the Phase 2 rollover trial BNT162-14 (NCT04949490) con-
ducted in Germany; and the global Phase 2 trial BNT162-17 
(NCT05004181) (see methods). Neutralizing titers against 
VSV-SARS-CoV-2-S pseudoviruses were analyzed with serum 
drawn from 32 participants from the BNT162-01 trial 21 days 
(median of 22 days; range 19-23 days) after two doses of 
BNT162b2 (median time from dose 1 to dose 2 was 21 days; 
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range 19-23 days; table S1), and with serum drawn from 30 
participants from the BNT162-14 (n = 11) and BNT162-17 (n = 
19) trials at 1 month (median of 28 days; range 26-30 days) 
after the third dose of BNT162b2 (Median time from dose 2 to 
dose 3 was 219 days; range 180-342 days). Eleven of the indi-
viduals in this analysis were rolled over from the BNT162-01 
into the BNT162-14 trial and were included in a longitudinal 
analysis of neutralizing antibody responses against Wuhan or 
Omicron variant pseudovirus. These individuals were immun-
ized with a third dose of BNT162b2, with sera collected 1) 21 
days (median of 21 days; range 19-23 days) after the second 
dose, 2) sera collected directly prior to the third dose (median 
256 days after dose 2; range 180-342 days), and 3) sera col-
lected at one month (all 28 days) after the third dose. 

After two doses of BNT162b2, geometric mean neutraliza-
tion titers (GMT) against Omicron pseudovirus were 22.8-
fold lower compared to the Wuhan reference pseudovirus 
(Fig. 1; GMT of 7 vs. 160). 20 out of 32 immune sera displayed 
no detectable neutralizing activity against Omicron (table 
S2). In contrast, the majority of sera neutralized Beta and 
Delta pseudoviruses with GMTs of 24 and 73, respectively. 
This corresponds to a 6.7-fold and 2.2-fold reduction in neu-
tralization activity compared to the Wuhan pseudovirus and 
is in line with previous reports (11, 14, 15, 21). 

One month after the third BNT162b2 dose, neutralizing 
GMTs against the Omicron variant pseudovirus increased 
23.4-fold compared to neutralizing GMTs at 21 days after the 
second dose (GMT of 164 vs. 7); achieving titers comparable 
to the neutralization against the reference Wuhan pseudo-
virus at 21 days after two doses of BNT162b2 (GMT of 164 vs. 
160). 29 out of 30 sera were capable of neutralizing the Omi-
cron pseudovirus (table S3). The third dose of BNT162b2 also 
increased neutralizing activity against Beta, Delta and Wu-
han pseudoviruses, with GMTs of 279, 413, and 368, respec-
tively. 

For 11 individuals that were included in the above anal-
yses a longitudinal analysis of neutralizing titers against Omi-
cron and Wuhan pseudovirus was performed. 21 days after 
dose 2, sera exhibited a 21.4-fold reduction in GMT against 
the Omicron variant compared to the Wuhan reference pseu-
dovirus (fig. S1; GMT of 7 vs. 150). Prior to receiving the third 
dose of BNT162b2 (at a median 256 days following dose 2), 
neutralizing titers against the Wuhan pseudovirus were con-
siderably reduced (GMT of 13) while the Omicron-specific ti-
ters were below the limit of detection. Consistent with the 
larger serum panel, the third dose of BNT162b2 resulted in a 
significant increase in neutralizing titers against the Wuhan 
pseudovirus (GMT of 320) and a 25.8-fold increase in neutral-
izing titers against Omicron 1 month after dose 3 compared 
to titers 21 days after dose 2 (GMT of 181 vs. 7). 

Sera from a subset of trial participants were analyzed with 
the second neutralization assay using live SARS-CoV-2 

Wuhan and Omicron virus. To this aim, serum from 32 and 
25 participants in trial BNT162-01 drawn at 21 days after dose 
2, and serum from 7 and 28 participants in the BNT162-14 (n 
= 7 and n = 11) and BNT162-17 trials (n = 0 and n = 17) drawn 
at 1 month after dose 3 were tested for neutralization against 
SARS-CoV-2 Wuhan and Omicron, respectively. Neutralizing 
GMTs against live SARS-CoV-2 Omicron were 61.3-fold lower 
compared to the Wuhan reference (Fig. 2; GMT of 6 vs. 368) 
at 21 days after two doses of BNT162b2. 17 out of 25 immune 
sera displayed no detectable neutralizing activity against Omi-
cron (table S4). One month after the third BNT162b2 dose, 
neutralizing GMTs against Omicron increased 17.6-fold com-
pared to neutralizing GMTs at 21 days after the second dose 
(GMT of 106 vs. 6) and were 3.4-fold lower as compared to the 
neutralization against the Wuhan reference at 21 days after 
two doses of BNT162b2 (GMT of 106 vs. 368). 27 of the 28 post 
dose 3 sera neutralized live SARS-CoV-2 Omicron (table S5). 

The observed SARS-CoV-2 neutralizing GMTs correlated 
positively with the neutralizing GMTs against VSV-SARS-
CoV-2-S pseudoviruses (fig. S2). 

BNT162b2 vaccination induces strong poly-epitopic T cell 
responses, directed against multiple epitopes spanning the 
length of the spike protein (11). To assess the risk of immune 
evasion of CD8+ T cell responses by Omicron, we investigated 
a set of HLA class I restricted T cell epitopes from the Wuhan 
spike protein sequence that were reported in the Immune 
Epitope Database to be immunogenic (IEDB, n = 244; see 
methods). Despite the multitude of mutations in the Omicron 
spike protein, 85.3% (n = 208) of the described class I 
epitopes were not impacted on the amino acid sequence level, 
indicating that the targets of the vast majority of T cell re-
sponses elicited by BNT162b2 may still be conserved in the 
Omicron variant (fig. S3). 

In summary, our data indicate that two doses of the 
BNT162b2 mRNA vaccine may not be sufficient to protect 
against infection with the Omicron variant. In both neutrali-
zation assay platforms, we observed a substantial reduction 
in neutralizing activity for immune sera drawn 21 days after 
the primary 2-dose series of BNT162b2, confirming prelimi-
nary reports describing a 20- to 40-fold reduction in titers 
(22, 23). Both assays also showed that a third dose of 
BNT162b2 boosts Omicron neutralization capability to robust 
levels. While in the pseudovirus assay Omicron neutraliza-
tion titers after three doses reach a level similar to that ob-
served after two doses against the Wuhan pseudovirus, live 
SARS-CoV-2 Omicron neutralizing GMTs after dose 3 were 
3.4-fold lower compared to post-two dose the Wuhan neutral-
izing GMTs. The observed variability in specific titers and 
fold differences between non-replicating pseudovirus and 
replicating live virus neutralization assay platforms as well  
as different SARS-CoV-2 strains are not unexpected. Im-
portantly, the overall trends are similar and demonstrate that 
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a third dose of BNT162b2 augments antibody-based immun-
ity against Omicron, in line with previous observations that 
a third vaccination broadens humoral immune responses 
against VOCs (24). 

The analysis presented here has evaluated and compared  
serum panels from different clinical trials with a limited sample 
size. BNT162-01 trial participants received the first two doses  
of BNT162b2 21 days apart (median 21 days; range 19-23 days), 
with the timing of the third dose not consistent between partic-
ipants. Recent reports indicate that longer dosing intervals  
(>42 days) between the first and second dose improve immuno-
genicity, potentially resulting in a more favorable outcome (25). 
Future analyses will evaluate antibody persistence. 

Neutralizing antibodies represent a first layer of adaptive 
immunity against COVID-19. T cell responses play a vital role 
as a second layer of defense, in particular in the prevention 
of severe COVID-19 (26). CD8+ T cell responses in individuals 
vaccinated with BNT162b2 are poly-epitopic (11), and our anal-
yses suggest that CD8+ T cell recognition of Omicron spike gly-
coprotein epitopes are largely preserved. Our data show that a 
third BNT162b2 dose effectively neutralizes Omicron at a sim-
ilar order of magnitude as was observed after two doses of 
BNT162b2 against wild-type SARS-CoV-2. Early reports esti-
mate moderate to high vaccine effectiveness against sympto-
matic Omicron infection especially shortly after dose 3; 65 to 
75% has been reported from the UK at 2 to 4 weeks after the 
booster dose, dropping to 55 to 70% at 5-9 weeks and below 
55% from >10 weeks after the third dose (27, 28). Further clin-
ical trial and real-world data will soon emerge to address the 
effectiveness of a third dose with BNT162b2 against COVID-19 
mediated by Omicron. 
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Fig. 1. 50% pseudovirus neutralization titers (pVNT50) of sera from 
vaccine recipients collected after two or three doses of BNT162b2 
against VSV-SARS-CoV-2-S pseudovirus bearing the Wuhan, Omicron, 
Beta or Delta variant spike protein. N = 32 sera from participants in trial 
BNT162-01 drawn at 21 days after dose 2, and n = 30 sera from 
participants in the BNT162-14 (n = 11) and BNT162-17 trials (n = 19) 
drawn at 1 month after dose 3 were tested. Each serum was tested in 
duplicate and geometric mean 50% pseudovirus neutralizing titers 
(GMTs) were plotted. For values below the limit of detection (LOD), 
LOD/2 values were plotted. Group GMTs (values) and 95% confidence 
intervals are indicated. 
 

Fig. 2. 50% live SARS-CoV-2 neutralization titers (VNT50) of sera from 
vaccine recipients collected after two or three doses of BNT162b2. 
Sera from participants in trial BNT162-01 drawn at 21 days after dose 2 
were tested for neutralization against SARS-CoV-2 Wuhan (n = 32) and 
Omicron (n = 25), respectively. Sera from participants in the BNT162-14 
(n = 7 and n = 11) and BNT162-17 trials (n = 0 and n = 17) drawn at 1 month 
after dose 3 were tested for neutralization against SARS-CoV-2 Wuhan 
(total n = 7) and Omicron (total n = 28), respectively. Each serum was 
tested in duplicate and geometric mean 50% SARS-CoV-2 neutralizing 
titers (GMTs) were plotted. For values below the limit of detection (LOD), 
LOD/2 values were plotted. Group GMTs (values) and 95% confidence 
intervals are indicated. 
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