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Figure S1. Quality control for CUT & Tag and ATAC-seq. a-¢c, CUT & Tag
recapture ChlPseq signal with high reproducibility and low sequencing depth. IGV
(Integrated Genome Browser) showing high reproducibility between ChlIP-seq and
CUT & Tag in seedlings (a). Correlation between ChlIP-seq and CUT & Tag as well
as two biological replicates (b). Sequencing depth comparison for various histone
modifications between CUT&Tag and ChlPseq (c). d-h, Quality control of ATAC-seq
data. Peaks number and FRIP (The fraction of reads in called peak regions) were
calculated at different sequence depths (d). Fragment size distribution (e) and peak
distribution within the genome (f). ATAC-seq signal distribution along with genes
(9). Transcription factor footprint profile of ATAC-seq data (h). “Promoter (<= 1 kb)”
represented the peaks with +1~-1 kb to TSS; “Promoter (1-2 kb)” represented the



peaks with -1~-2 kb to TSS; “Promoter (2-3 kb)” represented the peaks with -2~-3 kb
to TSS.
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Figure S2. Features of various modifications. a, Peak distribution of different
histone modifications relative to genes. b, Correlation between different types of
histone modification profiles and gene expression levels. ¢, Cluster dendrogram of
histone modifications. Reads count in peaks were normalized by CPM, and euclidean
distances were calculated for tree clustering. Two biological replicates were merged
for analysis. d, The ACRs distribution pattern along with the distance to TSS of
different species with different genome sizes, including Arabidopsis, rice, maize,
barley and wheat. Part of raw data from the previous publication [29].
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Figure S3. Dynamic ACRs during wheat embryogenesis and difference among
sub-genomes. a, ACRs dynamic in proximal (left) and distal regions (right) during
wheat embryogenesis. b, The number of different types of ACRs at DPAG, 8, 12. c,
ATAC-seq signal in proximal and distal regions at DPAG, 8, 12. d, Percentage of
different types ACRs generated from Fig. 2d overlapped with TEs. Transient: DPAS8
specific ACRs, Constant: ACRs present in DPAS8 and either of DAP6 or DPA12,
Genome: randomly select intergenic regions from the genome. e, Histone
modifications enrichment at constant dACRs. The analysis method is the same as that
in Fig. 2e. f, PCA analysis of total RNAseq data. Two or three biological replicates
were used for each development stage. g, Chromatin accessibility (ATAC), histone
modifications and various types of TEs distributions change on Chr. 7 of A-, B- and
D-subgenome at DPA 6, 8 and 12. Color bars on x and y axis indicate the
chromosome segments defined by IWGSC Refseq v1.0. Y axis represented the
number of peaks per 10 Mb. Fisher exact test was used for significance calling in b,d
ande (*: p<=0.05; ** : p<=0.01; ***: p<=0.001).
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Figure S4. Histone modifications dynamic and subgenome comparison. a,
Heatmap showing the histone modification level at different chromatin states. RPKM
was used for data normalization. b, Histone modifications dynamic in distal regions
during wheat embryogenesis. ¢, H2A.Z dynamic during wheat embryogenesis. d,
Comparisons of histone modifications H3K27ac, H3K4me3, H3K27me3 and
H3K9me3 of collinear regions between Chr. 5A and Chr. 5D. Down- (Dn), and Up-
regulated (Up) loci were defined by the logz(fold change Chr. 5D/ Chr. 5A) values
bigger and lower than 1 and -1, respectively. Nc indicates no change. Color bars and



grey lines indicate the chromosome segments and centromere regions as those in Fig.
2d. e, Comparison of histone modification signal between subgenomes. Fisher’s Least
Significant Difference (LSD) was used for significance calling.
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Figure S5. Histone modifications reprogramming at pro-embryo. a, VVolcano plot
of differentially expressed genes during MZT. DEGs were defined by the threshold
value of |logz2(Fold Change DPA2/DAPO)| >1 and FDR <0.05 by edgeR. b, IGV
showing histone modifications and chromatin accessibility changes on representative
down-regulated genes AP2, MAPKKK17, as well as IAA1 (light blue shade), and up-
regulated genes CYCA2-3, NIT2, ORCS5, as well as UGT76C2 (light red shade). c,
Volcano plot of differential H3K27me3 enriched regions between DPA2 and DPA4
(left), and between DPA4 and DPAS (right). Differential regions were defined by the
threshold absolute value of |log2(Fold Change)| >1 and FDR <0.05 by DESeq2. d, GO
enrichment of gene sets which lost H3K27me3 at DPA4 and re-gain at DPAS, and
gene sets which de novo gain of H3K27me3 at DPAS8. e, Heatmap showing
differential H3K27me3 modification genes between DAP4 and DAP2. Embryonic
development essential genes were highlighted. Auxin-related genes were labeled in
red and Cytokinin-related genes were labeled in orange.
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Figure S6. Potential function of PRC2 in embryogenesis. a, Phylogenetic tree
showing the identification of TaFIE. High-expressed TaFIEs were labeled in red
color, and the low-confidence gene was labeled in blue color. b, In situ assays
showing the expression pattern of TaFIE (bar = 100 um). ¢, Genotyping of different
file mutate lines. Weak mutat alleles were labeled in blue color. d, Embryonic
development of wt and fie (bar = 100 um). SC, scutellum; SAM, shoot apical
meristem; LP, leaf primordia. e, Grain abortion of fie. Grains at DPA15 were shown,
and red arrows pointed the arrested developmental seed (up). Grains at DPA35
showed the shrinking phenotype in fie mutate lines. More than 15 spikes were counted



for each line. f, The germination rate of fie compared with wt. Three replicates were
used and 25 grains were used for one replicate. The student’s t-test was used for e and
f.
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Figure S7. Inhibition of deep organogenesis in late embryo at chromatin level. a
Callus induction rate drops as embryo developing after DPA 12 (three bio-replicates
were used, n>50 for each biological test). b, GO enrichment of tissue identity genes
found in Fig. 6a. ¢, Synchronous patterns between root- and leaf-identity genes
expression and corresponding pACRs in individual tissue. d, H3K27me3 modification
levels on root- and leaf-specific genes in individual tissue. e, Motifs enrichment
within regulatory regions of root- (left) and leaf-specific genes (right). Percentage
showed the presence frequency, while P-value indicates the enrichment. f, Expression
patterns of candidate TFs that can bind motifs found in e, cross different tissues and
during embryogenesis.
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Figure S8. Chromatin landscape affected sub-genome bias expression. a,
Phylostratigraphic map of various species. b, Expression spectrum of different
evolutionary age genes and sub-genome specific genes in wheat embryo (up- and
mid-panel). Expression spectrum of sub-genome specific genes in different
environments (bottom-panel). ¢, Define of homeologs bias expression (left) and
percentage of different homeologs bias expression types across eight wheat
embryonic developmental stages (right).
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Figure S9. Epigenetic modification on different types of homeologs bias

expressed genes. Balanced, suppressed, and dominant genes were shown in the first
three columns, and a combination of different types of homeologs was shown in the
fourth column. Epigenetic modification signals were normalized using RPKM, with

10 bp bin size.
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Figure S10. Comparisons of embryogenesis among different ploidy wheat. a,
Comparisons of gene expressions between hexaploid wheat (AABBDD) and
ancestors (AA, BB, DD and AABBDD) and corresponding Pearson correlation index.
Each row represents an individual gene in hexaploid wheat and each line represents
an individual gene in the ancestor. Pearson correlation index was from -1 to 1, and
indicated by colors from blue to red. Genes were clustered into three categories based
on Pearson index from the comparisons between hexaploid wheat and ancestors,
which are dysfunction, middle and conserved (bottom). b, ¢, subgenome synteny (b)
and triad dynamic expression across developmental stages (c) for gene set defined in
a. d, Percentage of genes has orthologous in corresponding ancestors for gene sets
defined in a. e, Sequence similarity between hexaploid wheat and different ancestors
for the corresponding gene sets defined in a. f, Ka/Ks comparisons for different gene
sets defined in a.



