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Figure S1.  (A) numbers of discovered single nucleotide polymorphism (SNP) loci 

for selected genes regarding each DNA regulatory element. 

(B) Spearman correlation plots between predicted score and cumulative gene 

ontology (GO) annotation overlays for each DNA regulatory element, including 

CpG island (r = 0.44, p = 1.86´10-24), CCCTC-binding factor (CTCF, r = 0.09, p = 

1.45 ´10-2), enhancer (r = 0.34, p = 9.07 ´10-13), expression quantitative trait loci 

(eQTL, r = 0.14, p = 8.62 ´10-10), histone (r = 0.50, p = 6.49 ´10-37), open 

chromatin (r = 0.22, p = 2.91 ´10-10), promoter (r = 0.20, p = 2.42 ´10-15), promoter 

flanking region (r = 0.26, p = 2.60 ´10-12) and transcriptional factor (TF, r = 0.36, p 

= 3.50 ´10-17).

r = 0.44, p = 1.86´10-24 r = 0.09, p = 1.45´10-2

r = 0.34, p = 9.07´10-13 r = 0.14, p = 8.62´10-10 r = 0.50, p = 6.49´10-37

r = 0.22, p = 2.91´10-10 r = 0.20, p = 2.42´10-15 r = 0.26, p = 2.60´10-12

r = 0.36, p = 3.50´10-17
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Figure S2.  (A) ROC analyses based on AD seed gene sets collected (#s of replicates = 10).
(B) Receiver operating characteristic (ROC) analyses between predicted (integrated) score and scores by considering each DNA 
regulatory element alone based on AD seed gene set from AlzGene. 
(C) ROC analyses between predicted (integrated) score and scores by considering each DNA regulatory element alone based on 
AD seed gene set from DistiLD. 
(D) ROC analyses between predicted (integrated) score and scores by considering each DNA regulatory element alone based on 
AD seed gene set from DISEASES (knowledge). 
(E) ROC analyses between predicted (integrated) score and scores by considering each DNA regulatory element alone based on 
AD seed gene set from TIGA. 
(F) The differences of area under the curves (AUCs) between integration and single DNA regulatory element with respect to four 
AD knowledgebases, i.e., AlzGene, DistiLD, DISEASES (knowledge) and TIGA with ten repeats of NETTAG (#s of replicates = 
10). 
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Figure S3.  (A) Percentage of novel genes predicted by random walk with restart (RWR) with different restarting probabilities 
(blue) and NETTAG including 10 runs with different seeds (green) (Table S3) . 
(B) Disease enrichment analyses with GWAS Catalog and DisGeNET considering novel predicted genes only (predicted genes 
that are not overlapped with input genes). The y-axis represents the combined score, which equaled product of –log(p-value) 
and z-score as defined by Enrichr (see STAR Methods and Table S3). The higher the combined score is, the more likely the 
predicted genes are specific disease-related. For GWAS Catalog, the plotted combined score is the maximum combined scores 
with disease names containing “Alzheimer”. Novel genes predicted by RWR were not enriched with any disease item that 
having “Alzheimer”. For DisGeNET, the combined score is extracted with “Alzheimer’s Disease” as the disease name. In this 
plot, we consider 4 (#s of replicates) different restarting probabilities (0.01, 0.1, 0.4 and 0.6) for RWR, and 10 (#s of replicates) 
repeats of NETTAG. 
(C) Spectral clustering cannot differentiate genes by prediction score (see STAR Methods and Table S3), i.e., multiple genes 
shared the same gene scores.
(D) Compared to k-means, NETTAG has less total predicted genes (NETTAG 156, k-means 227), but more AD related genes 
according to GWAS Catalog (NETTAG:7, k-means: 3, disease name = “Alzheimer’s Disease) and DisGeNET (NETTAG: 46, k-
means: 21, disease name = ‘Alzheimer’s Disease”) (see STAR Methods and Table S3). 

restart probability = 0.1

restart probability = 0.01

restart probability = 0.4

restart probability = 0.6
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Figure S4  (A) Cumulative distributions of predicted scores with alzRGs and same amount of random non-alzRGs with similar 
degree distribution for CpG island, CCCTC-binding factor (CTCF), enhancer, open chromatin, promoter flanking region (PFR) 
and transcriptional factor (TF) regulatory elements, respectively. 
(B) Pathway enrichment analysis (Wikipathway, see STAR Methods).
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Figure S5.  (A) Venn diagram shows the numbers of common differentially expressed 
genes (DEGs) according to microarray, bulk RNA-seq and single cell / nucleus RNA-
seq studies. 
(B) Nineteen DEGs are associated with various types of DNA regulatory elements 
(black dots). 
(C) and (D) Violin plots show alzRGs are more likely differentially expressed in disease-
associated microglia (DAM) and astrocyte (DAA) according to one mouse single-cell 
RNA seq dataset GSE98969 (C, 16 5xFAD and 16 wild type mice) and one human 
single-nucleus RNA seq dataset GSE147528 (D, 3,4 and 3 human postmortem brain 
samples with Braak stage 0, 2, and 6, respectively) [unpaired t-test, t-test statistic = 
33.85 and 10.86, p = 9.76 ´10-183 and 8.30 ´10-27, separately, #s of replicates = 1000]. 
(E) One of our top predicted likely AD-associated gene MEF2D is found to upregulated 
[log2FC = 0.42, q = 2.50 ´10-6] in disease-associated microglia (DAM) according to one 
mouse single-nucleus RNA-seq dataset GSE140511 [3 mice for each group: 5xFAD, 
wild type, Trem2 knock out 5xFAD, and Trem2 knock out wild type]. 
(F) Another top predicted likely AD-associated gene CPLX2 is found to down-regulated 
[log2FC = -0.29, q = 2.40 ´10-24] in DAA according to one human single-nucleus RNA-
seq dataset GSE157827 [9 normal control and 12 AD human postmortem brain 
samples].

t-statistic = 33.85, p = 9.76´10-183 t-statistic = 10.86, p = 8.30´10-27
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Figure S6.  Drug target network analyses for 4 prioritized drugs. 

(A) Choline (FDA approved). 

(B) Ibudilast (Investigational, anti-inflammatory and neuroprotective oral agent). 

(C) Ceftriaxone (FDA approved, antibiotic). 

(D) Ibuprofen (FDA approved, NSAID and non-selective COX inhibitor).
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Figure S7.  (A) Histogram of proteins’ numbers of gene ontology (GO) terms. 
(B) Histogram of shorted distanced regarding our protein-protein interaction 
(PPI) with respect to all protein pairs that share at least one common GO 
annotation. 
(C) Disease enrichment analysis: boxplot of GWAS Catalog combined scores 
(from left to right): without any modification, modification 2 (subsampled 
topological similar subgraphs, see STAR Methods), modification 1 (coupling 2nd
order term, see STAR Methods), and both modifications. The combined score 
equals product of –log(p-value) and z-score as defined by Enrichr (see STAR 
Methods). The higher the combined score is, the more likely the predicted 
genes are specific disease-related. Here we consider ‘Alzheimer’s Disease’ from 
GWAS Catalog (#s of replicates = 10).
(D) Akaike information criterions (AICs) used for cluster number determination 
(see STAR Methods). 
(E) Percentages of trained existing edges and those of trained non-existing 
edges in all training iterations are quite similar.
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Figure S8.  Heatmap illustrating how we evaluated genes’ scores with input genes 
associated with each regulatory element via clustering similarities. (A) CpG Island, 
(B) CTCF, (C) Enhancer, (D) eQTL, (E) Open Chromatin, (F) Promoter, (G) 
Promoter Flanking Region (PFR), and (H) Transcriptional Factor (TF). The genes 
along the x-axis represented genes associated with each regulatory element, and 
genes along the y-axis represent genes to be scored. The scatterplot on the very 
right side denotes the final gene scores. For some genes, you can see the final 
score is zero, even though this appears to contrast to the heatmap. This is because 
when we scored the gene with clustering similarity, we also evaluated its statistical 
significance (see STAR Method, Step 2 of NETTAG), i.e., we want to highlight only 
genes whose clustering similarity is statistically significantly associated with input 
genes regarding certain regulatory elements. For example, gene ERLIN2 statistically 
significantly overlapped with genes associated with CpG Islands (A) but not with 
genes associated with TFs (H).
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