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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Orlandi et al study the representation of task-related variables across a network of posterior cortical 
areas in mice performing an interesting perceptual discrimination task. Activity is measured with 
mesoscale calcium imaging and analyzed at the population level with dedicated analysis techniques. 

The primary goals are to identify choice-related activity across posterior cortex, to relate this activity to 
representations of other task variables (stimulus, attention, movement, saccades), and to reveal 

differences across areas within posterior cortex. 

This goal is important and timely, in particular in light of sometimes contradictory results from past 
studies. However, the text in the methods/results is at places too compressed to unambiguously 
understand the details of the employed analysis methods, or to fully grasp the significance of some 

findings. For this reason, I found it difficult to conclusively evaluate some of the key findings, as I lay 
out in more detail below. 

Main comments: 
(1) Local spatio-temporal modes 

(1a) How does the spatial distribution of locaMNF components within an area vary across order k? 
Are the components orthogonal? If not, retaining only the temporal components C(t) as in line 512 

could be problematic. This information should be provided in the methods. 
(1b) The authors argue for the use of locaMNF by comparing the resulting classification of task-
variables to a method working at the level of individual pixels (Supp. Fig. 8). But why is this the 

meaningful comparison? Would it not make more sense to compare to the performance of a classifier 
that operates on the entire state-space of pixels (as opposed to individual pixels)? Such a classifier 

would have access to images of brain activity, like locaMNF, but would not impose any top-down 
spatial parcellation along area boundaries. 

(2) State axes 
(2a) I found it difficult to evaluate some of the results without a better understanding of the structure of 

the behavior. How correlated are the various behavioral states that are being used to define state-
axes? Correlations between behavioral variables may affect the interpretation of the inferred state 

axes. In particular, do the small angles between state axes in Fig. 4a reflect a property of the neural 
representations, or do they reflect strongly correlated behavioral variables? 
(2b) State axes are defined by comparing two sets of trials/responses. However, in the definition of 

the stimulus axis, and potentially of other axes as well, the within-trial timing of the two responses is 
not matched. For example, in Fig. 2d time points in the no stimulus response occurs earlier in the trial 

than “time-matched” points in the stimulus response. The corresponding stimulus axis could thus 
potentially reflect “condition-independent” (i.e. time-dependent) variance (see dPCA) in addition to 
stimulus-dependent variance. Such variance could affect the angle between state-axes. 

(2c) Line 525: Stability of state axes. Are the described computations performed separately by area, 
and stability plots are then averaged across areas? If so, would it not make sense to assess stability 

at the “whole-brain” level? 

(3) Attention vs choice 
Fig. 3j provides a summary of the interaction of choice, task-difficulty, and attention. However, were 
all aspects of that panel verified in the data? For one, task-difficulty is shown as affecting responses 

along the choice axis, but orthogonal to the attention axis, and the choice axis is shown as being 
identical in the two attention states. But choice axes estimated separately for low and high attention 

were not identical (line 178), potentially indicating a component of choice that is not maintained 
across attention states. Also, d_prime for choice seems larger in the low-attention state (Fig. 3h) 
compared to high-attention, which is not reflected in panel j? The authors should clarify how the 

summary panel relates to these findings. 

(4) RNN modeling 



(4a) It is not easy to compare the RNN response to the neural responses, because RNN responses 
are illustrated with somewhat different figures than the neural responses. For example, in the neural 

data d_prime for choice appears to be larger for low vs high attention (fig. 3h,i). That does not appear 
to the case in the RNN (Fig. 5g), although a direct comparison is difficult because the plots are not the 

same. The authors should simplify the comparison, and clarify what aspects of the neural responses 
are captured by the RNN, and which are not. 
(4b) Line 144: the authors emphasize that the RNN generates probabilistic choices even though it 

was trained on binary choices. But my understanding of the methods was that the output neurons 
implement a (probabilistic) softmax output function? If so, is it not a given that the choices of the RNN 

will describe a smooth psychometric curve? 

Minor point 
The introduction cites papers across a range of species (primates + rodents), areas (from early 
sensory to late association and movement), tasks, and methods. While I appreciate the effort at being 

scholarly and the attempt at linking the presented research to the whole field, some of the references 
are very brief and compressed. Overall, I found it hard to follow what the authors meant to say, i.e. 

why a particular reference is used. In essence the authors are providing a review in a few paragraphs, 
which has the disadvantage of somewhat hiding/obscuring the goals of this study. 

Reviewer #2 (Remarks to the Author): 

Several studies have shown that the representations of choice information can be found the occipital, 

parietal, and frontal cortices, but determining whether these representations across areas are 
comparable, and separating these choice signals from stimulus and motor information, has been 

challenging. To investigate choice representation, mice in this study are trained to perform a 
challenging 2AFC orientation discrimination task during mesoscale wide-field imaging of the posterior 

cortex. The study employs a tensor decomposition method, locaNMF, to identify unique 
spatiotemporal components in the imaging data. They then apply an additional dimensionality 
reduction step, revealing the underling representation of stimulus, movement and choice information 

in each area. With support from a recurrent-neural network trained on the animals’ behavioral data, 
this study demonstrates that the posterior cortex contains a multi-area decision variable that is 

modulated by task and behavioral variables. This exciting study provides new insight into the 
representation of choice across cortical areas and provides an experimental and analytical framework 
for further investigations. Overall, the study is clearly presented, and the authors are commended for 

their multiple experimental and analytical controls throughout. I only have a few suggestions for 
additional improvement to the transparency of an already excellent study. 

1. Figure 1d. The authors should consider using ‘Probability right choice’ to match with convention, 
and ‘Ignore (%)’ instead of ‘Time out (%)’ since the cause of time out isn’t immediately clear. 

2. Figure 1e. The authors describe alignment of the multiple higher visual areas with the Allen Institute 
Atlas using the retinotopic field-sign maps. The authors should provide an example field sign map to 

show the level of confidence in area assignment. 
3. Supplementary Figure 1a. The authors provide penalty maps that describe seeding areas and area 

boundaries for locaNMF decomposition. What benefit is gained from having boundaries that extend 
significantly beyond areas? How much does the seeding impact the resulting special components? 
The authors should address this with additional commentary. 

4. Supplementary Figure 1c – On lines 95-97 the authors describe that each main component of a 
seeding area contributes, on average, 9.6 % of the total explained variance. However, this figure 

shows that the first component contributes ~45% explained variance. Why is this initial component not 
addressed? In addition, what conclusions should the reader reach by the comparison of the SVD and 
locaNMF methods? The figure shows SVD achieving larger explained variance (~80%) than locaNMF 

with fewer components. Yet, the implication is that locaNMF is a better approach. The authors should 
unpack this comparison of SVD and locaNMF so the reader can better understand the determining 

factors in the decision to utilize locaNMF. 



5. Figure 2d-g. To provide the readers with an intuition regarding statistical power, the authors should 
provide details regarding the trial numbers for each particular state axis (i.e. high attention vs low 

attention). 
6. Figure 2g. This figure describes sustained attention based on pupil area changes. How are reward 

and other known factors that influence pupil size accounted for in this description? The authors should 
provide additional discussion addressing the illustrated dynamic and the impact of other factors that 
influence pupil size. 

7. Figure 3a. The projection of the right choice is similar to that of the left choice briefly after 
movement onset, before a reversal. Does this reflect an intrinsic choice bias, or an inability to 

completely collapse along this state axis? The authors should describe this observation and how 
dynamics emerge. 

8. Figure 3f and 4d. It is not clear how global d’ is calculated and what is its relationship to the local d’ 
in each area (it seems like it is sublinear). Similarly, I am confused by the SDI index. It seems like the 
assumption is that if the max area d’ is high relative to the global, then this suggests that it can 

account for most of the total d’, and therefore it is not evenly distributed. However, this makes 
assumptions about the linearity of d’ summing across areas to create the global d’. 

9. Figure 4b – The authors use hierarchical clustering to illustrate the relationship between state axes. 
The authors note that early and late choice are orthogonal from each other, but make stronger 
statements about their orthogonality from the other variables. Notably, early and late choice are more 

different from each other than any of the other variables are different from each other. This result 
could use some more explanation: what are the major differences between choice early and choice 

late? 
10. Figure 5f & g- There appears to be a discrepancy between these two figures regarding d’ 
amplitudes and timing. Panel g separates the hard and easy trials into high attention and low 

attention, but after this separation the max d’ is lower (~ 5 compared to ~7). In addition, the timing of 
the change in d’ in panel g is shifted to the left as compared to panel f. The authors should describe 

the source of this discrepancy and any implications that it may have on the interpretation of these 
results. 

11. Supplementary figures 5 and 7 have typos in the captions. 
a. Supp 5 - The caption for panel “c” is labeled “d”. 
b. Supp 7 – The caption for panel “b” is “As in H, but after movement onset” when it should be “As in 

a, but after movement onset”. 

Reviewer #3 (Remarks to the Author): 

The authors recorded wide-field calcium imaging data in mice during a perceptual discrimination task. 
The task consisted of turning a wheel to indicate which of 2 oriented gratings were most similar to a 
target orientation. The authors used localNMF to decompose data into spatially-dominated 

components and then conducted a decoding analysis to establish encoding axes for a variety of task 
variables. 

The experiments were impressively successful and I appreciate the willingness to use mice as a 

model animal for studying decision making. The analysis was thorough and while most of the authors’ 
claims were substantiated by the data, the authors made some questionable assertions and confusing 
choices regarding the presentation of the results that I believe can to be addressed in revision. The 

following are specific points that should be addressed. 

- The authors used localNMF to decompose the wide-field 2P imaging in to pixels associated with 
particular regions. I wonder, however, what specifically is gain by forcing the weights to correspond to 
specific regions. Why not use the global encoding axes and ask post-hoc whether the encoding 

regions correspond to anatomically-defined regions? 

- Figure 3c depicts the cross-correlation between choice axes estimated from different time windows. 



As the authors pointed out, the 2 distinct regions suggest that there are 2 stable choice axes. They 
schematically depict this in Figure 4c. However, they could have simply plotted the projection onto 

each of these axes and demonstrated the plausibility of their hypothesis, rather than presenting their 
schematic. A similar visualization could have been done for the movement axes. I would have found 

this demonstration to be far more convincing. 

- Regarding statements starting on line 201, Figure 4c, The authors claim that the choice and 

movement axes are always orthogonal to each other but it does not appear to be the case based on 
the inset. In particular, it appears that prior to movement onset there is some non-zero correlation 

between axes. Could the authors please explain this? 

- Figure 3j is a schematic illustration based on the authors’ description of encoding geometry in the 
data and Figure 5h presents this same phenomenon for the data obtained from the trained RNN. It’s 
unclear to me why the authors (again) did not choose to plot the actual data in this way, which seems 

to me to be entirely possible considering they did so for the RNN, rather than depicting a schematic 
representation. 

- Line 178 “Choice axes independently defined in low- and high-attention states were highly correlated 
(Pearson’s r = 0.72 ± 0.03), indicating they reflected a congruent underlying decisional process. “ 

However, r = 0.72, while high by some standards, is hardly the same. Can the authors comment on 
differences in the choice axes between states and explain why these are statistically significantly 

different? 

- Starting on line 260: representational similarity... I am unconvinced that these assertions follow from 

the evidence provided. First, what properties of the representations found in the RNN should convince 
us that the mechanism employed by the RNN is the same as that employed by the mice? Why does 

the lack of neural data lend credibility to the RNN analysis? I am personally left more skeptical by this 
feature than less. 

- The wheel movement axis (Supplementary Fig. 2b) does seem to show a dramatic shift at the time 
of movement onset but the cross-correlograms suggest a constantly, albeit slowly, changing axis in 

both the pre- and post- movement periods. This undermines the authors claim that there are 2 
movement axes that shift around the time of movement onset. Can the authors please explain? 

- Line 344. The authors’ comment about “forcing” a shift on other task variables doesn’t make sense 
to me. An encoding axis can shift and remain orthogonal to the other task variable axes without any 

change in the other axes. This is particularly easy in high dimensions. 

- The spatial averaging imposed by localNMF decreases the effective degrees of freedom of the data. 
Averaging across trials to estimate state axes again reduces the effective degrees of freedom. Can 
the authors comment on how the effective degrees of freedom of the data could impact the spatio-

temporal analysis that they have depicted? 

- Line 355: “represenational similarity analysis…” The authors here reference Mante et al. (2013) 
(reference 81). However, I can find no reference to representational similarity analysis (RSA) in this 

paper. I should point out that RSA is often referred to as a formal analysis method. Perhaps there is 
some colloquial sense in which the authors are using this term? If so, I suggest the authors choose a 
different description of this family of analyses.



Reviewer #1 
Orlandi et al study the representation of task-related variables across a network of posterior 

cortical areas in mice performing an interesting perceptual discrimination task. Activity is measured with 
mesoscale calcium imaging and analyzed at the population level with dedicated analysis techniques. The 
primary goals are to identify choice-related activity across posterior cortex, to relate this activity to 
representations of other task variables (stimulus, attention, movement, saccades), and to reveal 
differences across areas within posterior cortex. 

This goal is important and timely, in particular in light of sometimes contradictory results from past 
studies. However, the text in the methods/results is at places too compressed to unambiguously 
understand the details of the employed analysis methods, or to fully grasp the significance of some findings. 
For this reason, I found it difficult to conclusively evaluate some of the key findings, as I lay out in more 
detail below. 

Main comments: 
(1) Local spatio-temporal modes 

(1a) How does the spatial distribution of locaMNF components within an area vary across order k? Are the 
components orthogonal? If not, retaining only the temporal components C(t) as in line 512 could be 
problematic. This information should be provided in the methods. 

We have verified that the spatial distribution of the largest components (by variance 
explained) remains unchanged within an area when increasing the order k. However, 
changes are observed on the smaller components for large ks. Since locaNMF 
decomposition is based on non-negative matrix factorization, the decomposition is not 
unique.  Within each seeding area the components are not orthogonal, as it is true in NMF 
decompositions, however, the constraint of sparsity between seeding areas ensures that 
there is minimal shared information between components across areas. We agree with 
the referee that focusing only the temporal components C(t) could pose an issue if we 
were to investigate the role of one component at a time. Hence, we always focused on 
the decomposition and discriminability in a per-area basis (i.e., using all components of a 
given area together) and not on individual components. These considerations are now 
explained in the Methods, Line 548:  

“Since locaNMF is based on NMF, components originating from a given region are not orthogonal 
to each other. However, components originating in different regions had minimal overlap due to 
the initialization process mentioned above. The spatial components of the decomposition were 
significantly localized and could be mapped onto the original seeding region. The temporal 
component captured the unique trial-to-trial variability, and all subsequent analyses in the time 
domain were conducted using only the temporal 𝐶𝐶𝑘𝑘,𝑡𝑡

𝑖𝑖  of locaNMF components. Analysis of 
components’ role were always performed on a per-area basis (i.e., using all components of a 
given area), rather than on single components. The total explained variance (EV) of a partial 
decomposition was computed, for each pixel, by computing the variance of 𝜎𝜎2�∑ 𝐴𝐴𝑥𝑥,𝑦𝑦,𝑘𝑘𝐶𝐶𝑘𝑘,𝑡𝑡𝑘𝑘∈𝑆𝑆 �

𝑡𝑡
  , 

where S is a subset of components, and where all trials have been concatenated to produce 𝐶𝐶𝑘𝑘,𝑡𝑡. 



The total variance is then summed across all pixels and compared with the variance of the original 
𝐹𝐹𝑥𝑥,𝑦𝑦,𝑡𝑡 signal.” 

We also now include a new Supplementary Fig. 2 showing examples of spatial 
distributions for large k values (top 9 components). 

(1b) The authors argue for the use of locaMNF by comparing the resulting classification of task-variables to 
a method working at the level of individual pixels (Supp. Fig. 8). But why is this the meaningful comparison? 
Would it not make more sense to compare to the performance of a classifier that operates on the entire 
state-space of pixels (as opposed to individual pixels)? Such a classifier would have access to images of 
brain activity, like locaMNF, but would not impose any top-down spatial parcellation along area boundaries. 

Single-pixel analysis was done to compare with studies that followed a similar local 
analysis, finding, for example, no evidence of choice-related information in these regions 
(e.g., Steinmentz et al, Nature, 2019; Salkoff et al., Cerebral Cortex, 2020; Zatka-Haas et 
al., bioRxiv 2021; also in the Introduction and Discussion). We concur with the reviewer 
that a comparison with an entire state-space decoder would be more meaningful if we 
were to evaluate the superiority of locaNMF against other methods, but this was not within 
the scope of our analyses. It is indeed conceivable that other system-wide decoders could 
achieve similar performance; but, as demonstrated in Saxena et al., 2020, the locality 
constraint in locaNMF adds significantly to the interpretability of the results. The top-down 
parcellation is justified from previous findings based on widefield and 2-photon imaging 
(e.g., Minderer et al, Neuron 2019; Saxena et al, Plos Comput Biol 2020; Abdolrahmani 
et al, Cell Rep 2021), showing significant spatial correlations across large cortical 
domains in the neural activations associated to behavioral variables. The fact that the 
seed-area boundaries are not sharp, allowed us to highlight activity patterns that 
extended across boundaries. We have added these observations to the Discussion, Line 
298: 
“The imaging methodology and data analysis used in this study facilitated the identification of 
distributed choice signals encoded by sparse populations of cells56. Indeed, sparse encoding in 
multi-region networks would make choice signals hard to detect with methods that examine 
decision information independently at each cortical location, whether because of the use of a 
single electrode (or multi-contact electrode shank)24 or because of imaging data analysis focused 
on individual locations (pixels) independent from each other26,27,57. We confirmed this observation 
by reanalyzing our data at the single pixel level: assuming independence between the activations 
of different pixels, we failed to detect choice information both before and after movement onset. 
This result may explain why some recent mouse studies have failed to detect choice signals in 
posterior cortices during similar visually guided tasks24–27.  

Our choice of seeding-area sizes was chosen to approximately match the spatial 
correlation length of visual or movement components using smooth penalty boundaries, with 
sharp boundaries imposing an unnecessary split of components at the border between seeding 
areas. Small changes in seeding parameters (areas size, centers, smoothness of the boundaries) 
did not significantly affect the properties of the state axes, suggesting that the spatial correlation 
length of broadly distributed choice signals approximately matched that of visuomotor 
components. Additionally, as previously reported35, the robustness and stability in spatial profiles 
across experimental sessions enabled by this seeding method follows from two main 



observations: 1) the boundaries between visual areas are identified by gradient flips in field sign 
maps, but the identification of the boundaries can be imprecise, especially for the smaller higher 
visual areas (as we observed in our data and as discussed, e.g., ref58). Allowing a seeding 
boundary to extend beyond retinotopic boundaries reduces the dependence of the results on the 
precise identification of these boundaries. 2)  Activity components do not have to follow retinotopic 
boundaries (e.g., if representing afferent signals from other brain regions or top-down 
modulations), but these activations are still likely to be spatially correlated. A loose (penalty-
based) boundary component allows to capture spatially coherent signals crossing area 
boundaries.” 

(2) State axes 

(2a) I found it difficult to evaluate some of the results without a better understanding of the structure of 
the behavior. How correlated are the various behavioral states that are being used to define state-axes? 
Correlations between behavioral variables may affect the interpretation of the inferred state axes. In 
particular, do the small angles between state axes in Fig. 4a reflect a property of the neural representations, 
or do they reflect strongly correlated behavioral variables? 

We thank the referee for pointing this out, as the discussion of correlated variables was 
missing in the previous submission. Indeed, some of the task variables are highly 
correlated, as reported in a previous study from our laboratory (Abdolrahmani et al., Cell 
Rep 2021). For example, wheel and eye movements sometimes occurred near-
simultaneously, wheel movements often happened right after stimulus presentation, and 
wheel movements were also more likely to appear in trials with elevated sustained 
attention. In view of these correlations, to define the choice axis we only used trials where 
no other identified movement or saccade took place (Methods, Line 613: “we restricted the 
analysis to trials in which the first movement occurred at least 0.5 s after stimulus onset and with 
no saccades 0.5 s before the detected movement”). Similarly, to define the wheel movements 
and saccades state axes we only used the subset of trials where only one of the two 
occurred (Methods, Line 594: “Group A consisted of trials for which the first movement after 
stimulus presentation occurred at least 0.5 s after stimulus onset and without any saccade 
detected in the previous 0.5 s.” and Line 599: “Akin to the definition of wheel movements, Group 
A consisted of trials for which a saccade after stimulus presentation occurred at least 0.5 s after 
stimulus onset and without any wheel movement detected in the previous 0.5 s. These trials were 
aligned to the detected saccade time. Group B consisted of trials with no saccade detected during 
the first 5 s after stimulus onset.”. In this revised manuscript, we have included a new 
analysis demonstrating that significant discriminability of a given state axis is maintained 
after orthogonalization with other axis (i.e., choice vs attention, movements, and 
saccades; movements vs saccades and attention; and choice in high and low attention 
states). This information has been added to the Results, Line 195:  

“We verified that the smaller angles observed between some state axes in Fig. 4a were not a 
direct consequence of correlated behavioral variables by computing their discriminability power 
after orthogonalization with the other axes (choice vs attention, movements, and saccades; 
movements vs saccades and attention; and choice in high and low attention). All state axes 
retained significant discriminability after orthogonalization (Supplementary Fig.  11).” 



 
(2b) State axes are defined by comparing two sets of trials/responses. However, in the definition of the 
stimulus axis, and potentially of other axes as well, the within-trial timing of the two responses is not 
matched. For example, in Fig. 2d time points in the no stimulus response occurs earlier in the trial than 
“time-matched” points in the stimulus response. The corresponding stimulus axis could thus potentially 
reflect “condition-independent” (i.e. time-dependent) variance (see dPCA) in addition to stimulus-
dependent variance. Such variance could affect the angle between state-axes.  

The referee is correct, but with the within-trial timing mismatch occurring only for the 
stimulus state vector. State vectors for choice and attention were always time-matched. 
Instead, for wheel movements and saccades, in the ‘no-event’ condition, the data was 
aligned to a random point within the same time interval where an event could occur, which 
should mitigate the contribution of, for example, a time-dependent component in the 
response variance. For the stimulus axis we followed a somewhat similar procedure: in 
our task design the ITI is randomized (3-5 sec), therefore, by choosing time points 
immediately before the stimulus presentation for the ‘no-stimulus’ condition, time-
dependent components in the variability should be significantly averaged-out out by this 
procedure. However, if mice had learned, for example, an “hazard function” compatible 
with the ITI randomization (for which we do not have compelling evidence), a time-
dependent component may still remain. We have clarified these considerations, as well 
as improved our description of how the state vectors have been computed in the Methods, 
Line 587:  

“Stimulus: For stimulus state-vectors, we used for the first group (A) trials in the time interval (-
0.5 to +0.5 s) centered on the stimulus onset. For group B, since the stimulus was present in all 
trials, we used the same trials in the preceding time interval (-1 to 0 s) as the no-stimulus condition. 
Since the preceding ITI was randomized (3-5 sec), time-dependent contributions to the signals 
should be similar across the two groups. The stimulus condition had on average 2730 trials per 
animal.” 

(2c) Line 525: Stability of state axes. Are the described computations performed separately by area, and 
stability plots are then averaged across areas? If so, would it not make sense to assess stability at the 
“whole-brain” level? 

Thanks for pointing out this confusing point. We agree that it is better to assess the 
stability at the whole-brain level, which is indeed what we did in our analysis by using all 
components. This is now better explained in the Methods, Line 576: “To assess the stability 
of state axes, we used our original definition of the time-dependent state axes, that is, using 
components from all the areas, and a “backward” three-frame averaging window (around 100 ms) 
and then computed its temporal autocorrelation C(S(t),S(t')). For sensory, movement, and 
sustained attention state axes we chose the time-independent state axes S≡S(t*), where t* was 
chosen from the largest stability cluster (represented by a gray bar in the respective figures). For 
the state axis of choice, we used the original S(t) to monitor when choice information first 
appeared and whether its signature was unique.” 

(3) Attention vs choice. Fig. 3j provides a summary of the interaction of choice, task-difficulty, and attention. 
However, were all aspects of that panel verified in the data? For one, task-difficulty is shown as affecting 



responses along the choice axis, but orthogonal to the attention axis, and the choice axis is shown as being 
identical in the two attention states. But choice axes estimated separately for low and high attention were 
not identical (line 178), potentially indicating a component of choice that is not maintained across attention 
states. Also, d_prime for choice seems larger in the low-attention state (Fig. 3h) compared to high-attention, 
which is not reflected in panel j? The authors should clarify how the summary panel relates to these findings. 

We now clarify that each choice axis was independently defined, based on a different set 
of trials, and to demonstrate they were significantly maintained across attention states, 
we performed a new analysis in which we tried to discriminate between left and right trials 
in one attention state using the axis defined in the other attention state, Supplementary 
Fig. 10. Regarding the dependence with difficulty, we did observe a clear separation only 
during high-attention states. The separation during low-attention states was not significant. 
Regarding the d’ for choice being larger in the low-attention state, we have added a new 
plot: Fig. 3h showing those d’ differences are not significant, collectively. Finally, we also 
agree that the schematic in Fig. 3j was not an accurate summary of the interactions; we 
have replaced the schematic panel Fig. 3j with one computed using representative 
trajectories from the experimental data. 

(4) RNN modeling. (4a) It is not easy to compare the RNN response to the neural responses, because RNN 
responses are illustrated with somewhat different figures than the neural responses. For example, in the 
neural data d_prime for choice appears to be larger for low vs high attention (fig. 3h,i). That does not 
appear to the case in the RNN (Fig. 5g), although a direct comparison is difficult because the plots are not 
the same. The authors should simplify the comparison, and clarify what aspects of the neural responses 
are captured by the RNN, and which are not. 

We have updated most of the panels in Figure 5 (b to j) to allow for a better comparison 
between neural and model data. We have also performed new, extensive simulations, 
with a new parameter set; Methods: Line 655, using N=50 neurons instead of N=128, and 
Line 666: “We used a constant 𝜆𝜆 = 0.2 and 𝛼𝛼 = 2/90 for low attention and 𝛼𝛼 = 5/90 for high 
attention. Lapse rate was chosen to match that of a representative animal. Slopes were chosen 
to match average performance across difficulties of a representative animal (67% and 80% for 
low and high attention respectively; sampled from a uniform trial difficulty distribution).” This new 
parameter set better captured the discriminability values obtained from experimental data. 
The comparison between experiment and model should now be significantly clearer. We 
have also updated the Results to clarify which aspects of the neural response are 
captured by the RNN, Line 247: 
“Performance levels and differences between high and low attention states were chosen to match 
experimental values. We then analyzed the internal dynamics of the network by computing choice 
and attention axes from RNNs unit responses, as we did for the neural data with locaNMF 
components. In the RNNs the choice axis identified a decision variable that represented L/R 
decisions as separate trajectories in a low-dimensional embedding space (Fig. 5b-d). Furthermore, 
the separation between L/R trajectories was modulated by attention and task difficulty, with larger 
separations in easy trials and high attention (Fig. 5e-g). This separation did not depend on 
absolute orientations, as expected from the RNN having learned this invariance. Attentional 
modulations maintained an invariant representational geometry of the decision variable across 



the embedding space,  that is, the choice axis remained stable with attention and task difficulty 
(Fig. 5h-i). This was consistent with what observed in the neural data, where choice and attention 
axes were near-orthogonal with each other (Fig. 4a). Although the model was trained only with a 
subset of 13 difficulties and two attention states, it was able to generalize to any difficulty level 
and range of attention within the trained boundaries (Fig. 5j). 
  In summary, the similarity of the representations between the RNN and neural dynamics, 
suggests that the contextually modulated choice signals observed in locaNMF components 
represented the decision-making computations underlying this task, as learned by the RNN when 
using the same behavioral output of the animals.”  

Regarding the d’ differences in the data as in Fig. 3h-i, we believe this point has now been 
addressed in our reply to the previous question. 

(4b) Line 144: the authors emphasize that the RNN generates probabilistic choices even though it was 
trained on binary choices. But my understanding of the methods was that the output neurons implement 
a (probabilistic) softmax output function? If so, is it not a given that the choices of the RNN will describe a 
smooth psychometric curve? 

We agree with the referee, that is indeed the case, and that the previous formulation was 
rather imprecise. The simple message wanted to convey is that by training with the 
(probabilistic) animal choices, rather than with the task rule (as it is typically done in similar 
simulation studies), the output neurons correctly learned to reproduce the psychometric 
responses of the animal. We have updated the text, Line 242: “As a result, RNNs learned 
to produce L/R binary choices from an internal representation that followed a psychometric 
probability function based on the absolute difference between the two inputs”, and Fig 5a. 
accordingly. 

Minor point 

The introduction cites papers across a range of species (primates + rodents), areas (from early sensory to 
late association and movement), tasks, and methods. While I appreciate the effort at being scholarly and 
the attempt at linking the presented research to the whole field, some of the references are very brief and 
compressed. Overall, I found it hard to follow what the authors meant to say, i.e. why a particular reference 
is used. In essence the authors are providing a review in a few paragraphs, which has the disadvantage of 
somewhat hiding/obscuring the goals of this study. 

Based on the referee’s feedback we have substantially simplified and streamlined the 
Introduction. 

  



 

Reviewer #2 
Several studies have shown that the representations of choice information can be found the 

occipital, parietal, and frontal cortices, but determining whether these representations across areas are 
comparable, and separating these choice signals from stimulus and motor information, has been 
challenging. To investigate choice representation, mice in this study are trained to perform a challenging 
2AFC orientation discrimination task during mesoscale wide-field imaging of the posterior cortex. The study 
employs a tensor decomposition method, locaNMF, to identify unique spatiotemporal components in the 
imaging data. They then apply an additional dimensionality reduction step, revealing the underling 
representation of stimulus, movement and choice information in each area. With support from a recurrent-
neural network trained on the animals’ behavioral data, this study demonstrates that the posterior cortex 
contains a multi-area decision variable that is modulated by task and behavioral variables. This exciting 
study provides new insight into the representation of choice across cortical areas and provides an 
experimental and analytical framework for further investigations. Overall, the study is clearly presented, 
and the authors are commended for their multiple experimental and analytical controls throughout. I only 
have a few suggestions for additional improvement to the transparency of an already excellent study. 

We thank the reviewer for the appreciation of our work. 

1. Figure 1d. The authors should consider using ‘Probability right choice’ to match with convention, and 
‘Ignore (%)’ instead of ‘Time out (%)’ since the cause of time out isn’t immediately clear. 

We have changed the figure panels accordingly. 

2. Figure 1e. The authors describe alignment of the multiple higher visual areas with the Allen Institute 
Atlas using the retinotopic field-sign maps. The authors should provide an example field sign map to show 
the level of confidence in area assignment. 

Following the reviewer’s suggestion, we have included an example field-sign map in 
Supplementary Fig. 1, together with the alignment of our retinotopic boundaries to the 
Allen atlas. Furthermore, we now mention that the confidence in area identification based 
on the field-sign maps was also demonstrated in a previous work, Line 69: 

“We aligned all imaging sessions according to the Allen Common Coordinate Framework39 (Fig. 
2a), and seeded the initial spatial decomposition using 10 large regions centered on retinotopically 
identified areas (based on field sign maps, Supplementary Fig. 1a, see also ref20) that extended 
significantly beyond area boundaries (Supplementary Fig. 1b). “  

3. Supplementary Figure 1a. The authors provide penalty maps that describe seeding areas and area 
boundaries for locaNMF decomposition. What benefit is gained from having boundaries that extend 
significantly beyond areas? How much does the seeding impact the resulting special components? The 
authors should address this with additional commentary. 

Indeed, these important considerations were not thoroughly discussed. We now explain 
two main benefits of having boundaries extending significantly beyond the areas: 



1) Boundaries between visual areas are identified by gradient flips in field sign maps, but 
the identification of the boundaries can be imprecise, especially for the smaller higher 
visual areas (as we observed in our data and as discussed, e.g., in Zhuang et al., eLife 
2017). Allowing a seeding boundary to extend beyond retinotopic boundaries reduces the 
dependence of the results on the precise identification of these boundaries. 

2)  Activity components do not have to follow retinotopic boundaries (e.g., if representing 
afferent signals from other brain regions or top-down modulations), but these activations 
are still likely to be spatially correlated. A loose (penalty-based) boundary component 
allows to capture spatially coherent signals crossing area boundaries. 

As mentioned in reference to a similar question raised by Reviewer #1, the spatial profile 
of the components is quite robust to slight variations in the seeding regions and their 
shape. However, a finer, or coarser seeding structure would indeed change the overall 
structure of the components. For example, if one was interested in identifying the position 
of different visual stimuli, one could subdivide V1 in several subregions. Based on our 
analyses, we believe that a “loose” seeding on retinotopic areas achieves a good 
compromise between spatial localization and interpretability of the components for our 
task. We have added these considerations in the Discussion, Line 298: 

“The imaging methodology and data analysis used in this study facilitated the identification of 
distributed choice signals encoded by sparse populations of cells56. Indeed, sparse encoding in 
multi-region networks would make choice signals hard to detect with methods that examine 
decision information independently at each cortical location, whether because of the use of a 
single electrode (or multi-contact electrode shank)24 or because of imaging data analysis focused 
on individual locations (pixels) independent from each other26,27,57. We confirmed this observation 
by reanalyzing our data at the single pixel level: assuming independence between the activations 
of different pixels, we failed to detect choice information both before and after movement onset. 
This result may explain why some recent mouse studies have failed to detect choice signals in 
posterior cortices during similar visually guided tasks24–27.  

Our choice of seeding-area sizes was chosen to approximately match the spatial 
correlation length of visual or movement components using smooth penalty boundaries, with 
sharp boundaries imposing an unnecessary split of components at the border between seeding 
areas. Small changes in seeding parameters (areas size, centers, smoothness of the boundaries) 
did not significantly affect the properties of the state axes, suggesting that the spatial correlation 
length of broadly distributed choice signals approximately matched that of visuomotor 
components. Additionally, as previously reported35, the robustness and stability in spatial profiles 
across experimental sessions enabled by this seeding method follows from two main 
observations: 1) the boundaries between visual areas are identified by gradient flips in field sign 
maps, but the identification of the boundaries can be imprecise, especially for the smaller higher 
visual areas (as we observed in our data and as discussed, e.g., ref58). Allowing a seeding 
boundary to extend beyond retinotopic boundaries reduces the dependence of the results on the 
precise identification of these boundaries. 2)  Activity components do not have to follow retinotopic 
boundaries (e.g., if representing afferent signals from other brain regions or top-down 
modulations), but these activations are still likely to be spatially correlated. A loose (penalty-
based) boundary component allows to capture spatially coherent signals crossing area 
boundaries.” 



 
4. Supplementary Figure 1c – On lines 95-97 the authors describe that each main component of a seeding 
area contributes, on average, 9.6 % of the total explained variance. However, this figure shows that the 
first component contributes ~45% explained variance. Why is this initial component not addressed? In 
addition, what conclusions should the reader reach by the comparison of the SVD and locaNMF methods? 
The figure shows SVD achieving larger explained variance (~80%) than locaNMF with fewer components. 
Yet, the implication is that locaNMF is a better approach. The authors should unpack this comparison of 
SVD and locaNMF so the reader can better understand the determining factors in the decision to utilize 
locaNMF. 

We thank the referee for these observations which have highlighted some confusing 
phrasing. On average, the main component of each seeding area contributes 9.6 %, 
however, the contributions from the main component of each area are highly 
heterogeneous. As the referee pointed out, one component (from V1) already accounted 
for 45% of the variance. We have rewritten the text to better represent this effect, Line 79: 
“The largest locaNMF component of each cortical area provided significant explanatory power, 
together contributing to 96 % of the total explained variance (Supplementary Fig. 1c). These 
contributions being highly heterogeneous, with the largest component of V1 accounting for 45% 
of the total variance.” We have also expanded on the locaNMF and SVD comparison in the 
Discussion, Line 279: 

“We achieved these results by combining two powerful methods for the analysis of population 
responses: locaNMF and activity-mode analysis. LocaNMF reduced the dimensionality of the 
neural data while retaining spatial information, that would have been lost with traditional 
dimensionality reduction methods (e.g., SVD, NMF). Traditional decomposition methods could 
also be used to reduce data dimensionality, but the loss of spatial localization would greatly 
reduce the interpretability power of the components, and the components would also be less 
robust to session-to-session variability, as previously reported35. Furthermore, the state space 
representation allowed further reduction of dimensionality by aligning the dynamics along task 
and decision-relevant dimensions. This latter step took place within an interpretable linear 
framework, where the angle between the state axes as well as d’ values could be directly linked 
to the linear discriminability of the underlying variables.“ 

5. Figure 2d-g. To provide the readers with an intuition regarding statistical power, the authors should 
provide details regarding the trial numbers for each particular state axis (i.e. high attention vs low attention). 

We have included these numbers in the Methods for all task-related state axes. For the 
particular case of choice and attention, Line 614: 

“This condition had on average 657 trials per animal. When splitting the trials based on attention, 
the number of available trials reduced to, on average, 200 trials (high and low attention trials only 
accounted for 33% of the original trials each). When trial difficulty was also included, the number 
of available trials reduced to 70 on average (each difficulty split further decreased the number of 
available trials on each condition by slightly more than one half).” 

6. Figure 2g. This figure describes sustained attention based on pupil area changes. How are reward and 
other known factors that influence pupil size accounted for in this description? The authors should provide 



additional discussion addressing the illustrated dynamic and the impact of other factors that influence pupil 
size. 

We have included a new discussion paragraph on the components that affected pupil 
area changes in our task, Line 356:  

“Attention-mediated modulations were identified via an analysis of pupil area changes, know to 
reflect variability in internal states of the animals due to changes in engagement and vigilance 
during the task, with ‘‘sustained’ attention” referring to a broad spectrum of these goal-directed 
internal states20,47,48,68. In the time window of our analyses, the main event triggering changes in 
pupil area was the stimulus onset. However, at trial end a high-contrast checkerboard (false 
alarms) and water reward (hits) could have also triggered pupil area changes.”  

7. Figure 3a. The projection of the right choice is similar to that of the left choice briefly after movement 
onset, before a reversal. Does this reflect an intrinsic choice bias, or an inability to completely collapse 
along this state axis? The authors should describe this observation and how dynamics emerge. 

The trend shown in Fig. 3a is for one example animal, and it is likely due to an overall 
increase in cortical activity. The data projected on the left-right difference-axis are not 
mean-centered or z-scored at each time point, thus overall activity changes at specific 
times can cause co-fluctuations in projected values in both left and right projected trials – 
in this example shortly after the stimulus onset. However, as shown in the d’ curve these 
co-fluctuations do not affect the discriminability d’, which increases smoothly over time, a 
trend observed consistently across animals. We have added these considerations in the 
Methods, Line 565: “Because there is no mean-centering in time of the components, i.e., 
< 𝐶𝐶𝑖𝑖�𝑡𝑡𝑗𝑗� >𝑖𝑖 ≠ 0, activity changes across all areas can cause co-fluctuations in the projected 
trajectories.” 

8. Figure 3f and 4d. It is not clear how global d’ is calculated and what is its relationship to the local d’ in 
each area (it seems like it is sublinear). Similarly, I am confused by the SDI index. It seems like the 
assumption is that if the max area d’ is high relative to the global, then this suggests that it can account for 
most of the total d’, and therefore it is not evenly distributed. However, this makes assumptions about the 
linearity of d’ summing across areas to create the global d’. 

The referee is correct in this interpretation. The global d’ is computed by using all 
components from all areas at once, and the local d’ by only using the components of a 
given area. We have improved the related descriptions in the Methods, Line 637:  

”The SDI for a given state axis was computed as  𝑆𝑆𝑆𝑆𝑆𝑆 (%) = �
𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
′

𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑𝑖𝑖
′�
− 1� ∙ 100 where 𝑑𝑑𝑖𝑖′ refers 

to the area-specific state axes d’ scores (i.e., a state axes defined using only the weights of i-th 
area), and 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  refers to the discriminability of the original state axis (i.e., the state axis defined 
using all components). Since the original state axis uses all components across the areas, 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′  
is an upper bound of 𝑑𝑑𝑖𝑖′. Similarly, each 𝑑𝑑𝑖𝑖′ contributes sublinearly to 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′ , since correlated 
activity across areas would not result in higher discriminiability. Hence, SDI measures how much 
the discriminability can increase when using all areas vs just the one with the largest d'. The SDI 
plays a similar role to deviance-explained in statistical models, as it measures the relative 



contribution of a small model (single area) vs the full model (all areas). In this definition, SDI = 0% 
if only 1 area contributes and (N-1)*100 % if all N areas contribute equally and independently.”  

9. Figure 4b – The authors use hierarchical clustering to illustrate the relationship between state axes. The 
authors note that early and late choice are orthogonal from each other, but make stronger statements 
about their orthogonality from the other variables. Notably, early and late choice are more different from 
each other than any of the other variables are different from each other. This result could use some more 
explanation: what are the major differences between choice early and choice late? 

Differences between early and late choice come from the spatial distribution of their 
components. Although the discriminability power of early choice was small (Fig. 3b), it 
was significant (p < 0.001), and its spatial contribution was less localized than late choice 
(from the SDI index, Fig. 4d), with each cortical region contributing with similar values 
(Fig. 4e). On the other hand, choice late was more localized (higher SDI), with bigger 
contributions on the ventral stream (relative to the dorsal and posterior broad areas, Fig. 
4e). We have rewritten the results section related to axes orthogonality (Line 188) and 
added a new paragraph stating the differences between choice pre and post movement 
(Line 226): “These results highlighted the major differences between choice state axes defined 
pre and post movement. Choice pre-movement was less localized (lower SDI), with each cortical 
region contributing similarly. On the other hand, choice post-movement was more localized 
(higher SDI), with larger contributions on the ventral stream (relative to dorsal and posterior broad 
areas, Fig. 4e). “ 

10. Figure 5f & g- There appears to be a discrepancy between these two figures regarding d’ amplitudes 
and timing. Panel g separates the hard and easy trials into high attention and low attention, but after this 
separation the max d’ is lower (~ 5 compared to ~7). In addition, the timing of the change in d’ in panel g is 
shifted to the left as compared to panel f. The authors should describe the source of this discrepancy and 
any implications that it may have on the interpretation of these results. 

We thank the referee for pointing this out. The timing issue was due to a 1-frame offset in 
the labeling, but the timing of d’ change in both figures was indeed the same. Regarding 
the difference in max d’, the large confidence intervals and the use of different y-scales 
made indeed a careful comparison difficult. Because of this, and for the discrepancy in d’ 
values relative to the neural data (as noted by another referee), we have improved on the 
simulations by (1) training the networks with reference psychometric curves having the 
same average performance as the one of a representative animal (in the previous version, 
the difference between the high and low attention psychometric curves was much larger 
than in the experiments). (2) Using fewer units in the RNN module to avoid overtraining 
(Methods, Line 654, 50 instead of 128), and ensuring all the models were trained 
successfully, i.e., comparable loss in training and test sets; this is because in some 
instances, random initialization of the parameters resulted in the model failing to converge. 
These changes collectively have allowed for a more quantitative comparison with the 
neural data as in the new Figure 5. 

11. Supplementary figures 5 and 7 have typos in the captions. 

a. Supp 5 - The caption for panel “c” is labeled “d”. 



b. Supp 7 – The caption for panel “b” is “As in H, but after movement onset” when it should be “As in a, but 
after movement onset”. 

We thank the referee for noticing these typos and oversights which have been corrected. 

  



Reviewer #3  
The authors recorded wide-field calcium imaging data in mice during a perceptual discrimination 

task. The task consisted of turning a wheel to indicate which of 2 oriented gratings were most similar to a 
target orientation. The authors used localNMF to decompose data into spatially- dominated components 
and then conducted a decoding analysis to establish encoding axes for a variety of task variables. 

The experiments were impressively successful and I appreciate the willingness to use mice as a 
model animal for studying decision making. The analysis was thorough and while most of the authors’ 
claims were substantiated by the data, the authors made some questionable assertions and confusing 
choices regarding the presentation of the results that I believe can to be addressed in revision. The 
following are specific points that should be addressed. 

 
We thank the reviewer for the appreciation of our work. 

- The authors used localNMF to decompose the wide-field 2P imaging in to pixels associated with particular 
regions. I wonder, however, what specifically is gain by forcing the weights to correspond to specific regions. 
Why not use the global encoding axes and ask post-hoc whether the encoding regions correspond to 
anatomically-defined regions? 

We were not sure whether the reviewer was referring to what we called “global 
state axis” (Methods, Ln 560), so apologies if we the following reply does not entirely 
address the reviewer’s concern. The main advantage of using the described approach 
follows a similar reasoning outlined in the LocaNMF study by Saxena et al., (Plos Comp. 
Biol. 2020), which is basically a substantial gain in “interpretability” of what the obtained 
weights represent while keeping the number of weights manageable and their spatial 
signature localized. Interpretability here relates to the goal of extracting mixed signals and 
reference them (consistently) to well-defined regions, while adapting to anatomical 
differences between animals and accounting for the possible “mixing” of multiple signals 
within the same region(s). As demonstrated in Saxena et al., methods such as NMF with 
atlas initialization (possibly what the reviewer was referring to) produce less consistent 
localization even across sessions for the same animal. The spatial localization of 
LocaNMF each component is still allowed to shift slightly from animal to animal, but 
remains largely consistent within and across animals, while at the same time overcoming 
significant limitations to ROI based methods (which discard information outside the ROI 
or cannot demix overlapping signals within the ROI) PCA/SVD methods with typically 
delocalized components. Note also that the definition of seeding areas with an 
exponentially decaying penalty function with distance still allows to pick up strong 
cohesive signal that may span across regions. 

We have now included these considerations in the Discussion, new methodological 
relevance section, Line 279: 

“We achieved these results by combining two powerful methods for the analysis of 
population responses: locaNMF and activity-mode analysis. LocaNMF reduced the dimensionality 
of the neural data while retaining spatial information, that would have been lost with traditional 



dimensionality reduction methods (e.g., SVD, NMF). Traditional decomposition methods could 
also be used to reduce data dimensionality, but the loss of spatial localization would greatly 
reduce the interpretability power of the components, and the components would also be less 
robust to session-to-session variability, as previously reported35. Furthermore, the state space 
representation allowed further reduction of dimensionality by aligning the dynamics along task 
and decision-relevant dimensions. This latter step took place within an interpretable linear 
framework, where the angle between the state axes as well as d’ values could be directly linked 
to the linear discriminability of the underlying variables. 

Dimensionality reduction via trial and spatial averaging permits the robust isolation of state 
axes, however, it can also collapse sub-spaces over which important aspects of the dynamics 
might evolve. For instance, we found that pre- and post-movement decision axes had large 
angular separations, defining a sub-space orthogonal to that of movement signals. We also found 
that the dimensionality of choice signals was further enriched by attentional modulations, which 
produced an isomorphic shift of choice representations. It is conceivable that extra dimensions 
linked to more subtle aspects of the decision-making process exist but have been “collapsed” by 
averaging signals across trials. Future investigations, for example based on probabilistic low-rank 
dimensionality reduction methods55, might be able to uncover these hidden dimensions.  

The imaging methodology and data analysis used in this study facilitated the identification 
of distributed choice signals encoded by sparse populations of cells56. Indeed, sparse encoding 
in multi-region networks would make choice signals hard to detect with methods that examine 
decision information independently at each cortical location, whether because of the use of a 
single electrode (or multi-contact electrode shank)24 or because of imaging data analysis focused 
on individual locations (pixels) independent from each other26,27,57. We confirmed this observation 
by reanalyzing our data at the single pixel level: assuming independence between the activations 
of different pixels, we failed to detect choice information both before and after movement onset. 
This result may explain why some recent mouse studies have failed to detect choice signals in 
posterior cortices during similar visually guided tasks24–27.” 

- Figure 3c depicts the cross-correlation between choice axes estimated from different time windows. As 
the authors pointed out, the 2 distinct regions suggest that there are 2 stable choice axes. They 
schematically depict this in Figure 4c. However, they could have simply plotted the projection onto each of 
these axes and demonstrated the plausibility of their hypothesis, rather than presenting their schematic. A 
similar visualization could have been done for the movement axes. I would have found this demonstration 
to be far more convincing. 

We agree with these considerations and have changed the panel accordingly (See 
Fig 4c), see also our reply to the related comment below. 

- Regarding statements starting on line 201, Figure 4c, The authors claim that the choice and movement 
axes are always orthogonal to each other but it does not appear to be the case based on the inset. In 
particular, it appears that prior to movement onset there is some non-zero correlation between axes. Could 
the authors please explain this? 



The average angle from the cosine distance similarity analysis, before and after 
movement onset, overlaps with the 95% confidence interval of the null model (shaded 
area, 79 ° to 90 °) before (77 ± 3 ° at t=-0.5 s; p value = 0.25, one sided t-test against 79 ° 
lower bound) and after movement onset (80 ± 3 ° at t=0.5 s; ; p value = 0.73, one sided 
t-test against 79 ° lower bound); the null model being a randomization (resampling with 
replacement) of the indices of one of the axes. Hence, we confidently report no significant 
correlations between choice and movement axes. However, we agree with the referee 
that this observation does not imply that these axes are “always orthogonal” with each 
other, thus we have changed the text accordingly, Line 187: 

“Irrespective of the time period, choice was nearly orthogonal to the movement axes (Fig. 
4c), with no significant differences when comparing with a  null model with orthogonal axes; both 
before (77 ± 3 ° at t=-0.5 s; p value = 0.25, one sided t-test against 79 ° null model lower bound) 
and after movement onset (80 ± 3 ° at t=0.5 s; ; p value = 0.73, one sided t-test against 79 ° null 
model lower bound);. When transitioning from the pre- to the post-movement period, d’ values 
never collapsed to zero (Fig. 3b), suggesting a rotation of the choice axis while preserving the 
orthogonality between choice and movement axes. This can be understood as a rotating state 
axis for choice in a multi-dimensional choice sub-space, that remained orthogonal to a similarly 
defined movement subspace.” 

Given the observed values, we now restrict our claims to the lack of statistically significant 
angular dependence between the two variables, both before and after movement onset. 

- Figure 3j is a schematic illustration based on the authors’ description of encoding geometry in the data 
and Figure 5h presents this same phenomenon for the data obtained from the trained RNN. It’s unclear to 
me why the authors (again) did not choose to plot the actual data in this way, which seems to me to be 
entirely possible considering they did so for the RNN, rather than depicting a schematic representation. 

We agree with the referee and have changed both panels using experimental data.  

- Line 178 “Choice axes independently defined in low- and high-attention states were highly correlated 
(Pearson’s r = 0.72 ± 0.03), indicating they reflected a congruent underlying decisional process. “However, 
r = 0.72, while high by some standards, is hardly the same. Can the authors comment on differences in the 
choice axes between states and explain why these are statistically significantly different? 

We agree with the referee that “high” or “low” are only qualitative connotations for 
correlation values. We now clarify that, each choice axis was independently defined, 
based on a different set of trials, and to demonstrate they were significantly maintained 
across attention states, we performed a new analysis in which we tried to discriminate 
between left and right trials in one attention state using the axis defined in the other 
attention state. This procedure maintained a significant discriminability power: 
Supplementary Fig. 11 and Line 196: 

“We verified that the smaller angles observed between some state axes in Fig. 4a were 
not a direct consequence of correlated behavioral variables by computing their discriminability 
power after orthogonalization with the other axes (choice vs attention, movements, and saccades; 



movements vs saccades and attention; and choice in high and low attention). All state axes 
retained significant discriminability after orthogonalization (Supplementary Fig.  11).”  

 - Starting on line 260: representational similarity... I am unconvinced that these assertions follow from the 
evidence provided. First, what properties of the representations found in the RNN should convince us that 
the mechanism employed by the RNN is the same as that employed by the mice? Why does the lack of 
neural data lend credibility to the RNN analysis? I am personally left more skeptical by this feature than less. 

We have significantly changed the text in the referenced concluding paragraph. We now 
clarify that it is not the case that the lack of neural data lends credibility to the RNN 
analysis per-se. Rather, we observe that a minimal computational model, trained only on 
behavioral inputs and outputs, evolves an internal low-dimensional representation that 
recapitulates the main features observed on the neural representations. Because the 
RNN computations are known, the similarity between the solutions found by the RNN and 
the representations found in the biological network suggest the latter also reflect 
computations akin to those learned by the RNN from behavioral data. This inferential logic 
closely follows similar narratives introduced in previous studies; a well-cited example 
being the work by Mante and Sussillo (Nature 2013): they trained an RNN on behavioral 
data (as we did) finding dynamical representation bearing similarities to neural ones (as 
we did), letting them to conclude neural representations reflected computations similarly 
learned by the RNN from the behavioral data. We hope the revised text will convey this 
message more clearly. 

- The wheel movement axis (Supplementary Fig. 2b) does seem to show a dramatic shift at the time of 
movement onset but the cross-correlograms suggest a constantly, albeit slowly, hanging axis in both the 
pre- and post- movement periods. This undermines the authors claim that there are 2 movement axes that 
shift around the time of movement onset. Can the authors please explain? 

On the cross-correlogram of Supplementary Fig. 2b we show the correlation between 
state axes in different time intervals, from zero-time separation (the diagonal), up to 2 s 
(at the “corners”). Due to continuous changes in overall activity over time, the axis found 
at any given time point will necessarily show “some” decrease in correlations with axes 
computed at progressively larger time distances (“slow drift”). However, correlation values 
for axes computed at nearby time-points are typically large (close to 1). As the referee 
pointed out, the cross-correlograms also show a dramatic shift around the movement time, 
where any axis defined post-movement is essentially orthogonal to any axis defined pre-
movement (1st and 3rd blue quadrants in Supplementary Fig. 2b), hence our statement of 
there being two movement axes that shift around movement onset.     



 

Rebuttal Figure 1: time-slices of Supp. Fig. 2b and hierarchical clustering of movement axes, with 
clusters for pre- and post-movement time. 

In this figure we show in panel (a) a cross-section of the cross-correlogram from Supp Fig 
2b for two specific state axes (pre and post movement, defined at ~200 ms before and 
after movement onset, i.e., at times when correlation values r = 1 in the blue and orange 
curve, respectively). Note that correlation values remain large within the pre and post 
movement periods, with correlations quickly dropping to near zero values in the “other” 
time interval (positive times for the blue line, and negative for the orange; lines and 
shaded regions are mean and s.e. of the cross-correlogram averaged across n = 7 
animals). This observation is reflected in panel (b) where we performed hierarchical 
clustering (average linkage with correlation metric) of the movement state axis defined 
pre and post movement for a given animal. The state axes cluster in two large groups 
corresponding to pre and post movement onset (clearly seen by the change in sign). Only 
the first two frames post movement belong to the pre movement cluster, and this is due 
to the moving window used to average the data when defining the state vectors (as 
detailed in the Methods). However, we agree all these considerations were not clearly 
explained; therefore, we have rephrased the related statements as follows, Line 187: 

”Irrespective of the time period, choice was nearly orthogonal to the movement axes (Fig. 
4c), with no significant differences when comparing with a  null model with orthogonal axes; both 
before (77 ± 3 ° at t=-0.5 s; p value = 0.25, one sided t-test against 79 ° null model lower bound) 
and after movement onset (80 ± 3 ° at t=0.5 s; ; p value = 0.73, one sided t-test against 79 ° null 
model lower bound);. When transitioning from the pre- to the post-movement period, choice d’ 
values never collapsed to zero (Fig. 3b), suggesting a rotation of the choice axis while preserving 
the orthogonality between choice and movement axes. This can be understood as a rotating state 
axis for choice in a multi-dimensional choice sub-space, that remained orthogonal to a similarly 
defined movement subspace.” 

- Line 344. The authors’ comment about “forcing” a shift on other task variables doesn’t make sense to me. 
An encoding axis can shift and remain orthogonal to the other task variable axes without any change in the 
other axes. This is particularly easy in high dimensions.  

The reviewer is correct and have reworded the statement accordingly, Line 380: 

“These large activations occupy the main dimensions of variability21, enabling a 
representation shift while keeping movement representations separate from other variables, that 
is, in near-orthogonal subspaces.” 



- The spatial averaging imposed by localNMF decreases the effective degrees of freedom of the data. 
Averaging across trials to estimate state axes again reduces the effective degrees of freedom. Can the 
authors comment on how the effective degrees of freedom of the data could impact the spatio-temporal 
analysis that they have depicted? 

We were not entirely sure about this question, which we interpreted as how our 
analyses and methodology might have impacted the effective degrees of freedom—rather 
than the opposite (how the effective degrees of freedom impacted our analysis). Our 
approach certainly decreases the effective degrees of freedom in the data. However, to 
begin with, widefield signals are characterized by a relatively large spatial-correlation 
length (of the order of 100 um rather than few um), with spatial averaging used in our 
study simply reducing trial-to-trial variability at this resolution, rather than “obscuring” 
spatial features possibly existing at a finer spatial scale. In time, we have temporally 
aligned data to the events of interest, that is, stimulus or movement onset times. Therefore, 
trial averaging is “smearing out” any component that is not consistently time-locked to 
these events. We believe this is the case, for example, for decision signals as in Fig. 3b, 
with significantly positive (and ramping-up) d’ values before movement onset. We have 
added additional commentary on this topic in the Discussion, Line 430: 

“Our study focused on features of choice signals that were stable and consistent relative 
to the temporal structure imposed by our task design. However, it is very likely that other task-
uninstructed components (e.g., motor, attentional, decisional) might exists, and more in general, 
components that do not bear a systematic temporal relation with the trial structure, and therefore 
characterized by a large trial-to-trial timing variability within and across trials. Our temporal 
alignment and trial-averaging procedure would average-out these components, thus reducing the 
effective degrees of freedom of the representations.” 

- Line 355: “representational similarity analysis…” The authors here reference Mante et al. (2013) 
(reference 81). However, I can find no reference to representational similarity analysis (RSA) in this paper. 
I should point out that RSA is often referred to as a formal analysis method. Perhaps there is some colloquial 
sense in which the authors are using this term? If so, I suggest the authors choose a different description 
of this family of analyses. 

We agree with the referee and have changed the text accordingly, Line 390: 

“Recurrent state-space models, including RNNs, have been previously used in 
mechanistic investigations of decision-making processes77,78. Moreover, analyses of the similarity 
of the state-space representations in RNNs and neural responses has been successfully used to 
infer underlying computations78. Here, we adopted a similar approach, but with three main 
distinguishing features.” 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have addressed my questions and concerns. 

Reviewer #2 (Remarks to the Author): 

The authors have greatly improved their revised manuscript. However, there are still a few issues that 
were not satisfactorily addressed. 

1. I am still unsatisfied that the measure of maximum change in pupil diameter between windows 
before and after stimulus presentation (which includes reward delivery) uniquely reflects sustained 
attention as the authors purport. The addition of a sentence in the discussion suggesting that it may 

also reflect the outcome is too little and too late given the weight that the study puts on the measure in 
figures 2-5. The authors should demonstrate that there is some orthogonality (understood that it might 

not be complete) between their measure of sustained attention and trial outcome. In addition, perhaps 
it makes sense to see if the result holds if the authors restrict their pupil analysis window to a reflect 
stimulus-driven changes in pupil diameter (which have been shown to correlate with attentional state), 

or simply the baseline pupil diameter preceding the trial. 
2. I am also still not clear on how to think about the difference between the choice signals in the pre- 

vs post-movement period. The authors have added some description that these choice signals have 
differential localization- pre being global and post being localized to the ventral stream (area L). 
However, little is done to describe whether these signals in fact reflect the same information or 

different information- and what that might be. In addition, there is some lack of clarity on the 
separation of these two time windows in the discussion. For instance, effort is given in figure 3 to 

demonstrate that there is choice information preceding the movement, and this is used to argue that 
this is therefore distinct from the left/right movement per se (lines 337-338). But this only applies to 

the pre-choice window. It is also notable that the pre-window is relatively weak (low d-prime) while the 
post window is much stronger. More needs to be done to address the conceptual difference between 
these choice signals, and why they are orthogonal. 

3. The authors have added trial numbers which are extremely helpful- and seem to be well above the 
threshold for significance. However, only a single number was given per A/B condition- and while 

some A/B conditions should be matched (e.g. sustained attention and stimulus), others are likely not 
(e.g. wheel movement and saccade) and so should have two numbers.



The authors have greatly improved their revised manuscript. However, there are still a few issues that 
were not satisfactorily addressed. 

We are grateful for the appreciation of the hard work in revising the manuscript and 
we thank the reviewer for the very helpful comments. 

 
1. I am still unsatisfied that the measure of maximum change in pupil diameter between windows 
before and after stimulus presentation (which includes reward delivery) uniquely reflects sustained 
attention as the authors purport. The addition of a sentence in the discussion suggesting that it may 
also reflect the outcome is too little and too late given the weight that the study puts on the measure 
in figures 2-5. The authors should demonstrate that there is some orthogonality (understood that it 
might not be complete) between their measure of sustained attention and trial outcome. In addition, 
perhaps it makes sense to see if the result holds if the authors restrict their pupil analysis window to a 
reflect stimulus-driven changes in pupil diameter (which have been shown to correlate with attentional 
state), or simply the baseline pupil diameter preceding the trial. 

We acknowledge the concern raised by the referee about our measure of sustained 
attention, also in reference to the last sentence added to the discussion which was 
not precisely formulated thus generating some confusion. The previous text 
regarding the definition of sustained attention only mentioned the maximum area 
change after the stimulus onset, without specifying the time window, which was 
during the open-loop period, thus within 1.5 s after stimulus presentation (the same 
criteria used in previous work: Abdolrahmani et al, Cell Rep., 2021). The analysis of 
the pupil dilation indeed measures the change in pupil area due to the stimulus 
presentation in the open-loop period before reward delivery (actions resulting in a 
reward or punishment only happen in the closed loop period). We have now 
corrected the parts in the Results section describing how the “sustained attention 
axis” was computed (Ln 122): 

“Based on the pupil area increase within a short time window after stimulus presentation 
(open loop, Methods), we defined a state axis that discriminated between states of high and 
low sustained attention (Fig. 2g).” 

And in the Methods section (Ln 637): 

“Sustained attention was measured by changes in pupil area during the stimulus 
presentation. We computed pupil area changes (pA) as the difference between the 
maximum pupil area during the open-loop period (i.e., the 1.5s window after stimulus onset) 
and the average area 1 s before stimulus onset. We labeled as “high sustained attention” 
trials (group A) those in the top 33rd percentile of the pA distribution and as “low sustained 
attention” trials (group B) those in the bottom 33rd percentile. Groups A and B were always 
balanced by definition.” 

Similarly, the baseline value of pupil dilation in each trial is determined during a 1 s 
epoch before stimulus presentation, which, given the distribution of intertrial intervals, 
is far enough from the previous reward or punishment to have any transient effect on 
pupil area. Therefore, what the referee suggested is indeed what we did in our 



analysis, that is, defining pupil area changes in a time window that best captures 
stimulus-driven changes in pupil dilation.  

However, to quantitatively address the reviewer’s concern about a possible 
relationship between trial outcome and pupil changes around stimulus onset, we 
computed a new pair of attention axes: one using only correct trials (when water 
reward was delivered) and the other with only incorrect trials. We observed that the 
angle between these two vectors was “small” (22 deg on average), slightly larger 
than the expected value for parallel vectors given the variability in the data, that is, 
the average angle between the same state axis defined using different folds of the 
cross-validation procedure (approximately 13 deg on average - new Supp. Fig. 8a). 
These angles were far from being orthogonal (dashed line), highlighting that the 
definition of the sustained attention axis was robust relative to trial outcome. 
Additionally, we also measured the Pearson correlation values between the two state 
axes, with a correlation of r = 0.92, also highlighting their similarity (Supp Fig. 8b). 

Furthermore, we examined whether the discriminability of states of sustained 
attention was robust relative to a “swap” between the two axes. That is, the 
discriminability between high and low attention states on correct trials was 
maintained if we used projections onto the axis defined using incorrect trials, and 
vice-versa (Supp. Fig. 8c). Although independence is hard to prove explicitly, these 
results suggest that the combination of locaNMF components that best capture 
attentional information are rather independent of the trial outcome. 

We have edited the manuscript to reflect these new analyses and 
considerations in the results section (Ln 129): 

“The attention state axis orientation was stable relative to the trial outcome (correct or 
incorrect); the angle between the state axes for sustained attention defined using either 
correct or incorrect trials was 23° ± 2°, slightly larger than the expected value for parallel 
vectors given the variability in the data, that is, the average angle between the same state 
axis defined using different folds of the cross-validation procedure (~13° deg on average, 
Supplementary Fig. 8c). The d’ values obtained when discriminating attention states from 
correct trials using their projections onto the state axis defined with incorrect trials and vice 
versa were comparable (d’ = 1.17 ± 0.07 and d’ = 1.2 ± 0.1 respectively).” 

And in the discussion section (Ln 383): 

“Attention-mediated modulations were identified via an analysis of pupil area changes 
around the time of stimulus onset, known to reflect variability in internal states of the animals 
due to changes in engagement and vigilance during the task, with ‘‘sustained attention” 
referring to a broad spectrum of these goal-directed internal states20,47,48,69. In the time 
window of our analyses, the main event triggering changes in pupil area was the stimulus 
onset. The variability in pupil area changes correlated with task performance and response 
times (Supplementary Fig. 7a, b) and could also be associated with “sustained” changes in 
cortical activity, as demonstrated by the presence of a stable attention axis throughout trial 
time (Supplementary Fig. 3d). The axes stability was not linked to trial outcome, which would 
have been the case if the changes in pupil area were related, for example, to reward delivery 
or other task variables (Supplementary Fig. 8).” 



 
2. I am also still not clear on how to think about the difference between the choice signals in the pre- 
vs post-movement period. The authors have added some description that these choice signals have 
differential localization- pre being global and post being localized to the ventral stream (area L). 
However, little is done to describe whether these signals in fact reflect the same information or 
different information- and what that might be.  
In addition, there is some lack of clarity on the separation of these two-time windows in the 
discussion. For instance, effort is given in figure 3 to demonstrate that there is choice information 
preceding the movement, and this is used to argue that this is therefore distinct from the left/right 
movement per se (lines 337-338). But this only applies to the pre-choice window. It is also notable 
that the pre-window is relatively weak (low d-prime) while the post window is much stronger. More 
needs to be done to address the conceptual difference between these choice signals, and why they 
are orthogonal. 

We thank the referee for requesting further clarification on this important point which 
was not sufficiently examined in the previous manuscript. We have now expanded 
our analyses and were able to provide new insights regarding the differences 
between the choice signals and what information they might reflect. Regarding 
“same/different information”, the choice axis both in the pre- and post-movement 
conditions is, by definition, the “maximally informative” linear discriminant of the 
animal’s choice. As the referee correctly pointed out, our previous analyses 
suggested that the ventral component was key to understanding the pre-post 
differences. The new Supp. Fig. 14a shows that the largest increase in 
discriminability from the pre- to the post-movement periods appears indeed in the 
ventral components. The d’ increase from the ventral components is significantly 
higher than the increase associated with components from the dorsal and posterior 
areas. This result by itself could already explain the change in angle between the two 
axes (since a non-uniform change in the weights of a few components could result in 
orthogonal vectors). However, we also show (Supp. Fig. 14b) that even in the 
absence of ventral components (i.e., defining the choice axis using only components 
from non-ventral areas), pre- and post-movement axes are still orthogonal to each 
other. This result suggests that a “representational change” of choice information is 
broadly distributed in the posterior cortex and not restricted to ventral regions. 
However, it is in ventral regions that choice discriminability increases the most. A 
new paragraph has been added in the results section (Ln 237): 

“These results highlighted the major differences between choice state axes defined pre- and 
post-movement. Choice pre-movement was less localized (lower SDI), with each cortical 
region contributing similarly. On the other hand, choice post-movement was more localized 
(higher SDI), with larger contributions in ventral stream areas (Fig. 4e). We also computed 
the increase in choice discriminability from the pre- to the post-movement periods and found 
that the d’ increase from the ventral components ranked significantly higher than the 
increase associated with components from the dorsal and posterior areas (95% CI) 
(Supplementary Fig. 14a). Even in the absence of ventral components (i.e., defining the 
choice axis using only components from non-ventral areas), pre- and post-movement axes 
were still orthogonal to each other (Supplementary Fig. 14b, Discussion).” 

What, mechanistically, causes this representational change is hard to pinpoint from 
our widefield data. We speculate it could be linked to a change in afferent choice 



signals from pre- to the post-movement periods. For example, before the movement, 
choice signals could represent a distributed afferent from midbrain regions 
(Steinmetz et al., Nature, 2019) and post-movement choice signals might reflect 
“additional” feedback information from motor cortices where choice information is 
also encoded (Papel and Siegel, Nat Comms, 2016; Siegel et al., Science 2015), 
possibly with a stronger signature along ventral regions. Future studies examining 
brain-wide the functional feedback to these regions in similar DM tasks might shed 
light on these mechanisms. A new discussion regarding these considerations has 
now been added to the manuscript (Ln 370): 

“We also verified that ventral stream responses were not linked to eye movements 
(Supplementary Fig. 15a), which typically followed whole-body movements20, or to stimulus 
movement (Supplementary Fig. 15b) However, signals detected in ventral areas may still be 
associated with motor-related components that also carry choice-relevant information67. The 
fact that pre- and post-movement choice axes remained orthogonal to each other in the 
absence of ventral components (Supplementary Fig. 14b) suggests a “representational 
change” of choice information broadly distributed in the posterior cortex and not restricted to 
ventral regions. What, mechanistically, could cause this change is difficult to establish solely 
from our widefield data. It could reflect a change in afferent choice signals from the pre- to 
the post-movement periods: for example, before the movement, choice signals could reflect 
a distributed afferent from midbrain regions24, while post-movement, choice-related 
components from motor cortices67,68 could add to those from the midbrain and possibly with 
a stronger signature along ventral regions. Future studies examining functional feedback to 
these regions in similar decision-making tasks might shed light on these mechanisms.” 
 
3. The authors have added trial numbers which are extremely helpful- and seem to be well above the 
threshold for significance. However, only a single number was given per A/B condition- and while some 
A/B conditions should be matched (e.g. sustained attention and stimulus), others are likely not (e.g. 
wheel movement and saccade) and so should have two numbers. 

We have added an additional supplementary table reporting the number of trials 
used for the definition of each state axis (Supplementary Table 2): 

Supplementary Table 2 | Trial conditions and number of trials used to obtain the different state 
axis used throughout the text. 

State axis definition 
(maximize discriminability 

between trial sets A and B) 

Trial set A (avg num of 
trials per animal) 

Trial set B (avg num of 
trials per animal) 

Notes 

Stimulus Stimulus present (2730) No stimulus present (2730) Number of no stimulus 
conditions chosen to 
match the number of 
stimulus (randomly 
chosen) 
 

Wheel movements Trials with a wheel 
movement (left or right) 
after the stimulus, without 
any other movements 
before the stimulus and 
without any saccades within 
1s of the movement (1190)  
 

Trials without a wheel 
movement (left or right) 
after the stimulus, without 
any other movements 
before the stimulus and 
without any saccades within 
1s of the movement (1190)  

Number of no wheel 
conditions chosen to 
match the number of 
stimulus (randomly 
chosen) 

Saccades Trials with a saccade after 
the stimulus, without any 
other saccades before the 

Trials without a saccade 
after the stimulus, without 
any other saccades before 

Number of no saccade 
conditions chosen to 
match the number of 



stimulus and without any 
wheel movements within 1s 
of the movement (465) 

the stimulus and without 
any wheel movements 
within 1s of the movement 
(465) 
 

stimulus (randomly 
chosen) 

Sustained attention Top 33rd percentile of pupil 
area change trials (896) 

Bottom 33rd percentile of 
pupil area change trials 
(896). 
 

 

Choice Trials with a right choice 
during the closed loop (657) 

Trials with a left choice 
during the closed loop (721) 
 

Pre- and post- movement 
axes were defined at 
different time points 
within the trial (before 
and after movement 
onset) 

Attention on Corr. Trials Top 33rd percentile of pupil 
area change trials that 
resulted in correct choices 
(668) 

Bottom 33rd percentile of 
pupil area change trials that 
resulted in correct choices 
(592) 
 

 

Attention on Incor. Trials Top 33rd percentile of pupil 
area change trials that 
resulted in incorrect choices 
(221) 

Bottom 33rd percentile of 
pupil area change trials that 
resulted in incorrect choices  
(248) 
 

 

Choice with high attention 
and easy trials 

Trials where the animal 
made a right choice during 
the closed loop on the top 
33rd percentile of pupil area 
change and with angle 
difference > 45 deg (142) 

Trials where the animal 
made a left choice during 
the closed loop on the top 
33rd percentile of pupil area 
change and with angle 
difference > 45 deg (127) 
 

 

Difficulty with high attention 
and hard trials 

Trials where the animal 
made a right choice during 
the closed loop on the top 
33rd percentile of pupil area 
change and with angle 
difference < 45 deg (177) 

Trials where the animal 
made a left choice during 
the closed loop on the top 
33rd percentile of pupil area 
change and with angle 
difference < 45 deg (206) 
 

 

Contralateral stimulus 
information 

Left stimulus horizontal, 
angle difference = 90 deg 
and left choice (70) 

Left stimulus vertical, angle 
difference = 90 deg and left 
choice (70) 
 

 

 



REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author): 

The authors have addressed all of my concerns.
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