Cell Host & Microbe, Volume 31

Supplemental information

Progressive transformation of the HIV-1 reservoir

cell profile over two decades of antiviral therapy

Xiaodong Lian, Kyra W. Seiger, Elizabeth M. Parsons, Ce Gao, Weiwei Sun, Gregory T. Gladkov, Isabelle C. Roseto, Kevin B. Einkauf, Matthew R. Osborn, Joshua M. Chevalier, Chenyang Jiang, Jane Blackmer, Mary Carrington, Eric S. Rosenberg, Michael M. Lederman, Deborah K. McMahon, Ronald J. Bosch, Jeffrey M. Jacobson, Rajesh T. Gandhi, Michael J. Peluso, Tae-Wook Chun, Steven G. Deeks, Xu G. Yu, and Mathias Lichterfeld

Supplemental Materials for

Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy

Xiaodong Lian, Kyra W. Seiger, Elizabeth M. Parsons, Ce Gao, Weiwei Sun, Gregory T. Gladkov, Isabelle C. Roseto, Kevin B. Einkauf, Matthew R. Osborn, Joshua M. Chevalier, Chenyang Jiang, Jane Blackmer, Mary Carrington, Eric S. Rosenberg, Michael M. Lederman, Deborah McMahon, Ronald J. Bosch, Jeffrey Jacobson, Rajesh T. Gandhi, Michael Peluso, Tae-Wook Chun, Steven G. Deeks, Xu G. Yu, Mathias Lichterfeld

Figure S1 (Related to Figure 1): Longitudinal viral loads and CD4 T cell counts in the eight study participants. Timepoints of PBMC sampling are indicated by red arrows. HLA class I alleles are also listed. Duration of ART is indicated by yellow shading. For study participants LT06 and LT07, original viral load and CD4 T cell count data during early stages of ART could not be independently reviewed by study team; however, suppression of viremia during ART was confirmed through provider reports.

Figure S2 (Related to Figure 1): Immune footprints in intact HIV-1 proviruses. (A): Proportions of clade B CTL epitopes (restricted by autologous HLA class I alleles) within intact proviruses that harbor known escape variants. Defined escape mutations listed in the LANL HIV Immunology Database (www.hiv.lanl.gov) were counted. (B): Numbers of sequence variations without statistically significant associations with autologous HLA class I alleles are shown, determined as described by Carlson et al [S1]. Each dot represents one intact provirus. (C-D): Numbers of amino acid residues associated with sensitivity (C) or resistance (D) to broadly-neutralizing antibodies, calculated as described by Bricault et al [S2]. (A-D): Each symbol represents one intact proviral sequence from indicated study cohort; all intact clade B sequences were included. Clonal sequences are shown once. P-values were calculated using FDR-adjusted two-sided Kruskal-Wallis nonparametric test.

Figure S3 (Related to Figure 2): Sequences of viral-host junctions of proviruses integrated in satellite/microsatellite DNA or ZNF genes: Sequences of viral-host junctions are shown for selected proviruses from study participants LT01, LT04, LT07, LT08. Sequences of the 1.U5 primer from the ISLA protocol [S3] are underlined.

Figure S4

LT06

LT06

LT07

Figure S4 (Related to Figure 2): Chromatin environment of intact proviruses integrated in KRAB-ZNF genes, inferred from reference data. Genome browser shapshots of chromomal integration sites of intact proviruses located in ZNF genes are shown; ChIP-Seq tracks of the inhibitory histone markers H3K9me3, and the activating chromatin mark H3K4me3 from primary CD4 T cells evaulated in the ROADMAP consortium [S4] are included. ChIP-Seq tracks of H3K36me3 (associated with context-depedent transcriptional activation or repression [S5]), are also shown.

Figure S5 (Related to Figure 4): Frequencies of total and intact HIV-1 proviruses over time in the five longitudinally-followed study participants undergoing long-term ART. Proportions of clonal intact proviruses among all intact proviruses are also indicated.

Figure S6 (Related to Figure 6): Longitudinal frequencies of HIV-1 proviruses in study persons 04 and 30. Longitudinal frequencies of total and intact HIV-1 proviruses in the 2 individuals with post-treatment control. Proportion of clonal intact proviruses among all intact proviruses is also indicated.

 Table S2 (Related to Figures 2 and 4): Numbers of cells analyzed at each timepoint in indicated study participants.

Study Participant No.	Time point	Cells assayed	
	2009	1.94E+06	
LT01	2013	1.53E+06	
	2017	2.64E+06	
	2020	6.57E+06	
	2001	3.98E+06	
1 703	2009	1.78E+06	
LTUZ	2019	2.57E+06	
	2020	1.15E+06	
	2000	2.82E+06	
LT03	2012	3.50E+06	
	2019	2.66E+06	
	2004	1.15E+06	
LT04	2012	1.65E+06	
	2019	3.64E+06	
LT05	2019	8.06E+06	
LT06	2021	1.27E+07	
LT07	2019	8.01E+06	
	2009	4.85E+05	
LT08	2018	5.37E+06	
	2020	2.62E+06	
	on ART	1.66E+07	
aubiant 04	d238 off ART	2.55E+07	
Subject 04	d697 off ART	2.43E+07	
	d1804	3.61E+07	
	on ART	6.60E+06	
	d117 off ART	3.21E+06	
subject 30	d517 off ART	5.75E+06	
	d894 off ART	1.03E+07	
	d1223 off ART	6.09E+06	
subject 01	on ART	2.66E+07	
subject 22	on ART 1.43E+06		
subject 25	on ART	5.98E+06	

 Table S3 (Related to STAR Methods): Numbers of cells analyzed in quantitative viral outgrowth assays.

Study Participant	CD4 cells assayed	Estimated minimum number of intact proviruses based on FLIP-Seq results	Luciferase-positive wells after 21 days of culture
LT02	2.51E+06	42	1
LT03	1.93E+06	119	1
LT06	4.08E+06	20	0
LT07	1.62E+06	62	0
LT08	5.55E+06	64	0

Table S4 (Related to STAR Methods): List of Primers/Probes

Workflow	Amplicon/ Target (HXB2 Coordinates)	Round/ Orientation	Oligo Name	Oligo Sequence (5'->3')
	LTRgag (HXB2 684-810)		LTRgag F	TCTCGACGCAGGACTCG
			LTRgag R	TACTGACGCTCTCGCACC
aDNA ddPCR			LTRgag P	/56-FAM/CTCTCTCCT/ZEN/TCTAGCCTC/31ABkFQ/
52.0.000	RPP30		RPP30 F	GATTTGGACCTGCGAGCG
			RPP30 R	GCGGCTGTCTCCACAAGT
			RPP30 P	/56-FAM/CTGACCTGA/ZEN/AGGCTCT/31ABkFQ/
	Near full-length (638-9632)	1F	U5-623F	AAATCTCTAGCAGTGGCGCCCGAACAG
		1R	U5-601R	TGAGGGATCTCTAGTTACCAGAGTC
		2F	U5-638F	GCGCCCGAACAGGGACYTGAAARCGAAAG
		2R	U5-547R	GCACTCAAGGCAAGCTTTATTGAGGCTTA
	Promoter (76-818)	1F	24F	CGAAGACAAGATATCCTTGATCTGTGG
		1R	962R	CTACAGCCTTCTGATGTTTCTAACAGG
		2F	76F	CTGATTAGCAGAACTACACCAGG
		2R	818R	CCGCTTAATACTGACGCTCTCG
	Promoter (367- 643)	1F	350F	GGGACTTTCCACTGGGGACTTTC
	,	1R	661R	GCTTTCAGGTCCCTGTTCGG
		2F	367F	ACTTTCCAGGGAGGCGTGG
		2R	Kumar R	GGGCGCCACTGCTAGAGA
Proviral DNA	A1mod2 (638- 2724)	1F	U5-623F	AAATCTCTAGCAGTGGCGCCCGAACAG
Sequencing		1R	NE1	CCACTAACTTCTGTATGTCATTGACAGTCCAGCT
		2F	U5-638F	GCGCCCGAACAGGGACYTGAAARCGAAAG
		2R	ProC-	GAGTATTGTATGGATTTTCAGGCCCAAT
	Pol (2011-3798)	1F	5CP1	GAAGGGCACACAGCCAGAAATTGCAGGG
		1R	RT3.1	GCTCCTACTATGGGTTCTTTCTCTAACTGG
		2F	2.5	CCTAGGAAAAAGGGCTGTTGGAAATGTGG
		2R	RT3798R	CAAACTCCCACTCAGGAATCCA
	C (3626-5980)	1F	RT3597mixF	AAAACAGGAAARTATGCAA
		1R	SC05R	AGCTCTTCGTCGCTGTCTCCGCTT
		2F	RT3626F	TGCCCACACTAATGATGTAA
		2R	SC02R	
	A2 (5550-7760)	1F	VP5450F	
		2F	VP5549F	
	P2 (7652 0610)	2R 1E		
	BZ (7052-9010)			
		2E		
		2R	3UTRi	AGGCTTAAGCAGTGGGTTCCCTAG
Reverse Transcription	Long LTR (643)	RT	Bio Long LTR	/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTACGGGC GCCACTGCTAGAGA
	Pol (2662)	RT	Bio Pol	/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTACCAAAT
	Nef (9040)	RT	Bio Nef	/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTACTGTAA GTCATTGGTCTTAAAGGTACCTGAGG
	PolyA (9635+25)	RT	Bio PolyA	/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTACTTTTT TTTTTTTTTT
	Tat-Rev (8459)	RT	Bio Tat-Rev	/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTACGGATC TGTCTCTGTCTCTCTCCCACC
	Read-through (582; 9667)	RT	Bio Readth	/5BiotinTEG/AAGCAGTGGTATCAACGCAGAGTACAGAGT CACACAACAGACGG
cDNA Amplification	NA	NA	Template- switching oligo (TSO)	AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3

	NA	NA	ISPCR	AAGCAGTGGTATCAACGCAGAGT
cDNA ddPCR	Long LTR (522- 643)	F	Kumar F	GCCTCAATAAAGCTTGCCTTGA
		R	Kumar R	GGGCGCCACTGCTAGAGA
		R (alternate)	625R	TTTTCCACACTGACTAAAAKGGTC
		Probe	Kumar P	/56-FAM/CCAGAGTCA/ZEN/CACAACAGACGGGCACA/ 3IABkFQ/
	Pol (2536-2662)	F	Pol mf299	GCACTTTAAATTTTCCCATTAGTCCTA
		R	Pol mf1	CAAATTTCTACTAATGCTTTTATTTTTTC
		Probe	Pol P	/56-FAM/AAGCCAGGA/ZEN/ATGGATGGCC/3IABkFQ/
	Nef (8883-9040)	F	F8883-03	GGTGGGAGCAGYATCTCGAGA
		R	R9040-10	TGTAAGTCATTGGTCTTAAAGGTACCTGAGG
		Probe	P8967-50	/56-FAM/CCAGGCACA/ZEN/AKCAGCATT/3IABkFQ/
	PolyA (9496- 9635+25)	F	Freadth-2	GCCCTCAGATGCTRCATATAA
		R	5T25	TTTTTTTTTTTTTTTTTTTTTTGAAG
		Probe	Preadth-1	/56-FAM/TGCCTGTAC/ZEN/TGGGTCTCTCTGGTTAG/ 3IABkFQ/
	Tat-Rev (5956- 8459)	F	mf1	CTTAGGCATCTCCTATGGCAGGAA

Supplemental Reference List

[S1] Carlson, J.M., Brumme, C.J., Martin, E., Listgarten, J., Brockman, M.A., Le, A.Q., Chui, C.K., Cotton, L.A., Knapp, D.J., Riddler, S.A., et al. (2012). Correlates of protective cellular immunity revealed by analysis of population-level immune escape pathways in HIV-1. J Virol *86*, 13202-13216. 10.1128/JVI.01998-12.

[S2] Bricault, C.A., Yusim, K., Seaman, M.S., Yoon, H., Theiler, J., Giorgi, E.E., Wagh, K., Theiler, M., Hraber, P., Macke, J.P., et al. (2019). HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe *26*, 296. 10.1016/j.chom.2019.07.016.

[S3] Wagner, T.A., McLaughlin, S., Garg, K., Cheung, C.Y., Larsen, B.B., Styrchak, S., Huang, H.C., Edlefsen, P.T., Mullins, J.I., and Frenkel, L.M. (2014). HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science *345*, 570-573. 10.1126/science.1256304.

[S4] Roadmap Epigenomics, C., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature *518*, 317-330. 10.1038/nature14248.

[S5] Wagner, E.J., and Carpenter, P.B. (2012). Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol *13*, 115-126. 10.1038/nrm3274.