# SUPPLEMENT MATERIAL

## Actionable Variants Identified by Genome Sequencing: Penetrance and Near-Term Outcomes Following Return to Participants Lee et al

| Contents                                                                   | Page  |
|----------------------------------------------------------------------------|-------|
| Table 1. Relevant family history                                           | 2     |
| Table 2. A summary of actionable variants identified during the RAVE study | 3-13  |
| Table 3. Criteria for ascertaining penetrance                              | 14-15 |
| Table 4. Outcomes in participants with previously known diagnoses          | 16    |
| Detailed description of outcomes                                           | 17-28 |
| FH (including Table 5 and Fig. 1)                                          | 17-18 |
| Lynch Syndrome (including Table 6 and Fig. 2)                              | 19-20 |
| HBOC Syndrome (including Table 7 and Fig. 3)                               | 21-22 |
| Long QT/Brugada Syndrome (including Table 8 and Fig. 4)                    | 23-24 |
| Cardiomyopathy & ARVC (including Table 9)                                  | 25-26 |
| Hemochromatosis (including Table 10 and Fig. 5)                            | 26-27 |
| Other conditions                                                           | 27-28 |

| Table 1: Relevant Family                                     |                                                                                                                    | []                                  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Condition                                                    | Related Diagnoses                                                                                                  | Family history of Related Diagnosis |
| Familial<br>Hypercholesterolemia<br>n = 18                   | History of Hyperlipidemia and ASCVD                                                                                | 8                                   |
| Lynch Syndrome<br>n = 10                                     | History of colorectal or<br>endometrial cancer                                                                     | 4                                   |
| Hereditary Breast and<br>Ovarian Cancer<br>Syndrome<br>n = 8 | History of Breast or ovarian cancer                                                                                | 4                                   |
| Long Q-T syndrome<br>n=10                                    | History of LQT syndrome diagnosis or prolonged QT interval                                                         | 0                                   |
| Cardiomyopathy/ARVC<br>n = 11                                | History of related cardiomyopathy                                                                                  | 2                                   |
| Hemochromatosis $n = 9$                                      | History of hemochromatosis                                                                                         | 0                                   |
| Factor V Leiden $n = 4$                                      | History of recurrent thrombosis                                                                                    | 2                                   |
| <i>СНЕК2</i><br>n= 2                                         | History of:<br>Breast cancer<br>Prostate cancer<br>Stomach cancer<br>Sarcoma<br>Kidney cancer                      | 2                                   |
| Familial Adenomatous<br>Polyposis<br>n = 2                   | History of FAP or<br>extensive polyps or polyps leading to<br>colectomy.                                           | 0                                   |
| <i>PALB2</i><br>n = 2                                        | History of breast cancer or pancreatic cancer                                                                      | 0                                   |
| Multiple Endocrine<br>Neoplasia type IIA<br>n = 2            | History of:<br>MEN syndrome<br>Medullary thyroid carcinoma<br>Pheochromocytoma, Parathyroid<br>adenoma/hyperplasia | 1                                   |
| Malignant hyperthermia $n = 1$                               | History of malignant hyperthermia diagnosis.                                                                       | 0                                   |
| MCAD deficiency $n = 1$                                      | History of MCAD deficiency.                                                                                        | 0                                   |
| Ehlers-Danlos<br>n = 1                                       | History of:<br>Vascular type Ehlers-Danlos<br>syndrome.<br>Arterial aneurysms, dissection, or<br>rupture           | 1                                   |

Table 1: Relevant Family History

ARVC= arrhythmogenic right ventricle cardiomyopathy

|     | Gene        | Variant                    | eMERGE<br>Classificat<br>ion* | Relev<br>ant<br>Traits | Manifestation                                | Comments                                                                         | Tests<br>Completed                                                          |
|-----|-------------|----------------------------|-------------------------------|------------------------|----------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Tie | r 1 Variant | ts                         | 1                             |                        | 1                                            | 1                                                                                | 1                                                                           |
| Fan | nilial Hype | ercholesterolemia          |                               |                        |                                              |                                                                                  |                                                                             |
| 1   | LDLR        | c.796G>A<br>(p.Asp266Asn)  | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>184 mg/dL | Declined referral                                                                |                                                                             |
| 2   | LDLR        | c.782G>T<br>(p.Cys261Phe)  | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>206 mg/dL | Seen in FH<br>clinic                                                             | Lipid Profile<br>Apo B level<br>Lipoprotein<br>(a)                          |
| 3   | LDLR        | c.796G>A<br>(p.Asp266Asn)  | LP                            | -                      | Hypercholester<br>olemia, LDL-C<br>146 mg/dL | Statin<br>intolerant,<br>declined<br>referral                                    |                                                                             |
| 4   | LDLR        | c.131G>A (p.Trp44*)        | Р                             | +                      | Hypercholester<br>olemia, LDL-C<br>218 mg/dL | Referred to<br>FH clinic but<br>did not<br>follow up                             | Lipid Profile                                                               |
| 5   | LDLR        | c.1444G>A<br>(p.Asp482Asn) | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>216 mg/dL | Declined referral                                                                |                                                                             |
| 6   | LDLR        | c.862G>A(p.Glu288Lys)      | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>198 mg/dL | Declined referral                                                                |                                                                             |
| 7   | LDLR        | c.1444G>A<br>(p.Asp482Asn) | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>217 mg/dL | Opted to see<br>PCP first                                                        | Lipid Profile                                                               |
| 8   | LDLR        | c.798T>A<br>(p.Asp266Glu)  | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>218 mg/dL | Referred to<br>FH clinic but<br>did not<br>follow up                             | Lipid Profile                                                               |
| 9   | LDLR        | c.1640T>C<br>(p.Leu547Pro) | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>348 mg/dL | Previous Dx<br>of FH<br>(genetic)                                                | Lipid Profile                                                               |
| 10  | LDLR        | C.1474G>A<br>(p.Asp492Asn) | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>243 mg/dL | Seen in FH<br>Clinic, statin<br>dose<br>increased<br>and<br>ezetimibe<br>started | Lipid Profile<br>ECG<br>Echocardiog<br>raphy<br>Lipoprotein<br>(a)<br>Apo B |
| 11  | LDLR        | c.1432G>A<br>(p.Gly478Arg) | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>256 mg/dL | Seen in FH<br>Clinic                                                             | Lipid Profile<br>ECG<br>Lipoprotein<br>(a)<br>Apo B                         |
| 12  | LDLR        | c.1860G>A (p.Trp620*)      | Р                             | +                      | Hypercholester<br>olemia, LDL-C<br>303 mg/dL | Declined referral                                                                |                                                                             |
| 13  | LDLR        | c.796G>A<br>(p.Asp266Asn)  | LP                            | +                      | Hypercholester<br>olemia, LDL-C<br>196 mg/dL | Seen in FH<br>Clinic                                                             | Lipid Profile<br>ECG<br>Lipoprotein                                         |

|    |       |                              |     |   |                                                           |                                                                                                        | (a)<br>Apo B<br>CT coronary<br>calcium                                        |
|----|-------|------------------------------|-----|---|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 14 | LDLR  | c.420G>C<br>(p.Glu140Asp)    | LP  | + | Hypercholester<br>olemia, LDL-C<br>280 mg/dL              | Previous Dx<br>of FH<br>(genetic)<br>Declined FH<br>clinic<br>referral                                 |                                                                               |
| 15 | LDLR  | c.1586+5G>A                  | LP  | + | Hypercholester<br>olemia, LDL-C<br>162 mg/dL              | Opted to<br>follow with<br>PCP                                                                         |                                                                               |
| 16 | LDLR  | c.1238C>T(p.Thr413Met<br>)   | LP  | + | Hypercholester<br>olemia, LDL-C<br>212 mg/dL              | Declined FH<br>clinic<br>referral                                                                      |                                                                               |
| 17 | LDLR  | c.1444G>A<br>(p.Asp482Asn)   | LP  | + | Hypercholester<br>olemia, LDL-C<br>308 mg/dL <sup>†</sup> |                                                                                                        | Lipid Profile                                                                 |
| 18 | LDLR  | c.542C>G<br>(p.Pro181Arg)    | LP† | - | Hypercholester<br>olemia, LDL-C<br>159 mg/dL              |                                                                                                        | Lipid Profile                                                                 |
| 19 | LDLR  | c.2029T>C<br>(p.Cys677Arg)   | LP  | + | Hypercholester<br>olemia, LDL-C<br>236 mg/dL              |                                                                                                        |                                                                               |
| 20 | APOB  | c.10580G>A<br>(p.Arg3527Gln) | Р   | + | Hypercholester<br>olemia, LDL-C<br>196 mg/dL              |                                                                                                        | Lipid Profile                                                                 |
| 21 | APOB  | c.10580G>A<br>(p.Arg3527Gln) | Р   | + | Hypercholester<br>olemia, LDL-C<br>217 mg/dL              | Seen in FH<br>clinic                                                                                   | Lipid Profile<br>ECG<br>Lipoprotein<br>(a)<br>Apo B<br>CT coronary<br>calcium |
| 22 | APOB  | c.10580G>A(p.Arg3527<br>Gln) | Р   | + | Hypercholester<br>olemia, LDL-C<br>308 mg/dL‡             | Medications<br>reviewed in<br>FH clinic,<br>PCSK 9<br>considered if<br>LDL-C does<br>not reach<br>goal | Lipid Profile                                                                 |
| 23 | APOB  | c.10580G>A(p.Arg3527<br>Gln) | Р   | + | Hypercholester<br>olemia, LDL-C<br>210 mg/dL              | Already on<br>high dose<br>statin and<br>ezetimibe<br>Declined<br>referral                             | Lipid Profile                                                                 |
| 24 | APOB  | c.10580G>A<br>(p.Arg3527Gln) | Р   | + | Hypercholester<br>olemia, LDL-C<br>347 mg/dL              | Previous Dx<br>of FH<br>(genetic)                                                                      |                                                                               |
| 25 | APOB  | c.10580G>A<br>(p.Arg3527Gln) | Р   | + | Hypercholester<br>olemia, LDL-C<br>194 mg/dL              |                                                                                                        | Lipid Profile                                                                 |
| 26 | PCSK9 | c.644G>A<br>(p.Arg215His)    | LP  | + | Hypercholester<br>olemia, LDL-C                           | Seen in FH<br>Clinic                                                                                   | Lipid Profile<br>ECG                                                          |

|                            |                                                             |                                                                                                                                                          |                                                 |                         | 315 mg/dL†                                            |                                                                                                      | Lipoprotein<br>(a)<br>Apo B<br>CT coronary<br>calcium |
|----------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| the<br>*eN<br>unco<br>ther | EHR); ; A <sub>l</sub><br>IERGE cla<br>ertain signi<br>apy. | Hypercholesterolemia; LDL<br>po B level = Apolipoprotein<br>issification matches ClinVar<br>ificance, and 1 likely benign<br>east and Ovarian Cancer Syn | B; ECG = El<br>classification<br>classification | lectrocardion unless no | ogram; CT = Cardia<br>ted otherwise; † = 3            | c computed tom<br>likely pathogen                                                                    | ography;<br>iic, 2 variant of                         |
| 27                         | BRCAI                                                       | c.2035A>T (p.Lys679*)                                                                                                                                    | Р                                               | +                       |                                                       | Previous<br>genetic<br>testing for<br>family Hx<br>Previous<br>BM+BSO                                |                                                       |
| 28                         | BRCAI                                                       | deletion of exons 13-15                                                                                                                                  | Р                                               | +                       | Personal history<br>of breast cancer<br>in early 30's | Previous<br>genetic<br>testing<br>Previous<br>BM+BSO                                                 | _                                                     |
| 29                         | BRCAI                                                       | c.5251C>T<br>(p.Arg1751*)                                                                                                                                | Р                                               | +                       |                                                       | Previous<br>genetic<br>testing<br>Previous<br>BM+BSO                                                 |                                                       |
| 30                         | BRCAI                                                       | c.3756_3759delGTCT<br>(p.Ser1253Argfs*10)                                                                                                                | Р                                               | +                       | _                                                     | Previous<br>genetic<br>testing<br>Previous<br>BM+BSO                                                 | _                                                     |
| 31                         | BRCAI                                                       | c.3756_3759delGTCT<br>(p.Ser1253Argfs*10)                                                                                                                | Р                                               | +                       | Personal history<br>of breast cancer<br>in mid 40's   | Previous<br>genetic<br>testing                                                                       | _                                                     |
| 32                         | BRCAI                                                       | c.5109T>G (p.Tyr1703*)                                                                                                                                   | Р                                               | -                       | Strong family<br>history of breast<br>cancer          |                                                                                                      | MRI Breast<br>Mammograp<br>hy                         |
| 33                         | BRCA1                                                       | c.5096G>A<br>(p.Arg1699Gln)                                                                                                                              | LP                                              | +                       |                                                       | Previous<br>genetic Dx,<br>previous<br>Lynch<br>Syndrome,<br>previous<br>TAH/BSO.<br>Underwent<br>BM |                                                       |
| 34                         | BRCA2                                                       | c.5217_5223delTTTAA<br>GT (p.Tyr1739*)                                                                                                                   | Р                                               | +                       | _                                                     | BM+BSO<br>after RoR                                                                                  | MRI breast<br>US pelvis<br>CA 125 leve                |
| 35                         | BRCA2                                                       | c.8168A>C<br>(p.Asp2723Ala)                                                                                                                              | LP                                              | +                       | _                                                     | Previous<br>genetic<br>testing,<br>previous<br>BM+BSO                                                |                                                       |

|     | 1          | 1                                                                   |    |    |                                                          | <b>D</b> :                                                                            | 1                                                                             |
|-----|------------|---------------------------------------------------------------------|----|----|----------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 36  | BRCA2      | c.1813dup<br>(p.lle605Asnfs*11)                                     | Р  | +  | Personal history<br>of Breast cancer<br>in mid 40's      | Previous<br>genetic<br>testing<br>Previous BM<br>+BSO                                 |                                                                               |
| 37  | BRCA2      | c.6033_6034delTT<br>(p.Ser2012Glnfs*5)                              | Р  | -  |                                                          | Male<br>referred to<br>high risk<br>breast clinic<br>but did not<br>follow up         |                                                                               |
| 38  | BRCA2      | c.4472_4475delTGAA<br>(p.Leu1491Glnfs*12)                           | Р  | +  |                                                          | Previous<br>genetic<br>testing<br>Previous BM                                         |                                                                               |
| 39  | BRCA2      | c.8243G>A<br>(p.Gly2748Asp)                                         | Р  | -  | _                                                        | Male,<br>followed by<br>PCP                                                           | PSA                                                                           |
| 40  | BRCA2      | c.6842-2A>G                                                         | LP | +  | Personal history<br>of prostate<br>cancer in mid<br>60's | Male                                                                                  | PSA                                                                           |
| 41  | BRCA2      | c.3847_3848del<br>(p.Val1283Lysfs*2)                                | Р  | -  | _                                                        | Male,<br>followed by<br>PCP                                                           | PSA<br>Prostate<br>Exam                                                       |
| 42  | BRCA2      | c.6275_6276delTT<br>(p.Leu2092Profs*7)                              | Р  | +  |                                                          | Previous<br>TAH BSO<br>for benign<br>tumor<br>Underwent<br>BM based on<br>ROR         | MRI breast                                                                    |
| 43  | BRCA2      | 9294C>G (p.Tyr3098*)                                                | Р  | _* | _                                                        | PCP<br>Male                                                                           | Surveillance:<br>Yearly<br>clinical<br>breast exam<br>PSA<br>Prostate<br>Exam |
| MR  |            | I Mastectomy; BSO = Bilate<br>tic Resonance Imaging; US<br>ost RoR. |    |    |                                                          |                                                                                       | terectomy;                                                                    |
| Lyn | ch Syndror | ne                                                                  |    |    |                                                          |                                                                                       |                                                                               |
| 44  | MSH6       | c.2731C>T (p.Arg911*)                                               | Р  | -  | Colon polyps                                             | Previous Dx<br>Lynch Syn.<br>(genetic)                                                |                                                                               |
| 45  | MSH6       | c.3261_3262insC<br>(p.Phe1088Leufs*5)                               | Р  | -  | _                                                        | PCP follow-<br>up<br>Prior<br>hysterectom<br>y and BSO<br>due to<br>endometriosi<br>s | EGD<br>Colonoscopy                                                            |
| 46  | MSH6       | c.32012C>T<br>(p.Arg1068*)                                          | Р  | -  | _                                                        | Referred to<br>GI neoplasia<br>clinic                                                 |                                                                               |

|    |      |                                                     |     |   |                                                                                                                       | (pending)                                                                         |                                                                      |
|----|------|-----------------------------------------------------|-----|---|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 47 | MSH2 | Deletion Exons 1-3                                  | Р   | + | Personal history<br>of colorectal<br>cancer in early<br>30's<br>Paternal aunt<br>had uterine<br>cancer in mid<br>20's | Previously<br>known<br>genetic Dx                                                 |                                                                      |
| 48 | MSH2 | Del Exons 4-6                                       | Р   | + | Personal history<br>of endometrial<br>cancer in early<br>40's                                                         | Previously<br>known<br>genetic Dx                                                 |                                                                      |
| 49 | PMS2 | c823C>T (p.Gln275*)                                 | Р   | - | Colon polyps                                                                                                          | Referral to<br>GI clinic                                                          | EGD<br>Colonoscopy<br>PSA                                            |
| 50 | PMS2 | c.2117delA<br>(p.Lys706Serfs*10)                    | Р   | - |                                                                                                                       | TAH/BSO<br>after RoR                                                              | Colonoscopy<br>CT<br>enterography<br>CT abdomen<br>Urine<br>cytology |
| 51 | PMS2 | c.325dup<br>(p.Glu109Glyfs*30)                      | Р   | - | _                                                                                                                     | Previous<br>TAH/BSO<br>for uterine<br>fibroids                                    | EGD<br>Colonoscopy<br>Pelvis U/S                                     |
| 52 | PMS2 | c.614A>C (p.Gln205Pro)                              | LP* | - | Hyperplastic colon polyps                                                                                             | Declined<br>referral or<br>further<br>testing                                     |                                                                      |
| 53 | PMS2 | c.1939A>T (p.Lys647*)                               | Р   | - | _                                                                                                                     | GI neoplasia<br>Clinic for<br>ongoing<br>management                               | Colonoscopy                                                          |
| 54 | PMS2 | c.736_741delinsTGTGT<br>GTGAAG<br>(p.Pro246Cysfs*3) | Р   | - |                                                                                                                       | TAH+BSO<br>after RoR                                                              | Transvaginal<br>US<br>Endometrial<br>sampling<br>Colonoscopy<br>EGD  |
| 55 | PMS2 | c.400C>T (p.Arg134*)                                | Р   | - |                                                                                                                       | Male<br>Referred to<br>the GI<br>neoplasia<br>clinic for<br>further<br>management | Colonoscopy<br>EGD                                                   |
| 56 | PMS2 | c.2113G>A<br>(p.Glu705Lys)                          | LP  | - |                                                                                                                       | Female<br>TAH+BSO<br>based on<br>RoR                                              | Urine<br>cytology<br>Yearly<br>colonoscopy                           |
| 57 | PMS2 | c.1021delA<br>(p.Arg341Glyfs*15)                    | Р   | + | Personal history<br>of ovarian<br>cancer (early<br>40's)                                                              | Female                                                                            |                                                                      |
| 58 | MLH1 | c.677G>T<br>(p.Arg226Leu)                           | LP  | - | _                                                                                                                     | Male                                                                              |                                                                      |

CT = Computed tomography; TAH = total abdominal hysterectomy; BSO = bilateral salphingo-oophorectomy; EGD = esophagogastroduodenoscopy; LP\* = 3 Likely pathogenic and 3 variant of uncertain significance classifications in ClinVar

Non-Tier 1 Variants

Familial Adenomatous Polyposis

| Fan | nilial Adeno | omatous Polyposis                                                                                                                   |                |   |                                                                                                                                |                                                                             |                                                                                    |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------|---|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 59  | APC          | c.694C <t (p.arg232*)<="" th=""><th>Р</th><th>+</th><th>FAP diagnosis</th><th>Previous<br/>clinical Dx<br/>of FAP</th><th></th></t> | Р              | + | FAP diagnosis                                                                                                                  | Previous<br>clinical Dx<br>of FAP                                           |                                                                                    |
| 60  | APC          | c.3920T>A<br>(p.lle1307Lys)                                                                                                         | Risk<br>Factor | - | Few<br>adenomatous<br>polyps, one<br>with low grade<br>dysplasia                                                               | Female in<br>her late 60's.<br>No referral<br>needed                        | Colonoscopy<br>every 5 years                                                       |
| 61  | APC          | C.1262G>A<br>(P.Trp421Ter)                                                                                                          | Р              | - | Previously<br>normal<br>colonoscopy                                                                                            | Presumed mosaic                                                             | Endoscopy                                                                          |
| FAI | P = Familia  | l Adenomatous Polyposis                                                                                                             |                |   |                                                                                                                                |                                                                             |                                                                                    |
| Hyp | ertrophic (  | Cardiomyopathy                                                                                                                      |                |   |                                                                                                                                |                                                                             |                                                                                    |
| 62  | TNNI3        | c.497C>T (p.<br>Ser166Phe)                                                                                                          | Р              | + | Hypertrophic<br>cardiomyopathy<br>diagnosis;<br>Sigmoid<br>ventricular<br>septum with<br>basal septal<br>prominence (14<br>mm) | Seen in<br>Hypertrophic<br>Cardiomyop<br>athy Clinic                        | cMRI<br>ECG<br>EST<br>Echocardiog<br>ram<br>24-h Holter                            |
| 63  | TNNI3        | c.484C>T (p.Arg162Trp)                                                                                                              | Р              | - | _                                                                                                                              | Seen in<br>Hypertrophic<br>Cardiomyop<br>athy Clinic                        | Echocardiog<br>ram Strain<br>ECG                                                   |
| 64  | MYPBC<br>3   | c1504C>T<br>(p.Arg502Trp)                                                                                                           | Р              | - |                                                                                                                                | Seen in<br>Hypertrophic<br>Cardiomyop<br>athy Clinic                        | cMRI<br>Standard<br>ECG<br>Echocardiog<br>ram                                      |
| 65  | MYPBC<br>3   | c1504C>T<br>(p.Arg502Trp)                                                                                                           | Р              | - |                                                                                                                                | Seen in<br>Hypertrophic<br>Cardiomyop<br>athy Clinic                        | Standard<br>ECG<br>Echocardiog<br>ram<br>Signal-<br>averaged<br>ECG<br>24-h Holter |
| 66  | MYPBC<br>3   | c.905+1G>T                                                                                                                          | LP             | - |                                                                                                                                | Declined<br>referral to<br>the<br>Hypertrophic<br>Cardiomyop<br>athy Clinic |                                                                                    |
| 67  | MYH7         | c.4499G>A<br>(p.Arg1500Gln)                                                                                                         | LP             | - | _                                                                                                                              | Referred to<br>Hypertrophic<br>Cardiomyop<br>athy clinic<br>but did not     |                                                                                    |

|    |       |                                                    |             |            |                                                     | follow up                                                                                         |                                                                 |
|----|-------|----------------------------------------------------|-------------|------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 68 | MYL3  | c.170C>G                                           | LP*         | -          |                                                     | Seen in<br>Hypertrophic<br>Cardiomyop<br>athy Clinic,<br>also found to<br>have SCN5A<br>P variant | ECG<br>Echocardiog<br>ram                                       |
|    |       | ac Magnetic Resonance Ima<br>ater to VUS by eMERGE | ging; ECG = | Electrocar | diogram; EST = Exe                                  | ercise stress tes                                                                                 | st; *                                                           |
|    |       | ic Right Ventricular Cardion                       | nyopathy    |            |                                                     |                                                                                                   |                                                                 |
| 69 | DSC2  | c.2125+1del                                        | LP          | -          |                                                     | Referred to cardiology                                                                            | cMRI<br>ECG<br>EST<br>Echocardiog<br>ram<br>24-h Holter         |
| 70 | PKP2  | c.275T>A (p.Leu92*)                                | р           | -          |                                                     | Referred to cardiology                                                                            | cMRI<br>ECG<br>EST<br>Signal-<br>averaged<br>ECG<br>24-h Holter |
| 71 | PKP2  | c.1162C>T<br>(p.Arg388Trp)                         | LP          | -          | Previous ECG<br>and<br>echocardiogram<br>normal     | Declined referral                                                                                 | _                                                               |
| 72 | PKP2  | c.235C>T (p.Arg79*)                                | Р           | -          |                                                     |                                                                                                   | _                                                               |
| 73 | DSP   | c.597_598insGTAA<br>(p.Arg199fs)                   | LP          | _          |                                                     | Referred to cardiology                                                                            | ECG<br>Signal-<br>averaged<br>ECG<br>24-h Holter                |
| 74 | DSP   | c.2794-2A>T                                        | LP          | -          |                                                     |                                                                                                   | _                                                               |
|    |       | ac Magnetic Resonance Ima                          | ging; ECG = | Electrocar | diogram; EST = Exe                                  | ercise stress tes                                                                                 | st; ECHO =                                                      |
|    |       | m; EP = Electrophysiology<br>ada Syndrome          |             |            |                                                     |                                                                                                   |                                                                 |
| 75 | KCNQ1 | c.1893dup<br>(p.Arg632GInfs*20)                    | Р           | -          | Normal QTc<br>interval<br>(QTc= 401 ms -<br>434 ms) | Referred<br>to EP<br>clinic but<br>was not<br>seen                                                |                                                                 |
| 76 | KCNQ1 | c.1552C>T (p.Arg518*)                              | Р           | +          | QTc interval<br>(QTc= 455 ms -<br>517 ms)           |                                                                                                   | ECG<br>Echocardiogra<br>m<br>24-h Holter<br>EST                 |
| 77 | KCNQ1 | c.944A>G<br>(p.Tyr315Cys)                          | LP          | +          | QTc interval<br>(QTc= 412 ms -<br>490 ms)           | Previously<br>diagnosed<br>in EP<br>clinic                                                        | _                                                               |
| 78 | KCNQ1 | Del exons 4-7                                      | Р           | +          | QTc interval<br>(QTc= 453 ms -                      |                                                                                                   | ECG<br>Echocardiogra                                            |

|    |       |                                                                |    |   | 484 ms)                                                     |                                          | m<br>24-h Holter<br>EST                                      |
|----|-------|----------------------------------------------------------------|----|---|-------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|
| 79 | KCNQ1 | c.776G>A (p.Arg259His<br>)                                     | LP | - | QTc interval<br>(QTc= 443 ms -<br>453 ms), Male             | Awaiting<br>EP<br>Review                 |                                                              |
| 80 | KCNQ1 | c.905C>T (p.Ala302Val)                                         | LP | - |                                                             |                                          |                                                              |
| 81 | KCNE1 | c.226G>A (p.Asp76Asn)                                          | LP | + | QT interval<br>(QTc= 420 ms -<br>519 ms)                    | Nadolol<br>started                       | ECG, EST                                                     |
| 82 | KCNE1 | c.292C>T (p.Arg98Trp)                                          | Р* | + | QT interval<br>(QTc= 447 ms -<br>495 ms)                    | Seen by<br>specialist                    | ECG<br>Echocardiogra<br>m<br>24-h Holter<br>EST              |
| 83 | SCN5A | c.4886G>A(p.Arg1629G<br>ln)                                    | LP | - | No ECG<br>finding<br>consistent with<br>Brugada<br>syndrome |                                          | ECG<br>Brugada-<br>protocol ECG<br>Echocardiogra<br>m<br>EST |
| 84 | SCN5A | c.3956G>T<br>(p.Gly1319Val)                                    | Р  | - | No ECG<br>finding<br>consistent with<br>Brugada<br>syndrome |                                          | Brugada-<br>protocol ECG<br>24-h Holter<br>EST               |
| 85 | KCNH2 | c.1468G>A<br>(p.Ala490Thr)                                     | Р  | - | QT interval<br>(QTc= 397 ms -<br>466 ms)                    | Referred<br>EP clinic<br>but not<br>seen |                                                              |
| 86 | KCNH2 | c.446dupG<br>(p.Thr152Hisfs*180)                               | LP | + | QT interval<br>(QTc= 474 ms -<br>540 ms)                    | Previously<br>known to<br>EP             | No change in<br>Mx<br>Previous<br>genetic Dx                 |
| 87 | KCNH2 | c.2762delG<br>(p.Gly921Alafs*53)<br>cardiogram; EST = Exercise | LP | + | QT interval<br>(QTc= 482 ms -<br>509 ms)                    | Seen in<br>EP clinc                      | ECG<br>24-h Holter<br>EST                                    |

ECG = Electrocardiogram; EST = Exercise stress test; TTE = Trans-thoracic Echocardiogram; EP =Electrophysiology; Mx = Management; P\* = 1 pathogenic, 1 likely pathogenic, and 2 variant of uncertain significance classifications in ClinVar

Marfan Syndrome and Vascular Ehlers-Danlos Syndrome

| 88 | FBNI       | c.2495G>A<br>(p.Cys832Tyr) | Р  | + | Marfan<br>Syndrome                                | Clinical Dx<br>of Marfan —<br>Syndrome                                                                                                                     |
|----|------------|----------------------------|----|---|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89 | COL3A<br>1 | c.4087C>T<br>(p.Arg1363*)  | LP | - | Previous MRI<br>brain didn't<br>show<br>aneurysms | Referred to<br>Clinical<br>Genomics<br>but did not<br>follow up<br>Daughter has<br>spontaneous<br>coronary<br>artery<br>dissection<br>and two<br>vertebral |

|         |           |                           |   |   |                                                             | aneurysms                                                                   |                                                                            |
|---------|-----------|---------------------------|---|---|-------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Her     | editary H | emochromatosis            | I | I | I                                                           | 1                                                                           | 1                                                                          |
| 90      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | - | Ferritin = 201<br>ng/mL                                     | PCP referral                                                                |                                                                            |
| 91      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | + | (Ferritin = 83<br>ng/mL,<br>Transferritin<br>SAT = 58%)     | Started therapy                                                             | Ferritin<br>MRI Liver                                                      |
| 92      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | + | (Ferritin = 405<br>ng/mL,<br>Transferritin<br>SAT = > 90 %) | Seen by<br>gastroenterol<br>ogy and<br>started<br>therapeutic<br>phlebotomy | Iron studies<br>Liver<br>Enzymes,<br>Liver<br>Elastogram<br>w/o contras    |
| 93      | HFE       | c.845G>A<br>(p.Cyc282Tyr) | Р | + | (Ferritin = 560<br>ng/mL,<br>Transferritin<br>SAT = 74%)    | PCP Referral                                                                | Annual<br>transferrin<br>saturation<br>and ferritin<br>level<br>monitoring |
| 94      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | + | (Ferritin = 444<br>ng/mL,<br>Transferritin<br>SAT = 72%)    | Started<br>therapy                                                          | Ferritin<br>MRI Liver                                                      |
| 95      | HFE       | c.845G>A<br>(p.Cys292Tyr) | Р | + | Ferritin = 293<br>ng/mL                                     |                                                                             | Previous<br>clinical<br>diagnosis<br>and genetic<br>testing                |
| 96      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | + | (Ferritin = 195<br>ng/mL,<br>Transferritin<br>SAT = 68%)    | Referred to<br>gastroenterol<br>ogy but not<br>yet seen                     | Iron studies                                                               |
| 97      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | + | (Ferritin = 904<br>ng/mL,<br>Transferritin<br>SAT = 68%)    | Started therapy                                                             | Iron studies                                                               |
| 98      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | - | Ferritin = 67<br>ng/mL                                      | PCP<br>surveillance                                                         |                                                                            |
| 99      | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | - | (Ferritin = 150<br>ng/mL,<br>Transferritin<br>SAT = 50%)    | PCP<br>surveillance                                                         | Normal<br>ferritin and<br>transferrin                                      |
| 10<br>0 | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | + | (Ferritin = 2<br>ng/mL,<br>Transferritin<br>SAT = 6%)       | Previous<br>clinical<br>diagnosis,<br>previous<br>therapy                   |                                                                            |
| 10<br>1 | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | - | (Ferritin = 109<br>ng/mL,<br>Transferritin<br>SAT = 34%)    | Previously<br>known                                                         |                                                                            |
| 10<br>2 | HFE       | c.845G>A<br>(p.Cys282Tyr) | Р | + | (Ferritin = 156<br>ng/mL,<br>Transferritin<br>SAT = 59%)    | Previously<br>known                                                         | _                                                                          |

|         | I          |                             |                 |            |                                                                              |                                                                                                  |                                                                |
|---------|------------|-----------------------------|-----------------|------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 10<br>3 | HFE        | c.845G>A<br>(p.Cys282Tyr)   | Р               | +          | (Ferritin = 133<br>ng/mL,<br>Transferritin<br>SAT = 62%)                     | Previously<br>known                                                                              |                                                                |
| 10<br>4 | HFE        | c.845G>A<br>(p.Cys282Tyr)   | Р               | +          | (Ferritin = 230<br>ng/mL,<br>Transferritin<br>SAT = > 90%)                   | Previously<br>known                                                                              |                                                                |
| 10<br>5 | HFE        | c.845G>A<br>(p.Cys282Tyr)   | Р               | +          | (Ferritin = 195<br>ng/mL,<br>Transferritin<br>SAT = 73%)                     | Previously<br>known                                                                              |                                                                |
| MR      | I = Magne  | tic Resonance Imaging       |                 |            |                                                                              |                                                                                                  |                                                                |
| Mai     | lignant Hy | perthermia                  |                 |            |                                                                              |                                                                                                  |                                                                |
| 10<br>6 | RYRI       | c.1840C>T<br>(p.Arg614Cys)  | Р               | -          | No previous<br>anesthesia<br>complications<br>(Succinylcholin<br>e was used) | EHR alert<br>was<br>implemented<br>to alert<br>anesthesiolo<br>gist                              |                                                                |
| Med     | lium-Chai  | n Acyl-CoA Dehydrogenase    | Deficiency      |            |                                                                              |                                                                                                  |                                                                |
| 10<br>7 | ACAD<br>M  | c.997A>G<br>(p.Lys333Glu)   | Р               | -          |                                                                              | Referred to<br>medical<br>geneticist<br>but did not<br>follow up                                 |                                                                |
| Mul     | tiple Endo | crine Neoplasia Type II     | 1               |            |                                                                              | 1                                                                                                | 1                                                              |
| 10<br>8 | RET        | c.2410G>A<br>(p.Val804met)  | Р               | -          | _                                                                            | Seen by<br>endocrinolog<br>y                                                                     | US Thyroid,<br>PTH, Vit-D,<br>Calcitonin,<br>24hr urine<br>C/M |
| 10<br>9 | RET        | c.23705>T(p.Leu790Phe<br>)  | Р               | -          |                                                                              | Seen by<br>endocrinolog<br>y                                                                     | US Thyroid,<br>PTH, Vit-D,<br>Calcitonin,<br>24hr urine<br>C/M |
| US      | = Ultrasou | nd; PTH = Parathyroid horm  | none; $C/M = C$ | Catecholan | nines and Metaneph                                                           | rines                                                                                            | 1                                                              |
| Fac     | tor V Leid | en                          |                 |            |                                                                              |                                                                                                  |                                                                |
| 11<br>0 | F5         | c.1601G>A<br>(p.Arg534Gln)  | Р               | -          | No Hx of VTE                                                                 | Also found<br>to have <i>RET</i><br>P variant                                                    |                                                                |
| 11<br>1 | F5         | c.1601G>A(p.Arg534Gl<br>n)  | Р               | +          | Hx of DVT                                                                    | Hx DVT,<br>referred to<br>thrombophili<br>a clinic and<br>started<br>prophylactic<br>rivaroxaban |                                                                |
| 11<br>2 | F5         | c.1601G>A(p.Arg534Gl<br>n)  | Р               | -          | No Hx of VTE                                                                 | PCP referral                                                                                     |                                                                |
| 11<br>3 | F5         | c.1601G>A;<br>(p.Arg534Gln) | Р               | -          | No Hx of VTE                                                                 | PCP referral<br>No Hx                                                                            |                                                                |
|         |            |                             |                 |            |                                                                              |                                                                                                  |                                                                |

|         |             |                                      |              |            |                                                                    | DVT/PE                                                        |                                                                                          |
|---------|-------------|--------------------------------------|--------------|------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
| DV      | T = Deep v  | vein thrombosis; $VTE = V$           | enous throm  | boembolisn | n; PE = Pulmonary en                                               | nbolism                                                       |                                                                                          |
| Bre     | ast and Pa  | ncreatic Cancer Risk                 |              |            |                                                                    |                                                               |                                                                                          |
| 11<br>4 | PALB2       | c.172_175delTTGT<br>(p.Gln60Argfs*7) | Р            | -          | Hx of CRC<br>Mother had<br>breast cancer in<br>late 40's           | Male with<br>Hx of CRC<br>Referred to<br>Gastroentero<br>logy | Colonoscopy<br>Urine<br>cytology<br>MRCP<br>(ordered but<br>not<br>completed)<br>CA 19-9 |
| 11<br>5 | PALB2       | c.2748+1G>T                          | LP           | +          | Personal history<br>of breast cancer<br>(WLE,<br>tamoxifen)        | Referred to<br>Breast clinic<br>New genetic<br>Dx             | Bilateral<br>breast<br>screening<br>with<br>tomosynthesi<br>s                            |
| CR      | C = Colore  | ctal cancer; WLE = Wide              | Local Excisi | on         |                                                                    | 1                                                             | 1                                                                                        |
| Car     | ncer Risk   |                                      |              |            |                                                                    |                                                               |                                                                                          |
| 11<br>6 | CHEK2       | Del Exons 9-10                       | Р            | +          | Personal history<br>of breast cancer<br>early 50's                 | Seen in<br>Breast clinic                                      | Breast MRI<br>Yearly<br>mammogram                                                        |
| 11<br>7 | CHEK2       | Del Exons 1-15                       | Р            | +          | Personal history<br>of prostate<br>cancer in mid<br>40's           | Male<br>No referral<br>already<br>being<br>followed           | Colonoscopy<br>every 5 years                                                             |
| Hyp     | ookalemic I | Periodic Paralysis                   |              |            |                                                                    |                                                               |                                                                                          |
| 11<br>8 | CACN<br>A1S | c.1583G>A<br>(p.Arg528His)           | Р            | +          | Previous<br>Clinical Dx of<br>hypokalemic<br>periodic<br>paralysis | _                                                             |                                                                                          |

FH = Familial Hypercholesterolemia; P = Pathogenic; LP= Likely Pathogenic; BM = Bilateral mastectomy; BSO = Bilateral Salpingo-oophorectomy; HCM = Hypertrophic cardiomyopathy, ARVC = Arrhythmogenic right ventricular cardiomyopathy, LQTS = Long QT Syndrome; P\* or LP\* indicate that the eMERGE classification differed from consensus classification in ClinVar (B+LB+VUS classifications) ≥ P+LP classifications).

## Table 3. Criteria for ascertaining penetrance

| Gene                            | Clinical diagnosis                      | Test Findings                                                                                                                                                         |
|---------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LDLR,<br>PCSK9,<br>APOB         | Familial Hypercholesterolemia           | LDL >= 190 off cholesterol medications / > 160 on cholesterol medications                                                                                             |
| BRCA1<br>BRCA2                  | НВОС                                    | Previous Diagnosis of breast or ovarian cancer                                                                                                                        |
| PMS2                            | Lynch Syndrome                          | Previous diagnosis of cancer                                                                                                                                          |
| MYPBC3<br>MYH7<br>MYL3<br>TNNI3 | Hypertrophic/ Dilated<br>Cardiomyopathy | Echocardiography with posterior LV, posterior wall thickness,<br>or SW >12 mm, or echocardiography with LV diastolic diameter<br>>6 cm and fractional shortening <20% |
| DSC2<br>PKP2<br>DSP             | ARVC                                    | Echocardiography with abnormal RV or RA appearance                                                                                                                    |
| KCNQ1<br>KCNE1<br>KCNH2         | LQT Syndrome                            | ECG showing Q-T interval > 460 ms in female and > 450 ms in males                                                                                                     |
| SCN5A                           | LQT Syndrome or Brugada<br>Syndrome     | ECG showing Brugada type I pattern                                                                                                                                    |
| CACNAIS                         | Hypokalemic Periodic Paralysis          | Potassium level < 3.6 mmol/L with Periodic Paralysis                                                                                                                  |
| PALB2                           | Breast, Ovarian or Pancreatic<br>Cancer | MRI, CT scan, Mammogram or US evidence of related cancer                                                                                                              |
| CHEK2                           | Breast or Prostate Cancer               | MRI, CT scan, Mammogram or US evidence of related cancer                                                                                                              |
| APC                             | Familial Adenomatous Polyposis          | MRI, CT scan, colonoscopy or US findings suggestive of FAP                                                                                                            |
| RET                             | MEN or associated tumors                | MRI, CT scan, or US findings suggestive MEN syndrome related neoplasia or lung cancer                                                                                 |

| HFE Homo | Hemochromatosis                  | Ferritin level > 200 ng/ml or Tranferritin SAT > 50%, Iron > 150 mcg/dL, TIBC < 250 mcg/dL<br>MRI, CT scan, or US findings suggestive of iron depositions |
|----------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| F5       | Factor V Leiden or thrombophilia | History of multiple venous thrombosis                                                                                                                     |
| COL3A1   | Ehlers-Danlos syndrome           | Imaging evidence of related arterial aneurysm or dissection.                                                                                              |
| FBN1     | Marfan Syndrome                  | Dilated aortic root on imaging                                                                                                                            |
| ACADM    | MCAD deficiency                  |                                                                                                                                                           |
| RYR1     | Malignant Hyperthermia           | History of malignant hyperthermia with anesthesia                                                                                                         |

HBOC= Hereditary Breast and Ovarian Cancer; ARVC = arrythmogenic right ventricular cardiomyopathy; LQTS = long QT syndrome; ECG = electrocardiogram; MRI = magnetic resonance imaging; US = ultrasound; CT = computed tomograph; CA 125 = cancer antigen 125; FAP = familial adenomatous polyposis; Tranferritin SAT = tranferritin saturation; TIBC = total iron binding capacity

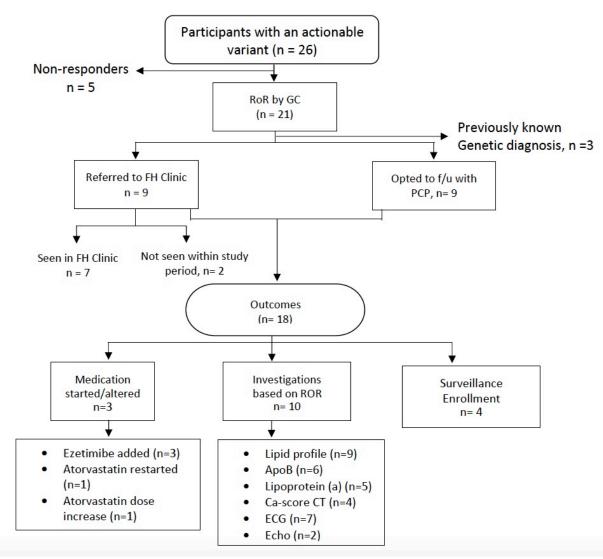
|                                       | Overall<br>n=18 | Tier 1<br>n=12 | non-Tier 1<br>n=6 | Р      |
|---------------------------------------|-----------------|----------------|-------------------|--------|
| Age, years                            | $59.6\pm6.9$    | $59.8\pm8$     | $59.3 \pm 1.5$    | 0.8    |
| Female                                | 14 (77.8)       | 10 (83.3)      | 4 (66.6)          | 0.56   |
| Family history                        | 14 (77.8)       | 12 (100)       | 2 (33.3)          | 0.0049 |
| Any outcome                           | 16 (88.2)       | 12 (100)       | 4 (66.6)          | 0.09   |
|                                       |                 |                |                   |        |
| Process Outcomes                      | 16 (88.2)       | 12 (100)       | 4 (66.6)          | 0.09   |
| Referral to a specialist              | 14 (77.8)       | 11 (91.7)      | 3 (50)            | 0.083  |
| Investigations based on RoR           | 15 (83.3)       | 11 (91.7)      | 4 (66.6)          | 0.24   |
| Surveillance initiated                | 9 (50)          | 8 (66.7)       | 1 (16.6)          | 0.13   |
|                                       |                 |                |                   |        |
| Intermediate Outcomes                 | 15 (83.3)       | 12 (100)       | 3 (50)            | 0.024  |
| New tests finding                     | 6 (33.3)        | 3 (25)         | 3 (50)            | 0.34   |
| New diagnosis                         | 14 (77.7)       | 11 (91.7)      | 3(50)             | 0.08   |
|                                       |                 |                |                   |        |
| Clinical Outcomes                     | 12 (70.6)       | 8 (66.6)       | 4 (66.6)          | 1      |
| Risk reduction surgery                | 8 (44.4)        | 8 (66.7)       | 0                 | 0.012  |
| Medication or therapy started/altered | 5 (27.8)        | 1 (8.3)        | 4 (66.6)          | 0.021  |

 Table 4. 1-year Outcomes after Return of Results: In participants with previously known diagnoses

 1

Age is presented as mean  $\pm$  standard deviation; the remaining features are presented as n (percentage)

### **Detailed description of outcomes**


### **Tier 1 conditions**

*Familial Hypercholesterolemia (FH) (LDLR, APOB, PCSK9).* FH variants were returned to 18 participants who were not previously aware of a genetic diagnosis. Each carried a previous diagnosis of hypercholesterolemia, however only one was previously diagnosed with FH. In those already diagnosed with hypercholesterolemia, RoR prompted further investigations (n=10), modifications to therapy (n=3) or periodic surveillance (n=4) (Table 3 and Figure 1). Tests performed based on RoR included lipid panel (n=9), apolipoprotein B (n=6), lipoprotein(a) (n=5), ECG (n=7), stress echocardiogram (n=2) and CT coronary calcium scan (n=4). Changes in the drug therapy included starting/restarting a statin (n=1), increasing statin dosage (n=1), and adding ezetimibe (n=1). Referral to the FH clinic was declined by 9 participants who were already being managed for hypercholesterolemia by their respective primary care physician or specialist.

|                                      | $\begin{array}{c} Process \ Outco\\ n=10 \end{array}$ | Clinical Outcomes<br>n = 3                                                                                                                                                                        |                       |                                                    |
|--------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|
| Gene<br>(18<br>Participants)         | Referred to<br>Specialist<br>n = 9                    | Tests Performed<br>n = 10                                                                                                                                                                         | Surveillance<br>n = 4 | Change in Therapy<br>n = 3                         |
| LDLR<br>n = 14<br>6 male<br>8 female | 6                                                     | <ul> <li>(7 participants)</li> <li>Lipid Panel (6)</li> <li>ECG (5)</li> <li>Lipoprotein (a) (3)</li> <li>Apo B (4)</li> <li>CT Coronary Calcium</li> <li>(2)</li> <li>Stress Echo (2)</li> </ul> | 2                     | Statin dose increased (1)<br>Ezetimibe started (2) |
| APOB<br>n = 3<br>2 male<br>1 female  | 2                                                     | (2 participants)<br>Lipid Panel (2)<br>Lipoprotein (a) (1)<br>Apo B (1)<br>CT Coronary Calcium<br>(1) ECG (1)                                                                                     | 1                     |                                                    |
| PCSK9<br>n = 1<br>Female             | 1                                                     | Lipid Panel (1)<br>Lipoprotein (a) (1)<br>Apo B (1)<br>CT Coronary Calcium<br>(1) ECG (1)                                                                                                         | 1                     |                                                    |

### Table 5. Outcomes in participants with FH P/LP variants

FH = familial hypercholesterolemia; Apo B = Apolipoprotein B; ECG = electrocardiogram; Echo = echocardiogram



### Figure 1. Outcomes in 26 participants with P/LP Familial Hypercholesterolemia (FH) variants

RoR = return of results; GC = genetic counselor; f/u = follow up; PCP = primary care provider; FH = familial hypercholesterolemia; Apo B = Apolipoprotein B; Ca-score CT = Computed tomography coronary calcium; ECG = electrocardiogram; Echo = echocardiogram

*Lynch Syndrome*. Lynch syndrome variants were returned to 10 participants who did not previously know their result: *MSH6* (n=2) and *PMS2* (n=8) (**Table 4 and Figure 2**). Within the year after RoR, 7 of these participants had a colonoscopy and 3 female participants underwent prophylactic hysterectomy and bilateral salphingo-oophorectomy (BSO). Of the two participants with a P/LP *MSH6* variant, one had previous bilateral BSO due to endometriosis and opted to follow with her PCP for further management. The second was referred to the high-risk gastrointestinal neoplasia clinic but had yet to complete the follow-up. Of 8 participants with P/LP *PMS2* variants, 5 female participants were referred to a high-risk gastrointestinal neoplasia clinic and to a high-risk gynecology clinic. One participant canceled her referral and saw her PCP instead. Three participants underwent hysterectomy and BSO. One had previously undergone a hysterectomy and bilateral BSO due to endometriosis not related to genetic testing. These participants completed colonoscopy (n=3), transvaginal pelvic ultrasound (n=2), urine cytology (n=2), and were enrolled in yearly surveillance colonoscopy and urine cytology. Of the 3 male *PMS2* participants, 1 declined referral and the remaining 2 were enrolled in yearly surveillance colonoscopy and urine cytology.

|                                    | Process Outcomes<br>n = 9          |                                                                                                                                                |                       | Clinical Outcomes<br>n = 3                            |  |
|------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|--|
| Gene<br>(10<br>Participants)       | Referred to<br>Specialist<br>n = 9 | Tests Performed<br>n = 8                                                                                                                       | Surveillance<br>n = 8 | Risk Reduction surgery<br>n = 3                       |  |
| MSH6<br>n= 2<br>1 Male<br>1 Female | 2                                  | (1 participant)<br>Colonoscopy (1)<br>Upper Gastrointestinal<br>endoscopy (1)                                                                  | 1                     | 0                                                     |  |
| PMS2<br>n= 8<br>3 Male<br>5 Female | 7                                  | <ul> <li>(7 participants)</li> <li>Colonoscopy (6)</li> <li>Transvaginal Pelvic</li> <li>Ultrasound (2)</li> <li>Urine Cytology (2)</li> </ul> | 7                     | Hysterectomy and bilateral salphingo-oophorectomy (3) |  |

Table 6. Outcomes in participants with Lynch Syndrome P/LP variants

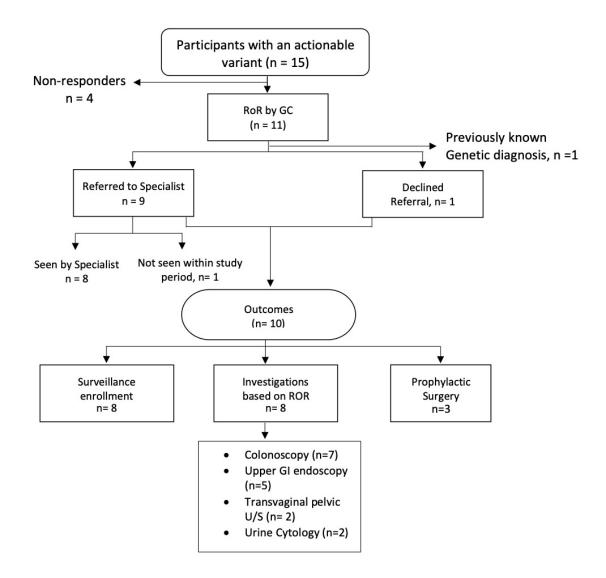
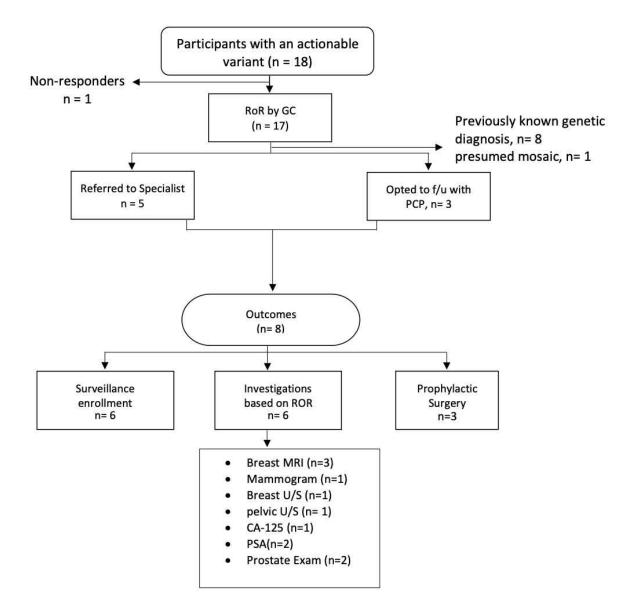



Figure 2. Outcomes in 15 participants with P/LP Lynch Syndrome variants RoR= return of results; GC = genetic counselor; GI= gastrointestinal


### Hereditary Breast and Ovarian Cancer (HBOC)

HBOC variants (*BRCA1*, *BRCA2*) were returned to 8 participants who did not previously know their result (3 females and 5 males) (**Table 5 and Figure 3**). All 3 female participants underwent prophylactic surgery based on RoR. One *BRCA1* participant (c.5109T>G) had a previous unrelated hysterectomy and BSO for a Lynch syndrome diagnosis and completed bilateral mastectomy based on RoR. The 2 remaining female *BRCA2* participants both underwent BSO and bilateral mastectomy. Of the 5 male participants, 3 were referred to a specialist and 2 opted to see their PCP instead. Of the male participants, 2 underwent prostate cancer screening tests including prostate rectal exam and PSA.

|                                     | Process Outcomes<br>n = 6          |                                                                              |                       |                                    |  |
|-------------------------------------|------------------------------------|------------------------------------------------------------------------------|-----------------------|------------------------------------|--|
| Gene<br>(9 participants)            | Referred to<br>Specialist<br>n = 5 | Tests Performed<br>n = 6                                                     | Surveillance<br>n = 6 | Risk Reduction<br>surgery<br>n = 3 |  |
| BRCA1<br>n= 1<br>1 Female           | 1                                  | (1 participant)<br>Mammogram (1)<br>MRI Breast (1)                           | 1                     | 1<br>Mastectomy (1)                |  |
| BRCA2<br>n= 7<br>5 Male<br>2 Female | 4                                  | (5 participants)<br>MRI Breast (2)<br>Ca 125 (1)<br>Pelvic US (1)<br>PSA (2) | 5                     | 2<br>Mastectomy (2)                |  |

#### Table 7. Outcomes in participants with HBOC Syndrome P/LP variants

CA 125 = cancer antigen 125; US = ultrasound; PSA = prostate specific antigen



#### Figure 3. Outcomes in 18 participants with P/LP HBOC Syndrome variants

RoR= return of results; GC = genetic counselor; f/u = follow up; PCP = primary care provider; MRI= magnetic resonance imaging; U/S= ultrasound; CA 125 = cancer antigen 125; US = ultrasound; PSA = prostate specific antigen

### Non-Tier 1 conditions

Long QT-Syndrome and Brugada Syndrome. P/LP arrhythmia variants were returned to 10 participants who did not previously know their result: (KCNQ1 (n=4), KCNE1(n=2), SCN5A(n=2) and KCNH2 (n=2)) (Table 6 and Figure 4). Of the KCNO1 variants, one (c.1552C>T) underwent testing (ECG, 24h Holter, echocardiogram, exercise stress test) and had a prolonged QT consistent with LQTS. A second participant (Del Exons 4-7) underwent similar testing but was deemed non-penetrant. Of the remaining two, one (c.776G>A) had been previously identified as having LQTS and was known to the EP clinic, the other participant (c.1893dup) had multiple normal ECG tracings and was referred to EP clinic but had not been seen during the study follow-up period. None of those four participants had an indication of the disease in their family. Two participants with P/LP KCNE1 variants had QT prolongation on previous ECGs and were referred to an electrophysiologist. One (c.292C>T) was started on a  $\beta$ -blocker by the electrophysiologist (having a family history of asymptomatic prolonged Q-T interval in her mother and of an aunt who died in infancy) and precautionary measures were advised for the other (c.226G>A) whose family history was remarkable for paternal uncle who died in childhood. Both SCN5A (Type 1 Brugada/Type 3 LQTS) variant positive participants (c.4886G>A) and (c.3956G>T) were assessed by an electrophysiologist. Triplicate ECGs with the Brugada protocol as well as a 24-h Holter monitor showed no evidence of Brugada patterns in both participants. The participant with (c.4886G>A) had a family history of sudden death in one of her cousins in his 50s, however no pertinent family history was present in the other participant (c.3956G>T). It was felt that QT precautionary measures were not necessary however they were advised to follow Brugada precautions including avoidance of Brugada-aggravating medications, fever reduction and avoidance, as well as avoidance of excess alcohol and drugs such as marijuana and cocaine. One participant with a KCNH2 variant (c.2762delG) was referred to EP clinic and underwent ECG, echocardiogram and Holter monitor, and was found to have a prolonged QT interval and notched T waves consistent with Long-QT syndrome type 2. Her medications were reviewed and found to be safe for her condition. Her family history was positive for asymptomatic prolongation of QT interval in her mother. She was advised to follow preventative measures include water and electrolyte replenishment especially in the setting of vomiting or diarrhea. Follow-up appointments were scheduled after 3 and 6 months. The other participant with KCNH2 variant (c.1468G>A) had borderline Q-T prolongation on previous ECGs, she was referred to the EP clinic but had not been seen in the follow-up period. Her family history was unremarkable.

|                               |                                    | Process Outcomes $n = 9$                                                                | Clinical Outcomes<br>n = 1 |                            |
|-------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|----------------------------|
| Gene<br>(10<br>Participants)  | Referred to<br>Specialist<br>n = 9 | Tests Performed<br>n = 8                                                                | Surveillance<br>n = 1      | Change in Therapy<br>n = 1 |
| KCNQI $n = 4$ 2 male 2 female | 4                                  | (4 participant)<br>Exercise Test (2)<br>ECG (4)<br>24h Holter (2)<br>Echocardiogram (2) | 0                          | 0                          |
| KCNE1<br>n = 2<br>2 female    | 2                                  | (1 participants)<br>Exercise Test (1)<br>ECG (1)                                        |                            | 1<br>Nadolol started (1)   |

| Table 8. ( | <b>Dutcomes in</b> | narticinants w | ith Long  | OT/Brugada   | Syndrome  | <b>P/LP variants</b> |
|------------|--------------------|----------------|-----------|--------------|-----------|----------------------|
|            | Jucomes m          | participants w | itin Long | Q I/DI ugaua | Synuronic | I/LI Vallants        |

| SCN5A<br>n = 2<br>2 female | 2 | (2 participants)<br>24h Holter (2)<br>ECG (2)<br>Brugada Protocol ECG<br>(2)<br>Signal-Averaged ECG<br>(2)<br>Exercise Test (1)<br>Echocardiogram (1) | 0 | 0 |
|----------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| KCNH2<br>n = 2<br>2 female | 1 | (1 participants)<br>24h Holter (1)<br>ECG (1)<br>Exercise Test (1)<br>Echocardiogram (1)                                                              | 0 |   |

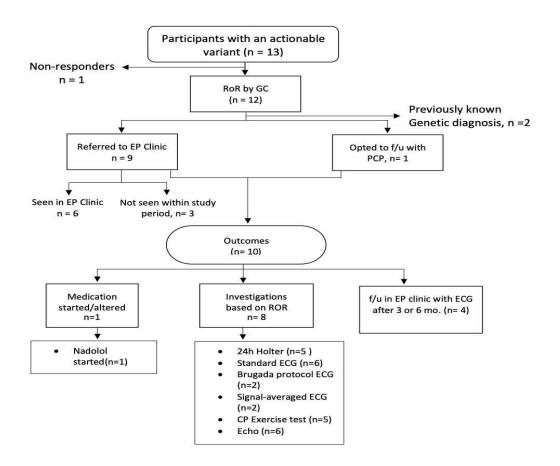



Figure 4. Outcomes in 13 participants with P/LP Long-QT/Brugada Syndrome variants

RoR = return of results; GC = genetic counselor; f/u = follow up; PCP = primary care provider; EP = electrophysiology; ECG = electrocardiogram; CP = cardiopulmonary; Echo = echocardiogram

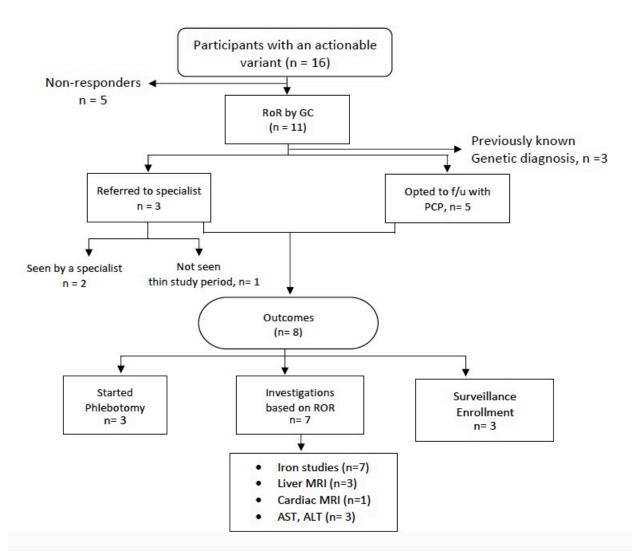
*Cardiomyopathy*. Seven participants had P/LP variants associated with cardiomyopathy: *MYBPC3* (n=3), TNNI3 (n=2), MYH7 (n=1), MYL3 (n=1). Two participants with the MYBPC3 (c.1504C>T) variant underwent ECG and echocardiogram, and one completed cardiac MRI. No phenotypic manifestations of hypertrophic cardiomyopathy were noted and both participants were recommended periodic surveillance with echocardiograms. The remaining participant with MPBPC3 (c.905+1G>T) was referred to the Hypertrophic Cardiomyopathy clinic, but declined follow-up, and no related phenotypic data were available in the EHR. A participant with a TNNI3 variant (c.497C>T) underwent an ECG, echocardiogram and cardiac MRI and was noted to have nonspecific T-wave ECG changes and a thickened basal septum (14 mm) on MRI. There was no family or personal history of syncope or sudden cardiac death. He was initiated on  $\beta$ -blocker therapy and recommended yearly echocardiograms. Another TNNI3 participant with the c.484C>T variant underwent an ECG and echocardiogram with strain measurement, which were normal, and the variant was deemed to be non-penetrant. It was concluded that this participant did not require further follow-up unless he developed any cardiac symptoms. A participant with an MYH7 variant (c.4499G>A) had previous normal ECGs and echocardiograms and was referred to hypertrophic cardiomyopathy clinic for further investigations. Evaluation was not completed in the follow-up period. A participant in her mid 60's with a pathogenic (later downgraded to VUS) MYL3 variant (c.170C>G) had previous normal echocardiograms and was referred to hypertrophic cardiomyopathy clinic for further investigations. She had a family history of sudden death in one of her cousins. Given her normal tests and lack of symptoms, it was determined that the risk of MYL3-mediated cardiomyopathy is extremely low in this patient. No precautionary measures were recommended.

*Arrhythmogenic Right Ventricular Dysplasia (ARVC).* Four participants had P/LP variants returned which were associated with ARVC in the form of *DSC2* (1), *DSP* (1) and *PKP2* (2). The first *PKP2* participant (c.275T>A) was referred to the arrhythmia clinic and underwent ECG, exercise stress testing, echocardiogram and cardiac MRI; no abnormalities were detected but longitudinal three-yearly surveillance with repeat ECG, echocardiogram, exercise stress test and cardiac MRI was recommended. The second *PKP2* participant (c.1162C>T) was noted to have a previously normal ECG and echocardiogram and declined referral to EP clinic. The *DSC2* participant (c.2125+1del) was seen by an electrophysiologist and underwent an ECG, echocardiogram, exercise stress test and cardiac MRI; all testing was within normal limits. The patient was enrolled in longitudinal five-yearly surveillance with repeat testing. The *DSP* participant (c.597\_598insGTAA) was referred to cardiovascular specialist and in addition to ECG, he underwent signal-averaged ECG, 24-h Holter monitor, echocardiogram and exercise stress test. His Holter monitor showed 4 episodes of atrial fibrillation. Upon review in EP clinic, no signs of ARVC were identified and his atrial fibrillation was thought to be unrelated to his genetic results. He continued to follow up with his cardiologist for management of atrial fibrillation and was started on beta-blockers. No anticoagulation was initiated since the CHADS2VASC was 1.

|                                       | Process Outcomes<br>n = 8          |                                                                                                      |                       | Clinical Outcomes<br>n = 1 |
|---------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|
| Gene<br>(11<br>Participants)          | Referred to<br>Specialist<br>n = 8 | Tests Performed<br>n = 7                                                                             | Surveillance<br>n = 5 | Change in Therapy<br>n = 1 |
| MYBPC3<br>n = 3<br>2 male<br>1 female | 2                                  | (2 participant)<br>Echocardiogram with<br>strain (2)<br>ECG (1)<br>24h Holter (1)<br>Cardiac MRI (1) | 2                     | 0                          |

Table 9. Outcomes in participants with Cardiomyopathy P/LP variants

| TNNI3 $n = 2$ $I male$ $1 female$   | 2 | (2 participants)<br>Echocardiogram with<br>strain (2)<br>ECG (2)<br>24h Holter (1)<br>Cardiac MRI (1)                          | 2 | 1<br>Verapamil switched to<br>Metoprolol (1) |
|-------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------|
| <i>MYH7</i><br>n = 1<br>1 female    | 1 | 0                                                                                                                              | 0 |                                              |
| <i>MYL3</i><br>n = 1<br>1 female    | 1 |                                                                                                                                |   |                                              |
| PKP2<br>n = 2<br>1 male<br>1 female | 1 | Standard ECG (1)<br>Signal-Averaged ECG<br>(1)<br>Exercise Test (1)<br>Echocardiogram (1)<br>24h Holter (1)<br>Cardiac MRI (1) | 0 |                                              |
| DSC2 n = 1 1 male                   | 1 | Standard ECG (1)<br>Exercise Test (1)<br>Echocardiogram (1)<br>24h Holter (1)<br>Cardiac MRI (1)                               | 0 |                                              |
| DSP<br>n = 1<br>1 male              | 1 | Standard ECG (1)<br>Signal-Averaged ECG<br>(1)<br>Exercise Test (1)<br>Echocardiogram (1)<br>24h Holter (1)                    | 0 |                                              |


*Hemochromatosis*. Hereditary Hemochromatosis findings were returned to eight participants (3 males, 5 females) who were homozygous for the *HFE* c.845G>A variant and did not previously know their result (**Table 5 and Figure 5**). Of these, 3 were referred to Department of Gastroenterology and the remaining 5 opted to follow up with their PCP. Of the 3 participants referred to Department of Gastroenterology, 2 underwent iron overload investigations including ferritin level, liver elastography and cardiac MRI. One of these participants also completed additional genetic testing which reconfirmed the finding. Evidence of abnormal iron accumulation was noted in both participants and they were started on therapeutic phlebotomy with periodic surveillance. The third participant was not seen in the Department of Gastroenterology during our study follow-up period. Of the 5 participants who were referred to their PCPs, 1 was found to have abnormal iron profile and was started on therapeutic phlebotomy. Three of the remaining 4 had a normal iron profile and periodic surveillance was initiated in 2 of them. The remaining participant had not been evaluated by their PCP during the study follow-up period.

|                          | $\begin{array}{c} Process \ Outcomes \\ n = 8 \end{array}$ |                          |                       | Clinical Outcomes<br>n = 4 |
|--------------------------|------------------------------------------------------------|--------------------------|-----------------------|----------------------------|
| Gene<br>(8 Participants) | Referred to<br>Specialist<br>n = 3                         | Tests Performed<br>n = 7 | Surveillance<br>n = 3 | Change in Therapy<br>n = 3 |

| HFE      | 3 | (7 participant)  | 3 | Therapeutic Phlebotomy |
|----------|---|------------------|---|------------------------|
| n = 9    |   | Iron studies (8) |   | Started (3)            |
| 3 male   |   | Liver MRI (3)    |   |                        |
| 5 female |   | Cardiac MRI (1)  |   |                        |
|          |   | LFTs (3)         |   |                        |

MRI = magnetic resonance imaging; LFTs = liver function tests





#### Figure 5. Outcomes in 16 participants with Hereditary Hemochromatosis P/LP variants

RoR= return of results; GC = genetic counselor; f/u = follow up; PCP = primary care provider; MRI = magnetic resonance imaging; AST= aspartate aminotransferase; ALT= alanine transaminase

*Factor V Leiden (Homozygous).* Of the four participants homozygous for Factor V Leiden F5 (c.1601G>A), two were referred for further management to their PCP. Neither had a personal history of venous thromboembolism. One participant had a history of deep venous thrombosis and was reviewed by a vascular medicine specialist and subsequently commenced on prophylactic dose rivaroxaban. One participant in addition had an actionable variant in *RET* proto-oncogene and was referred to endocrinology for further management. He had not been seen by endocrinology specialist within the study follow-up period.

*Ehlers-Danlos Syndrome, vascular type.* A participant in her 60's with a P/LP variant in *COL3A1* (c.4087C>T) was referred to clinical genetics for further assessment. A first degree relative had been diagnosed with spontaneous coronary artery dissection in the 3rd decade of life and was diagnosed with a "connective tissue" disorder but no further details were available. She failed to follow-up within the study follow-up period.

*Multiple Endocrine Neoplasia IIA (MENIIA).* A participant in their late 60's with a P/LP *RET* (c.2410G>A) proto-oncogene was referred to an endocrinologist and underwent measurement of serum calcitonin, parathyroid hormone, calcium, albumin and vitamin D, as well as 24-hour urine catecholamines and metanephrines, as well as an ultrasound thyroid. These investigations were within normal limits and no further follow-up was planned. A second participant with a P/LP *RET* variant (c.2370G>T) was also homozygous mutation for Factor V Leiden (described above) and referred to an endocrinologist for further management. His lab results came back within normal limits and it was decided that there is no clear benefit of prophylactic thyroidectomy at this time, he was enrolled in annual surveillance.

*Familial adenomatous polyposis (FAP).* APC P/LP variants were found in two participants who were not previously aware of the result. The first was thought to have a mosaic variant (c.1262G>A) due to a previously normal colonoscopy in their 50's; upper gastrointestinal endoscopy was completed and showed no polyps. This participant was referred to their PCP to coordinate surveillance. The other participant had a variant (c.3920T>A) that does not cause FAP but is a well characterized risk factor for colon cancer especially in individuals with Ashkenazi Jewish background. This participant had an adenomatous colon polyp identified on previous colonoscopy. Surveillance colonoscopy every 5 years was coordinated by her PCP.

*Malignant Hyperthermia*. A P/LP variant in *RYR2* gene (c.1840C>T) indicating predisposition to malignant hyperthermia was detected in a participant sample. This participant had no anesthesia complications previously. Following RoR, an anesthesia alert was placed in a participant's EHR. She was advised to avoid extreme heat but athletic activity was not restricted.

*Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency.* A participant homozygous for a P/LP *ACADM* variant (c.997A>G) was referred to clinical genomics for follow-up. In addition, it was recommended that her family members speak with their doctors about testing options to rule out the possibility of having MCAD. This participant had a grandchild who possibly had MCAD. She had not been seen by clinical genomics within the study follow-up period.

*Other cancer associated variants.* A male participant with a P/LP (*PALB2*) variant (c.172\_175delTTGT) was referred to his PCP for screening. A female participant with a P/LP (*PALB2*) variant (c.2748+1G>T) had a previous history of breast cancer (treated with wide local excision and tamoxifen) and was referred to the breast cancer clinic. A mammogram was ordered, and no signs of recurrence or new cancer were observed; she continued to follow-up in the breast cancer clinic. A female with a *CHEK2* P/LP variant (Del Exons 9-10) had a previous history of breast cancer but had her surveillance escalated from a yearly mammogram to a yearly mammogram, bilateral breast MRI and colonoscopy every 5 years. A male with a *CHEK2* P/LP variant (Deletion Exons 1-15) had history of prostate cancer in his 40's and underwent

radical prostatectomy. In addition, he had hyperplastic polyps on previous colonoscopies. Two brothers had prostate cancer in their 50's and a sister died of colon cancer in her 50's. Given his past medical history, he was already followed by specialist and no referral was necessary.

|                        | Item<br>No | Recommendation                                                                            |
|------------------------|------------|-------------------------------------------------------------------------------------------|
| Title and abstract     | 1          | (a) Indicate the study's design with a commonly used term in the title or the abstract    |
|                        |            | (b) Provide in the abstract an informative and balanced summary of what was done          |
|                        |            | and what was found                                                                        |
| Introduction           |            |                                                                                           |
| Background/rationale   | 2          | Explain the scientific background and rationale for the investigation being reported      |
| Objectives             | 3          | State specific objectives, including any prespecified hypotheses                          |
| Methods                |            |                                                                                           |
| Study design           | 4          | Present key elements of study design early in the paper                                   |
| Setting                | 5          | Describe the setting, locations, and relevant dates, including periods of recruitment,    |
| -                      |            | exposure, follow-up, and data collection                                                  |
| Participants           | 6          | (a) Give the eligibility criteria, and the sources and methods of selection of            |
| -                      |            | participants                                                                              |
| Variables              | 7          | Clearly define all outcomes, exposures, predictors, potential confounders, and effect     |
|                        |            | modifiers. Give diagnostic criteria, if applicable                                        |
| Data sources/          | 8*         | For each variable of interest, give sources of data and details of methods of             |
| measurement            |            | assessment (measurement). Describe comparability of assessment methods if there is        |
|                        |            | more than one group                                                                       |
| Bias                   | 9          | Describe any efforts to address potential sources of bias                                 |
| Study size             | 10         | Explain how the study size was arrived at                                                 |
| Quantitative variables | 11         | Explain how quantitative variables were handled in the analyses. If applicable,           |
|                        |            | describe which groupings were chosen and why                                              |
| Statistical methods    | 12         | (a) Describe all statistical methods, including those used to control for confounding     |
|                        |            | (b) Describe any methods used to examine subgroups and interactions                       |
|                        |            | (c) Explain how missing data were addressed                                               |
|                        |            | (d) If applicable, describe analytical methods taking account of sampling strategy        |
|                        |            | ( <i>e</i> ) Describe any sensitivity analyses                                            |
| Results                |            |                                                                                           |
| Participants           | 13*        | (a) Report numbers of individuals at each stage of study—eg numbers potentially           |
|                        |            | eligible, examined for eligibility, confirmed eligible, included in the study,            |
|                        |            | completing follow-up, and analysed                                                        |
|                        |            | (b) Give reasons for non-participation at each stage                                      |
|                        |            | (c) Consider use of a flow diagram                                                        |
| Descriptive data       | 14*        | (a) Give characteristics of study participants (eg demographic, clinical, social) and     |
|                        |            | information on exposures and potential confounders                                        |
|                        |            | (b) Indicate number of participants with missing data for each variable of interest       |
| Outcome data           | 15*        | Report numbers of outcome events or summary measures                                      |
| Main results           | 16         | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and       |
|                        |            | their precision (eg, 95% confidence interval). Make clear which confounders were          |
|                        |            | adjusted for and why they were included                                                   |
|                        |            | (b) Report category boundaries when continuous variables were categorized                 |
|                        |            | (c) If relevant, consider translating estimates of relative risk into absolute risk for a |
|                        |            | meaningful time period                                                                    |
| Other analyses         | 17         | Report other analyses done-eg analyses of subgroups and interactions, and                 |
|                        |            | sensitivity analyses                                                                      |

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies* 

| Discussion        |    |                                                                                        |
|-------------------|----|----------------------------------------------------------------------------------------|
| Key results       | 18 | Summarise key results with reference to study objectives                               |
| Limitations       | 19 | Discuss limitations of the study, taking into account sources of potential bias or     |
|                   |    | imprecision. Discuss both direction and magnitude of any potential bias                |
| Interpretation    | 20 | Give a cautious overall interpretation of results considering objectives, limitations, |
|                   |    | multiplicity of analyses, results from similar studies, and other relevant evidence    |
| Generalisability  | 21 | Discuss the generalisability (external validity) of the study results                  |
| Other information |    |                                                                                        |
| Funding           | 22 | Give the source of funding and the role of the funders for the present study and, if   |
|                   |    | applicable, for the original study on which the present article is based               |

\*Give information separately for exposed and unexposed groups.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.