
nature genetics

https://doi.org/10.1038/s41588-022-01267-wArticle

SARS-CoV-2 diagnostic testing rates 
determine the sensitivity of genomic 
surveillance programs

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41588-022-01267-w


 

 

 

1 

Supplementary Information 

 
SARS-CoV-2 diagnostic testing rates determine the sensitivity of genomic 

surveillance programs  
 

Alvin X. Han1,*, Amy Toporowski2, Jilian A. Sacks3, Mark D. Perkins3, Sylvie Briand3, Maria 
van Kerkhove3, Emma Hannay2, Sergio Carmona2, Bill Rodriguez2, Edyth Parker4, Brooke E. 

Nichols1,2,5,†, Colin A. Russell1,5,†,*  

1Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical 
Center, University of Amsterdam, Amsterdam, The Netherlands 
2Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland 
3Department of Epidemic and Pandemic Preparedness and Prevention, Emergency Preparedness 
Programme, World Health Organization, Geneva, Switzerland 

4Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 
USA 
5Department of Global Health, School of Public Health, Boston University, Boston, MA, USA 

 

†Contributed equally 
*Corresponding authors. Email: x.han@amsterdamumc.nl and c.a.russell@amsterdamumc.nl 
  



 

 

 

2 

Supplementary Notes  

Technical details of the PATAT simulation model 
The computational flow of a PATAT simulation is summarized as follows: First, an age-
structured population of agents is created. Close contact networks are subsequently created based 
on the given demographic data. The simulation is then initialized and iterates over a given period 
of time where each time step corresponds to a day. The sequential operations during each 
timestep follow the following order: (1) update the disease progression of infected individuals, 
(2) update the status of isolated/quarantined agents, (3) application of community testing 
strategies and (4) computation of transmission events within contact networks. 
  
Population demography 
Using input demographic data which includes information such as population age and sex 
distribution, household composition, employment and schooling rates, PATAT generates a 
population of individuals who are linked by a series of underlying contact network settings 
where transmission may occur. These contact network settings include households, schools, 
workplaces, regular mass gatherings (i.e. church) as well as random community contacts. 
  
Household 
PATAT randomly generates a Poisson distribution of household sizes based on the given mean 
household size. A reference individual (e.g. head of the household) above an assumed prime 
adult age (e.g. 20 years) is first randomly assigned to each household. To account for 
multigenerational households, the remaining household members are then randomly sampled 
multinomially by the input age distribution of households. Although PATAT does not explicitly 
model the geolocation of agents, households are ordered to implicitly approximate 
neighbourhood proximity. 
  
Schools 
PATAT distinguishes between elementary and secondary schools. For each education level, 
schooling children are randomly sampled from the population based on given enrolment rates 
and gender parity. Class sizes are then randomly drawn from a Poisson distribution based on the 
input mean class size while constrained by the number of schooling children attending the same 
grade (i.e. age; a class include only students studying the same grade). Schools are created by 
random allotment of classes such that (i) all schools will have equitable distributions of classes 
of all grades for the given education level and (ii) the total number of students approximately 
equals to the expected school size. Classes are then populated by schooling agents such that (i) 
agents of proximally ordered households will tend to attend the same school and (ii) children of 
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the same grade (age) from identical households will not be assigned to the same class even 
though they may attend the same school. School teachers are then randomly drawn from the 
employed prime adult population based on the input teacher-to-student ratio and are assumed to 
have contact with each other during school days. Each class is randomly assigned to one teacher.   
  
Workplaces 
PATAT generates both formal and informal workplace contact networks based on separate 
employment rates. Youth (15-19 years) employment is also considered in the potential 
workforce. The distinction between formal and informal settings is made as mean employee 
contact rates likely differ between them. Furthermore, workplace distribution of Ag-RDTs for 
community testing is assumed to be feasible for formal employment entities only. Unlike 
schools, PATAT does not explicitly model for workplaces but sets up contact matrices between 
employed individuals who would be in regular contact at work. Different sizes of workplace 
contact networks are randomly drawn from a Poisson distribution based on the given mean 
employee contact size. An employed agent would only be associated with one workplace contact 
network. 
  
Mass gatherings (Churches) 
High-density mass gatherings are considered in the model in the form of contacts among church 
congregations given the large weekly worship attendance in Zambia (i.e. >70%)1 which we had 
modelled as our prototypical low-income country. The size of a church is assumed to follow a 
truncated Normal distribution with the given mean and variance with size greater than one. All 
floating-point size draws are rounded to the nearest integer. PATAT assumes that all members of 
a household will visit a church together every Sunday. Other than close contacts with each other, 
each household member would also have a random number of close contacts from other 
households that attend the same church. This random contact number is drawn from a Gamma 
distribution with the given shape and scale parameters (Table S1) and must be greater than zero. 
Any floating-point number of contacts drawn are rounded to their nearest integer. Churches are 
also ordered such that proximally ordered households in the same neighbourhood would visit the 
same church.  
  
Random community 
PATAT assumes that every agent within a given age range would have a random number of 
contacts with the community daily, drawn from a Poisson distribution with a given mean.  
  
Disease progression 
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PATAT implements a SEIRD epidemic model where the simulated population is distinguished 
between five compartments: susceptible, exposed (i.e. infected but is not infectious yet; latent 
phase), infected (which include the presymptomatic infectious period for symptomatic agents), 
recovered and dead. The infected compartments are further stratified by their presented 
symptoms, including asymptomatic, presymptomatic, symptomatic mild or severe. All 
symptomatic agents will also first undergo an infectious presymptomatic period after the exposed 
latent period. They will either develop mild symptoms who will always recover from the disease 
or experience severe infection which could either lead to death or recovery. PATAT uses age-
structured wild-type SARS-CoV-2 disease severity and mortality probabilities (i.e. 𝑝"#$%&'$(&)*  
= probability of symptomatic disease, 𝑝"+,+-+  = probability of developing severe symptoms, 
𝑝.+(&/  = probability of death as a result of COVID-19) as tabulated in Table S1. The probability 
of developing severe disease is adjusted by a factor of 𝑓"+,+-+,$& as a result of being infected by the 
mutant (mt) virus (Table S1). As a simplification, PATAT currently assumes that all agents 
presenting severe symptoms will be hospitalized and removed from the population. 
  
The total duration of infection since exposure (𝑡) depends on the symptoms presented by the 
patient and is comprised of different phases (i.e. latent (𝑡3(&+4&  if individual is symptomatic or 
𝑡+5%'"+. if individual is asymptomatic), asymptomatic (𝑡-+*',+-#,("#$%&'$(&)*), presymptomatic 
(𝑡%-+"#$%&'$(&)*), onset-to-recovery (𝑡'4"+&6&'6"+,+-+, 𝑡-+*',+-#,$)3., 𝑡-+*',+-#,"+,+-+) and/or 
death (𝑡.+(&/)) (Table S1).  
  
Within-host viral dynamics 
For each infected agent, PATAT explicitly simulates their viral load trajectory of cycle threshold 
(Ct) values over the course of their infection using a stochastic model modified from the one 
previously developed by 2. A baseline Ct value (𝐶𝑡8("+3)4+) of 40 is established upon exposure. 
The infected agent becomes infectious upon the end of the latent period and their Ct value is 
assumed to be ≤ 30. A peak Ct value (𝐶𝑡%+(<) is then randomly drawn from a truncated normal 
distribution with the given mean and standard deviation values of the transmitted variant virus 
(Table S1). The randomly drawn 𝐶𝑡%+(<  must inclusively lie between 1 and 29. 𝐶𝑡%+(<  is 
assumed to occur upon symptom onset for symptomatic agents and one day after the latent 
period for asymptomatic individuals. Cessation of viral shedding (i.e. return to 𝐶𝑡8("+3)4+) occurs 
upon recovery or death. PATAT assumes that the transition rate towards peak Ct value should 
not be drastically different to that when returning to baseline upon cessation (i.e. there should be 
no sharp increase to baseline Ct value after gradual decrease to peak Ct value or vice versa). As 
such, the time periods of the different phases of infection are randomly drawn from the same 
quintile of their respective sample distribution. The viral load trajectory is then simulated by 
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fitting a cubic Hermite spline to the generated exposed (day of exposure, 𝐶𝑡8("+3)4+ ), latent 
(𝑡3(&+4& , 𝐶𝑡3(&+4& = 30), peak (𝑡%+(< , 𝐶𝑡%+(<) and cessation values 
(𝑡'4"+&6&'6"+,+-+/-+*',+-#/.+(&/ , 𝐶𝑡8("+3)4+). The slope of the fitted curve is assumed to be zero 

for all of them except during 𝑡3(&+4&where its slope is assumed to be ?&@ABC6?&DBEAFGHA
&@ABC6&AI@JEAK

. PATAT 

then uses the fitted trajectory to linearly interpolate the viral load transmissibility factor (𝑓3'(.,)) 
of an infectious agent 𝑖 assuming that they are twice as transmissible at peak Ct value (i.e. 
𝑓3'(. = 2) relative to when they first become infectious (i.e. Ct value = 30; 𝑓3'(. = 1).  
  
Transmissions 
When an infectious agent 𝑖 comes into contact with a susceptible individual 𝑗, the propensity of 
transmission (𝑝&-(4"$)"")'4,(),Q)) is given by following equation from 3: 
 
𝑝&-(4"$)"")'4,(),Q) = 𝛽 × 𝛷) × 𝑓* × 𝑓("#$%,) × 𝑓3'(.,) × 𝑓)$$V4)&#,Q × 𝑓"V"*+%&)83)&#,Q × 𝜌) × 𝜌Q 

 
where 𝛽 is the base transmission probability per contact, 𝛷) is the overdispersion factor 
modelling individual-level variation in secondary transmissions (i.e. superspreading events), 𝑓*  is 
a relative weight adjusting 𝛽 for the network setting 𝑐 where the contact has occurred, 𝑓("#$%,) is 
the assumed relative transmissibility factor if infector 𝑖 is asymptomatic, 𝑓)$$V4)&#,Q measures 
the immunity level of susceptible 𝑗 against the transmitted virus (i.e. 𝑓)$$V4)&#,Q = 1 if 
completely naïve; 𝑓)$$V4)&#,Q = 0  if fully protected), 𝑓"V"*+%&)83)&#,Q  is the age-dependent relative 
susceptibility of 𝑗, 𝜌) and 𝜌Q are the contact rates of infector 𝑖 and susceptible 𝑗 respectively.   
  
𝛷)is randomly drawn from a negative binomial distribution with mean of 1.0 and shape 
parameter of 0.454. As evidence have been mixed as to whether asymptomatic agents are less 
transmissible, we conservatively assume there is no difference relative to symptomatic patients 
(i.e. 𝑓("#$%,) = 1). The age-structured relative susceptibility values 𝑓"V"*+%&)83)&#,Q are derived 
from odds ratios reported by 5 (Table S1).  
  
𝛽 is determined by running initial test simulations with a range of values on a naïve population 
with no interventions that would satisfy the target basic reproduction number 𝑅Z as computed 
from the resulting exponential growth rate and distribution of generation intervals 6. 𝑓*  is 
similarly calibrated during these test runs such that the transmission probabilities in households, 
workplaces, schools, and all other community contacts are constrained by a relative weighting of 
10:2:2:1 3. 
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Testing by Ag-RDT 
Unlike PCR which is highly sensitive due to prior amplification of viral genetic materials, the 
sensitivity of Ag-RDT depends on the viral load of the tested patient. While the specificity of 
Ag-RDT is assumed to be 98.9%, its sensitivity depends on the Ct values of the tested infected 
agent: Ct > 35 (0%); 35 – 30 (20.9%); 29 – 25 (50.7%); Ct ≤ 24 (95.8%)7. 
  
Testing by Ag-RDT may either occur via symptomatic testing at healthcare facilities. First, a 
symptomatic agent may opt to go into self-isolation upon symptom onset prior to being tested, as 
decided by a Bernoulli trial with probability 𝑝"+3^6)"'3(&)'4 . Regardless if they were self-isolated, 
after 𝜏.+3(#,"#$%6&+"&  days from symptom onset, the symptomatic agent may then decide to get 
tested with a Bernoulli probability of 𝑝"#$%6&+"&  that inversely correlates with the distance 
between the agent’s household and the nearest healthcare facility (Table S1). PATAT assumes 
that agents who have decided against symptomatic testing (i.e. failed Bernoulli trial) or received 
negative test results will not seek symptomatic testing again.  
 
Isolation and quarantine 
We assumed that agents would change their behaviour when (i) they start to present symptoms 
and go into self-isolation (10% compliance assumed (i.e. 𝑝"+3^6)"'3(&)'4 = 10%), 71% endpoint 
adherence8); (ii) they test positive and are isolated for 10 days (50% compliance assumed, 86% 
endpoint adherence8); or (iii) they are household members (without symptoms) of positively-
tested agents and are required to be in quarantine for 14 days (50% compliance assumed, 28% 
endpoint adherence8). Once an agent goes into isolation/quarantine, we linearly interpolate their 
probability of adherence to stay in isolation/quarantine over the respective period. Given the lack 
of infrastructure and resources to set up dedicated isolation/quarantine facilities in many low-
middle income countries, we assumed that all isolated and quarantined individuals would do so 
at home. Although they have no contact with agents outside of their home, we assumed that they 
would maintain 90% contact rate with household members.  
 
Model Validation 
To validate our model, we simulated a 90-day epidemic wave for 1,000,000 individuals using the 
demography parameters for Zambia (Table S1). We assumed an average of ~40 tests/100,000 
people/day were performed during this period. This was the testing rate reported in Zambia 
between 25 December 2020 and 24 March 2021 when the country was experiencing a second 
wave of infections as a result of the Beta variant. We assumed the initial effective reproduction 
rate of ~2.0 and performed 10 independent simulations using PATAT. We then retrieved 
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confirmed case and death tallies during this period in Lusaka from the Zambia COVID-19 
Dashboard (https://www.arcgis.com/apps/dashboards/3b3a01c1d8444932ba075fb44b119b63). 
We compared our results against data collected in the Lusaka because (1) most of the available 
COVID-19 incidence data during this period was collected in Lusaka and (2) our model and the 
demography parameters used best represents urban settings. We multiplied the estimated mean 
number of reported (i.e. diagnosed) cases and deaths from our simulations by three to 
proportionally scale our simulation results for three million people, the approximate population 
size in Lusaka, Zambia. The simulated reported COVID-19 case and death incidence in our 
model fit well against both actual reported case and death counts respectively (Extended Data 
Fig. 8). 
 
Background on current guidance 
 
Here, we provide relevant details on the mathematical frameworks underlying three current 
guidance on minimum sequencing samples required for variant detection mentioned in the main 
text. Specifically, we highlighted the critical assumptions made and the lack of consideration of 
spatiotemporal bias resulting from low testing volumes and sampling coverage in each approach.  
 
The World Health Organization (WHO) and European Centre for Disease Prevention and 
Control (ECDC) computes sequencing sample size using the binomial method.9,10 Binomial 
sampling assumes that specimens to be sampled collected for sequencing are randomly 
representative of the circulating virus diversity. As acknowledged by the WHO and ECDC, 
this is difficult to achieve with low testing rates and spatial non-uniformity in sampling coverage 
which can introduce spatiotemporal biases in sequencing samples. However, there was no advice 
in the guidance on how to correct for these biases.   
  
Brito et al. made recommendations on sequencing sample size by computing the probability of 
detecting at least one variant genome under different sequencing proportions of detected cases 
based on random subsampling of genomic surveillance data collected in Denmark in 2020-
202111. Data from Denmark was used as it was one of the most comprehensive genomic 
surveillance programs in the world – they were sequencing at >10% of detected cases in most 
weeks. Brito et al. estimated that sequencing 0.5% of all detected cases would result in 
sequencing at least one variant genome before the number of variant infections reach 100 cases if 
turnaround time is kept at 21 days. However, there would only be a 20% probability that this 
would occur based on their subsampling analyses. More importantly,  Denmark was testing at 
one of the highest rates in the world during this period, performing >2,000 tests/100,000 
people/day on average (https://www.finddx.org/covid-19/test-tracker/). Brito et al., however, 
did not extend their subsampling analyses on the virus diversity among the detected cases 
under lower testing rates. This would have otherwise provided corrections on the suggested 
sampling proportions under lower testing volumes.  
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Wohl et al. provided the following derivation to compute the sequencing sample size per unit 
time (𝑛) for ongoing surveillance:12   
 

𝑛 ≈ −
ln	[1 − Pr(𝑑 ≤ 𝑡)]	

𝐺(𝑡) − 𝐺(0)  

 
where Pr(𝑑 ≤ 𝑡) is the probability of detection on or before time 𝑡 and 𝐺(𝑡) is the cumulative 
density function that model the growth in circulating variant proportion over time. Wohl et al. 
applied the logistic growth curve function to circulating variant proportion growth. As such:  
 

𝐺′(𝑡) =
1
𝑟 ln	

|𝑎 + 𝑒-&| + 𝐶 
 
where 𝑟 is the assumed per unit-time growth rate of the variant and 𝑎 = s

%t
− 1 where 𝑝Z is the 

initial variant virus proportion.  
 
In this form, Wohl et al. assumes that the observed variant proportion in the positive 
specimens collected perfectly matches the circulating variant proportion among the 
infected population. This is only possible if testing volumes are sufficiently large enough. At 
the proposed target of 1% circulating variant proportion, at least 38,031 tests must be performed 
in total each day to ensure that the observed variant proportion is also at 1% with a margin error 
of 0.1% at 95% confidence. For ~18 million people in Zambia, this means that the average 
testing rate be maintained at 212 tests/100,000 people/day. This is ~8 times more than the 
average LMIC testing rate of 27 tests/100,000 people/day.   
 
To account for likely enriched observed variant proportion in the sample pool sent for 
sequencing, Wohl et al incorporated a correction factor ?uIv

?wBx
 to the circulating variant proportion 

such that:  
 

𝐺′(𝑡) =
1
𝑟 ln	 yz

𝐶{5&
𝐶|(-

} 𝑎 + 𝑒-&y + 𝐶 

 
?uIv
?wBx

 is the ratio of the coefficient of detection for the extant (𝐶{5&) over that for the variant virus 
(𝐶|(-). 𝐶{5& and 𝐶|(- are essentially the joint conditional probabilities of obtaining a variant and 
extant virus sequence respectively. For the virus 𝑣, the coefficient of detection (𝐶,) is defined as:   
 

𝐶, = 𝜙,𝛾,[𝛼,𝛽( + (1 − 𝛼,)𝛽"] 
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where 𝜙, is the sensitivity of the diagnostic test to virus 𝑣, 𝛾, is the probability that the detected 
infection caused by virus 𝑣 meets the quality threshold for sequencing (i.e. below the stipulated 
PCR cycle threshold value), 𝛼, is the probability a person infected with virus 𝑣 is asymptomatic, 
𝛽( and 𝛽" are the probabilities an asymptomatic and symptomatic person infected with SARS-
CoV-2 were tested (regardless of which variant they were infected by). 
 
Although 𝛽( and 𝛽" are incorporated in ?uIv

?wBx
, the correction factor computes the relative 

likelihood of detection between the extant and variant virus. In other words, 𝑪𝑬𝒙𝒕
𝑪𝑽𝒂𝒓

 only corrects 
for biases in the observed variant proportion due to relative differences in diagnostic 
sensitivities, sample qualities and conditional asymptomatic and symptomatic testing 
probabilities between the two viral variants. It does not factor in distortions in the observed 
variant proportion from other sources of bias, including: (1) stochastic effects arising from 
low testing volumes and unevenness of daily test stock availability, (2) unconditional 
probability of asymptomatic testing, and (3) spatial biases when only a subset of samples 
from sentinel sites are sent for sequencing.  
     
 
Emergence of SARS-CoV-2 variants of concern  
 
Here, we briefly recount the emergence of other SARS-CoV-2 variants-of-concern (VOC; i.e. 
the Alpha, Beta, Gamma and Delta) besides Omicron (i.e. timepoint in collection of the first 
variant sequence) given the prevailing circumstance, then-level of testing and sequencing 
performed in the respective countries where they likely first emerged from. 
 
Alpha variant  
The Alpha variant was first reported in the UK in early December 2020 after public health 
agencies investigated the rapid increase in COVID-19 cases in Kent, South East England despite 
prevailing high levels of non-pharmaceutical interventions13. Retrospective analyses found that 
the first Alpha virus that was later sequenced was collected on 20 September 2020 and 
phylogenetic analyses estimated the time to most recent common ancestor (TMRCA) of the 
Alpha lineage to be around the same time14. The UK was testing at a mean rate of >300 tests per 
100,000 people per day (tests/100k/day) in September 202015 and randomly sampling an average 
of 7.9% cases every week in Kent for sequencing14. From on our genomic surveillance 
simulation results, albeit derived for a Zambian population, we would expect the first Alpha 
virus variant to be collected for sequencing within one week of its emergence under a random 
sampling approach at these testing and sequencing rates.  
 
Beta variant  
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The Beta variant was first reported in South Africa in December 2020 as the country experienced 
its second wave of SARS-CoV-2 infections. The earliest Beta virus selected for sequencing was 
collected on 8 October 2020 and the TMRCA was estimated to between July and August 202016. 
South Africa was still in the midst of the peak of the first wave of infection during the estimated 
TMRCA period and testing at mean rates of ~60 and ~40 tests/100k/day in July and August 2020 
respectively15. Only ~0.3% of cases identified in South Africa in July-August 2020 were 
sequenced and deposited in the GISAID EpiCoV database17,18. The estimated ~2-3-month delay 
in sampling the first Beta variant sequence is therefore likely based on our simulations due to a 
combination of relatively low levels of testing and sequencing that was further exacerbated by 
the variant virus emerging during the peak circulation of the extant SARS-CoV-2 wild-type 
virus.  
 
Gamma variant  
The Gamma variant was first reported in January 2021 in Brazil as a result of investigating the 
rapid rise in hospitalizations in Manaus in December 202019 as well as in Japan from infected 
travelers who recently returned from the Amazonas20. The first Gamma variant virus selected for 
sequencing was collected on 6 December 2020 and phylogenetic analyses estimated that the 
VOC lineage likely emerged in Manaus between October and November 2020 19. During this 
period, Brazil was testing at 10-30 tests/100k/day on average15 and sequenced ~0.1% of all 
confirmed cases17,18. By early January 2021 when the sequencing results were obtained and 
shared, the circulating proportion of the Gamma variant in Manaus was estimated to be ~75%19. 
The 1-2 month gap between emergence and sampling of a VOC sequence is likely due to low 
testing and sequencing rates, consistent with the results of our simulations. Moreover, the 
turnaround time between sample collection and sequencing data acquisition added an additional 
month in delay before the Gamma variant was first reported in Brazil.  
 
Delta variant  
The earliest Delta (i.e. PANGO lineage B.1.617.2) sequence (Accession: EPI_ISL_9232357) 
collected in India that is deposited in the GISAID EpiCoV database was collected on 3 
September 2020. This sample however was only sequenced retrospectively as (i) it was 
submitted to the database on 28 January 2022 and (ii) published works by the Indian SARS-
CoV-2 Genomics Consortium (INSACOG), the national sentinel sequencing network, referred to 
earliest identification of Delta in state of Maharashtra in December 202021,22. The identification 
of Delta in Maharashtra was only done so retrospectively to investigate the surge in cases in the 
state in January 2021. Using Delta sequences collected globally, the likely TMRCA period was 
estimated to be around September 2020 as well23. During this time, India was still experiencing 
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the peak of its first wave of SARS-CoV-2 infections18. The second wave of SARS-CoV-2 
infections across the country caused by the Delta variant only took off in March 2021, six 
months after the estimated TMRCA24. Between December 2020 when the first wave of 
infections subsided and the beginning of the second wave in March 2021, there were several 
competing lineages circulating in India, including the Alpha VOC as well as the Kappa variant of 
interest (i.e. B.1.617.1), a sub-lineage descending from the same parental lineage of Delta (i.e. 
B.1.617)24. There were no coordinated efforts to perform active genomic surveillance across 
India in 2020; Sequencing analyses then were largely performed retrospectively in response to 
surge in cases22,25. The INSACOG was only established by the government on 30 December 
2020 in response to monitor genetic variations in light of the introduction of the Alpha variant 
into the country26,27. Owing to complexities attributed to multiple co-circulating and competing 
variant lineages, nonuniformity in sampling, in part due to a lack of ongoing active coordinated 
nation-wide genomic surveillance efforts then, and that the “earliest” Indian Delta sequences 
were all identified from retrospective analyses, there are uncertainties around both the emergence 
and early spread of the Delta variant within India.  
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Supplementary Tables  

Supplementary Table 1. PATAT simulation parameters.   
 

Parameter Values/Distribution Source 

Population demography 

Total population size 1,000,000  

Mean household size 5.0 28 

Age structure (in bins of 5 years) [0.161, 0.165, 0.157, 0.101, 0.083, 0.068, 0.057, 0.051, 
0.042, 0.030, 0.024, 0.015, 0.016, 0.009, 0.008, 0.005, 
0.006, 0.002, 0.000, 0.000] 

28 

Minimum prime adult age 20 years Assumed  

Proportion of women 51% 29 

Minimum working age 15 years 29 

Employment rate 39% (male), 23% (female) 29 

Formal employment rate  36% (employed male), 24% (employed female) 29 

Schooling rate 79% (male), 40% (female) 28 

School gender parity 1.0 (Primary), 0.9 (Secondary) 28 

Church participation rate 70% of all households Assumed  

Mean employment contacts (formal) 20 Assumed  

Mean employment contacts 
(informal) 

5 Assumed  

Mean class size 37 (Primary and secondary) 28 

Mean school size 700 (Primary and secondary) Assumed 

Student-teacher ratio 42 (Primary and secondary) 28 

Mean church size (s.d.) 500 (100) Assumed  

Mean random contacts in church 
per person 

10 Assumed  
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Mean random community contacts 
per day 

10 Assumed 

SARS-CoV-2 transmissions related parameters  

Age-structured relative susceptibility 
(in bins of 5 years, 𝑓"V"*+%&)83)&#) 

[0.34, 0.34, 0.67, 0.67, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.00, 1.00, 1.24, 1.24, 1.47, 1.47, 1.47, 1.47] 

3,5 

Age-structured probability of 
becoming symptomatic (in bins of 5 
years, 𝑝"#$%&'$(&)*) 

[0.50, 0.50, 0.55,  0.55, 0.60, 0.60, 0.65, 0.65, 0.70, 0.70, 
0.75, 0.75, 0.80, 0.80, 0.85, 0.85, 0.90, 0.90, 0.90, 0.90] 

30,31 

Age-structured probability of 
developing severe disease (in bins 
of 5 years, 𝑝"+,+-+) 

[0.00050, 0.00050, 0.00165, 0.00165, 0.00720, 0.00720, 
0.02080, 0.02080, 0.03430, 0.03430, 0.07650, 0.07650, 
0.13280, 0.13280, 0.20655, 0.20655, 0.24570, 0.24570, 
0.24570, 0.24570] 

30,31 

Age-structured probability of death 
(in bins of 5 years, 𝑝.+(&/) 

[0.00002, 0.00002, 0.00002, 0.00002, 0.00010, 0.00010, 
0.00032, 0.00032, 0.00098, 0.00098, 0.00265, 0.00265, 
0.00766, 0.00766, 0.02439, 0.02439, 0.08292, 0.08292, 
0.16190, 0.16190] 

8,32 

Latent period (days, 𝑡3(&+4&) Wild-type SARS-CoV-2/Alpha: Lognormal (4.5, 1.5) 

Delta/Omicron: Lognormal (4.0, 1.3) 

3,33–35 

Pre-symptomatic period (days, 
𝑡%-+"#$%&'$(&)* ) 

Wild-type SARS-CoV-2/Alpha: Lognormal (1.1, 0.9) 

Delta/Omicron: Lognormal (1.8, 1.7) 

3,33,35 

Period between symptom onset and 
severe disease (days, 
𝑡'4"+&6&'6"+,+-+) 

Lognormal (6.6, 4.9) 33 

Period between severe disease and 
death (days, 𝑡.+(&/) 

Lognormal (8.6, 6.7) 33 

Recovery period for symptomatic 
agents with mild disease (days, 
𝑡-+*',+-#,$)3.) 

Wild-type SARS-CoV-2/Alpha: Lognormal (8.0, 2.0) 

Delta: Lognormal (6.23, 0.53*) 

Omicron: Lognormal (5.35, 0.37*) 

35,36 

Recovery period for asymptomatic 
agent (days, 𝑡-+*',+-#,("#$%&'$(&)*) 

Wild-type SARS-CoV-2/Alpha: Lognormal (8.0, 2.0) 

Delta: Lognormal (6.23, 0.53*) 

Omicron: Lognormal (5.35, 0.37*) 

35,36 

Recovery period of agents with 
severe disease (days, 
𝑡-+*',+-#,"+,+-+) 

Lognormal (18.1, 6.3) 30 

Peak Ct values (𝐶𝑡%+(<) Wild-type SARS-CoV-2/Alpha/Delta: Normal (20.5, 0.79*) 35 
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Omicron: Normal (23.3, 0.58*) 

Cross-immunity to variant virus after 
infection by extant virus (i.e. 1 −
𝑓)$$V4)&#) 

Wild-type SARS-CoV-2/Alpha: 0.87 

Delta/Omicron: 0.20 

37,38 

Severity (chance of hospitalization) 
of variant relative to extant virus 
(𝑓"+,+-+,$&) 

Wild-type SARS-CoV-2/Alpha: 100% 

Delta/Omicron: 40% 

39 

Testing parameters  

Delay in visiting healthcare facility 
for symptomatic testing (days, 
𝜏.+3(#,"#$%6&+"&) 

Lognormal (1.0, 0.5) Assumed 

Agents to healthcare facilities ratio 7,000:1 40,41 

Distance-structured distribution of 
households to nearest healthcare 
facility (in bins of 1km)  

[0.048, 0.193, 0.119, 0.08, 0.074, 0.098, 0.068, 0.072, 0.056, 
0.191] 

42 

Distance-structured probabilities of 
agent visiting nearest healthcare 
facility for testing services (in bins of 
1km, 𝑝"#$%6&+"&) 

[0.853, 0.808, 0.762, 0.717, 0.672, 0.626, 0.581, 0.536, 0.49, 
0.445] 

42 

Isolation/quarantine parameters  

Isolation period 10 days  

Quarantine period  14 days  

Self-isolation period  10 days  

Reduction in contact rates under 
isolation/quarantine (in order of 
households, schools, workplaces, 
church and random community) 

[10%, 100%, 100%, 100%, 100%]  

*Standard deviation values inferred from 95% confidence interval computed in reference.  
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