

Total liver

Figure S1. Genetic ablation of Trem2 in macrophages exacerbates NASH pathology, Related to Figure 1

(A) Immunoblot analysis of TREM2 in BMDMs and liver resident Kupffer cells from *Trem2^{F/F}*, *Trem2^{ΔMye}*, and *Trem2^{-/-}* mice.
 (B) Immunoblot analysis of TREM2, F4/80, MPO, and Ly6G in BMDMs and neutrophils from C57BL/6 mice.

(C) Representative H&E staining of liver sections, body weights, liver weights, serum ALT, AST, and serum triglyceride (TG) were measured in $Trem2^{E/F}$ and $Trem2^{\Delta Mye}$ mice fed with normal diet (ND) for 8 weeks. n = 8 mice per group. Data are shown as mean ± s.e.m. NS, not significant.

(D) Body weights, liver weights, serum ALT, AST, serum TG, and liver TG were measured in C57BL/6 mice fed with ND or WD for 8 and 24 weeks. ND, n = 8 mice; WD_8w, n = 8 mice; WD_24w, n = 7 mice. Data are shown as mean ± s.e.m.. **p<0.01; ***p<0.001; NS, not significant.

(E) Representative liver picture (scale bar,1 cm), H&E, Oil Red O, Sirius Red/Fast Green, and α -SMA staining of liver sections from C57BL/6 mice fed with ND or WD for 8 and 24 weeks. Sirius Red/Fast Green staining was detected under polarized light. ND, n = 8 mice; WD_8w, n = 8 mice; WD_24w, n = 7 mice. Scale bar, 100 μ m.

(F) Relative mRNA expression of fibrosis-related genes and inflammatory genes was analyzed by RT-qPCR, and TNF amounts were measured by ELISA in liver tissue from C57BL/6 mice that were fed with ND or WD for 8 and 24 weeks. Sirius Red/Fast Gree, and α -SMA positive areas shown in (E) were quantified by ImageJ software. ND, n = 8 mice; WD_8w, n = 8 mice; WD_24w, n = 7 mice. Data are shown as mean ± s.e.m. *p<0.05; **p<0.01; ***p<0.001.

(G) Measurements of food intake and fold changes of body weight in $Trem2^{F/F}$ and $Trem2^{\Delta Mye}$ mice fed with ND or WD. Data are shown as mean ± s.e.m.. ***p<0.001; NS, not significant.

(H-K) Body weights, liver weights, serum TG, total cholesterol, serum NEFA, serum glucose, and serum insulin were measured in *Trem2^{F/F}* and *Trem2^{ΔMye}* mice fed with WD for 8 (H) and 24 weeks (J). Representative Oil Red O staining, liver TG, and relative mRNA abundance of lipid associated genes was analyzed in liver tissue from *Trem2^{F/F}* and *Trem2^{ΔMye}* mice fed with WD for 8 (I) or 24 weeks (K). WD_8w, n = 8 mice per group; WD_24w *Trem2^{F/F}*, n = 12 mice; WD_24w *Trem2^{ΔMye}*, n = 14 mice. Scale bar, 100 µm. Data are shown as mean ± s.e.m.. ***p<0.001; NS, not significant.

(L) Immunoblot analysis of AKT and p-AKT (Ser473) in liver tissue from $Trem2^{E/F}$ and $Trem2^{\Delta Mye}$ mice fed with WD for 8 and 24 weeks.

(M) Gross liver picture (scale bar, 1 cm) and H&E staining (scale bar, 100 μ m) of liver sections from a *Trem2*^{ΔMye} mouse fed with WD for 24 weeks. Arrows indicate tumors.

Figure S2. Obesity upregulates TREM2 in infiltrated liver macrophages via hepatocyte derived S1P, Related to Figure 2

(A) Bodipy staining of AML12 cells treated with vehicle control or 800 μ M PA for 24 hours. Scale bar, 100 μ m. For flow cytometry analysis, AML12 cells that were treated with vehicle control, 200 μ M, 800 μ M, or 2000 μ M PA for 24 hours were stained with Annexin V and PI (Propidium Iodide) to assess the nature of cell death.

(B) Immunoblot analysis of TREM2 in primary mouse Kupffer cells cocultured with PA-treated AML12 cells (left panel) or primary murine hepatocytes (middle panel) in a transwell system, or directly stimulated with culture medium collected from AML12 cells treated with PA of various concentrations (right panel). LCM, live cell culture medium; ACM, apoptotic cell culture medium; NCM, necrotic cell culture medium.

(C and D) RT-qPCR analysis of *Trem2* mRNA and immunoblot analysis of TREM2 in BMDMs treated with PA or cholesterol for various time durations (C), or with LPC, CX3CL1 or ATP at various concentrations for 24 hours (D).

(E) Heatmap of TREM2 related genes in BMDMs treated with or without S1P (n=4 in each group). *p<0.05.

(F) Immunoblot analysis of TREM2 in primary mouse Kupffer cells that were treated with or without S1P.

(G) Relative mRNA abundance of genes encoding S1P receptors (S1pr1-5) in BMDMs.

(H and I) Flow cytometry analysis of cell surface TREM2 in BMDMs treated with S1P. BMDMs were either pretreated with JTE or transduced with lentiviral construct expressing shS1pr1 or shS1pr2 (H). Relative mRNA expression of S1pr1 and S1pr2 in BMDMs after lentiviral transduction were also shown in (I). Data are shown as mean ± s.e.m.. ***p<0.001; NS, not significant.

(J) RT-qPCR analysis of *Trem2* mRNA and immunoblot analysis of TREM2 in BMDMs treated with S1P or S1PR1 agonist (CYM-5442) for 24 hours. Data are shown as mean ± s.e.m.. *p<0.05, ***p<0.001.

(K and L) Immunoblot analysis of TREM2 in total cell lysates in BMDMs stimulated with cell culture medium from collected from AML12 cells. BMDMs were either pretreated with JTE (K) or transduced with lentiviral constructs expressing shS1pr2 (L).

(M) Relative mRNA abundance of *Sphk1* and *Sphk2* in AML12 cells treated with vehicle control (LCM) or 800µM of PA (ACM) for 24 hours. Data are shown as mean ± s.e.m.. ***p<0.001.

(N) Immunoblot analysis of SPHK1 and SPHK2 in AML12 cells transduced with lentiviral constructs expressing sgSphk1/2 (left panel). S1P concentrations in culture medium of indicated AML12 cells were measured by ELISA (right panel). AML12 cells were either treated with vehicle or 800µM of PA for 24 hours. Data are shown as mean ± s.e.m.. *p<0.05.

For in vitro experiments in this Figure, data were collected from three samples in each group for analysis and are representative of three independent experiments.

А

Figure S3. Uncoupled regulation of Trem2 mRNA and its protein during NASH development, Related to Figure 3

(A) Flow cytometry gating strategy and analysis of CD11b⁺ cells freshly isolated from mouse liver by MACS.

(B) Flow cytometry analysis of Ly6C in F4/80⁻ cell compartment of CD11b⁺ cells freshly isolated from C57BL/6 mice that were fed with ND or WD for 8 and 24 weeks.

(C) Flow cytometry analysis of TREM2 in CX3CR1^{low} and CX3CR1^{high} liver macrophages freshly isolated from C57BL/6 mice fed with WD for 8 weeks. MFI was used for data analysis.

(D) RT-qPCR analysis of *Trem2* mRNA and immunoblot analysis of TREM2 in liver tissue from WT or *MUP-uPA* mice fed with ND or HFD for 18 weeks. ND WT, n = 13 mice; ND *MUP-uPA*, n = 5 mice; HFD WT, n = 7 mice; HFD *MUP-uPA*, n = 10 mice. Data are shown as mean \pm s.e.m.. *p<0.05; ***p<0.001.

(E) Immunofluorescent staining of TREM2 in $Trem2^{F/F}$ and $Trem2^{\Delta Mye}$ BMDMs or TREM2-sufficient (sgCtrl) and -deficient (sgTREM2) THP-1 cells. Scar bars, 100µm.

(F) RT-qPCR analysis of *Trem2* mRNA and immunoblot analysis of TREM2 in BMDMs treated with increasing doses of IL-6 for 24 hours.

(G) RT-qPCR analysis of *Trem2* mRNA in BMDMs pre-treated with 500nM S1P for 2 hours followed by stimulation with 1ng/ml of TNF or IL-1 β for various time durations. Data are shown as mean ± s.e.m.. *p<0.05; **p<0.01; ***p<0.001; NS, not significant.

(H and I) Immunoblot analysis of TREM2 (H) and flow cytometry analysis of cell surface TREM2 (I) in BMDMs pre-treated with 500nM S1P for 2 hours followed by stimulation with 1ng/ml of TNF or IL-1 β for 24 hours. MFI was used for flow cytometry analysis. Data are shown as mean ± s.e.m.. ***p<0.001.

For in vitro experiments in this Figure, data were collected from three samples in each group for analysis and are representative of three independent experiments.

Figure S4. TNF and IL-1β induce TREM2 proteolytic cleavage by activating ADAM17, Related to Figure 4

(A) sTREM2 concentrations in mouse sera collected from WT or *MUP-uPA* mice fed with ND or HFD for 18 weeks. ND_WT, n = 13 mice; ND_*MUP-uPA*, n = 5 mice; HFD_WT, n = 7 mice; HFD_*MUP-uPA*, n = 10 mice. Data are shown as mean ± s.e.m.. ***p<0.001.

(B) Immunoblot analysis of TREM2 (full-length and C-terminal fragment) in BMDMs stimulated with 1 ng/ml of TNF or IL-1 β in the presence or absence of DAPT for 24 hours.

(C and D) RT-qPCR analysis of *Adam10* mRNA (C) and immunoblot analysis of ADAM10 (D) in BMDMs stimulated with 1 ng/ml of TNF or IL-1 β for various time durations.

(E) Relative ADAM10 activity was quantified in BMDMs after 24 hours of 1 ng/ml of TNF or IL-1 β stimulation. Data are shown as mean ± s.e.m. NS, not significant.

(F-H) Immunoblot analysis of TREM2 (F), flow cytometry analysis of cell surface TREM2 (G), and ELISA analysis of sTREM2 in culture medium (H) of BMDMs transduced with lentiviral constructs expressing shRNAs against *Adam17* (*shAdam17*-1 and *shAdam17*-2) followed by stimulation with 1 ng/ml of TNF or IL-1 β . MFI was used for flow cytometry analysis. Data are shown as mean ± s.e.m.. ***p<0.001.

(I) Immunoblot analysis of ADAM10 and TREM2 in BMDMs transduced with lentiviral constructs expressing shRNAs against Adam10 (shAdam10-1 and shAdam10-2) followed by stimulation with 1 ng/ml of TNF or IL-1 β .

(J) Association of human *ADAM17* expression with IL1B and TNF α pathway enrichment was analyzed in liver tissue of a clinical cohort (GSE130970, n = 78). Healthy, n = 6; simple steatosis (SS), n = 14; NASH, n = 58.

For in vitro experiments in this Figure, data were collected from three samples in each group for analysis and are representative of at least three independent experiments.

Apoptotic AML12 cells

Figure S5. TREM2 is essential for macrophage efferocytosis of lipid-laden apoptotic hepatocytes, Related to Figure 5

(A and B) KEGG pathway enrichment analysis of differentially expressed genes (A) and IPA analysis on phagocytosis related functions (B) in WT BMDMs treated with control medium (NC) or cell culture medium collected from apoptotic AML12 cells (ACM). n = 4 per group.

(C) Heatmap of phagocytosis-related genes (GO:0006909) that were downregulated in primary liver macrophages isolated from WD fed $Trem2^{\Delta Mye}$ mice compared to cells from WD fed $Trem2^{F/F}$ mice. n = 4 mice per group.

(D) Representative TUNEL staining of liver sections from C57BL/6 mice that were fed with ND (n = 8 mice), WD for 8 (n = 8 mice), and 24 (n = 7 mice) weeks. Scale bar, 100 μ m. Apoptotic cells were quantified as percentage of total cells per area. Data are shown as mean ± s.e.m.. ***p<0.001; NS, not significant.

(E) Immunoblot analysis of aCasp3 (cleaved caspase-3), Casp3 (caspase-3), and GAPDH in liver tissue from C57BL/6 mice fed with ND or WD for 8 and 24 weeks (n = 3 mice per group).

(F) Representative HNF4A and TUNEL co-staining of liver sections from $Trem2^{F/F}$ and $Trem2^{\Delta Mye}$ mice fed with WD for 8 weeks. Scale bar, 100µm.

(G) Representative TUNEL staining of liver sections from $Trem2^{F/F}$ and $Trem2^{\Delta Mye}$ mice fed with WD for 24 weeks. Apoptotic cells were quantified as percentage of total cells per area. Scale bar, 100µm. Data are shown as mean ± s.e.m.. *p<0.05.

(H) PA-treated apoptotic THLE-3 cells (labeled in red) were cocultured with THP-1 cells (labeled in green) transduced with lentiviral constructs expressing sgCtrl or *sgTREM2*. Immunoblot analysis (left panel) of TREM2 and GAPDH indicates successful deletion using two different sgRNAs against *TREM2*. Efferocytosis was quantified as the percentage of THP-1 cells engulfing apoptotic THLE-3 cells. n = 6 per group; scale bar, 100 μ m. Data are shown as mean ± s.e.m.. ***p<0.001; NS, not significant.

(I) PA-treated apoptotic THLE-3 cells (labeled in red) were cocultured with THP-1 cells (labeled in green) pretreated with control (IgG2B) or TREM2 neutralizing antibody (Anti-TREM2, 200 ng/ml). Efferocytosis was quantified as the percentage of THP-1 cells engulfing apoptotic THLE-3 cells. n = 6 per group; scale bar, 100 μm. Data are shown as mean ± s.e.m.. ***p<0.001.

(J) PA-treated apoptotic AML12 cells (labeled in red) were cocultured with WT BMDMs (labeled in green) pretreated with VPC (S1PR1/3 inhibitor, 10 μ M), S1P (500 nM) or TAPI (ADAM17 inhibitor, 10 μ M) for 1 hour followed by stimulation with S1P (500 nM), TNF (1 ng/ml), or IL-1 β (1 ng/ml). Efferocytosis was quantified as the percentage of BMDMs engulfing apoptotic AML12 cells. n = 6 per group; scale bar, 100 μ m. Data are shown as mean ± s.e.m.. *p < 0.05 vs. Ctrl group; #p < 0.05 vs. S1P treated group; \$p < 0.05 vs. TNF treated group; &p < 0.05 vs. IL-1 β treated group.

(K) THP-1 cells (labeled in green) were cocultured with THLE-3 cells (labeled in red) treated with PA to induce apoptosis followed by incubation with recombinant sTREM2 (200 ng/ml). Efferocytosis was quantified as the percentage of THP-1 cells engulfing apoptotic THLE-3 cells. n = 6 per group; scale bar, 100 μ m. Data are shown as mean ± s.e.m.. ***p<0.001. The in vitro experiments in this Figure are representative of at least three independent experiments.

TUNEL/DAPI

Figure S6. Absence of sTREM2 did not contribute to the exacerbated NASH pathology in WD-fed *Trem2^{-/-}* mice, related to Figure 6

Trem2^{-/-} mice and their WT littermates were fed with WD for 8 weeks and treated with either PBS or sTREM2 (weekly i.v. injection, 1 µg/mouse). WT-PBS, n = 7 mice; *Trem2^{-/-}*-PBS, n = 6 mice; WT-sTREM2, n = 7 mice; *Trem2^{-/-}*-sTREM2, n = 7 mice.

(A) sTREM2 amounts in mouse sera were quantified by ELISA.

(B) Liver weights, body weights, serum TG, and liver TG were analyzed. Data are shown as mean ± s.e.m.. *p<0.05; NS, not significant.

(C) Representative H&E, Sirius Red/Fast Green, and α -SMA staining of liver sections. Sirius Red/Fast Green staining was recorded under polarized light. Sirius Red and α -SMA positive areas were quantified by ImageJ Software. Scale bar, 100 μ m. Data are shown as mean ± s.e.m.. ***p<0.001; NS, not significant.

(D) Serum ALT, AST and hepatic hydroxyproline in liver tissue were measured. Relative mRNA expression of fibrosisrelated genes, inflammatory genes, and *Trem2* was measured by RT-qPCR in liver tissue. Data are shown as mean ± s.e.m.. *p<0.05; **p<0.01; ***p<0.001; NS, not significant.

(E) Apoptotic cells in liver tissue were stained with TUNEL and quantified as the percentage of total cells per area (TUNEL, green; DAPI, blue). Scale bar, 100 μm. Data are shown as mean ± s.e.m.. ***p<0.001; NS, not significant.

A HFD_24w Trem2^{△Mye} HFD_24w Trem2F/F HFD_24w Trem2F/F HFD_24w Trem2^{△Mye} *** Liver hydroxyproline (µg/g) 300-250-** 200 TNF (pg/mg liver) 200-150 Sirus Red positive area (%) ALT (UI) ALT (UI) 100 AST (U/I) ** H&E : 150-: 100 100-Ŧ 50-50-. 0 0-0 Sirius Red/Fast Green ħ Relative expression of Col1 α 1 Relative expression of Acta2 Relative expression of *Timp1* 8-** ** 6-10α-SMA positive area (%) *** 4-Ŧ • 8-I : 2--Ť 6-Ŧ 0 4 Relative expression of *II-6* 2-0-2-Relative expression of *II-1* β Relative expression of *Tnf* *** α-SMA : •. -÷

0

HFD_24w Trem2^{F/F}

12

9 6-3-0

⊐ HFD_24w *Trem2*^{∆Mye} ***

> : Ŧ

0

150

100

50

0-

Relative expression of *Tgfb1*

0

D

С

HFD_24w Trem2F/F

HFD_24w Trem2^{△Mye}

TUNEL/DAPI

В

Figure S7. HFD feeding is sufficient to induce NASH development in *Trem2*^{ΔMye} mice, related to Figure 7

(A) Representative H&E, Sirius Red/Fast Green, and α -SMA staining of liver sections from *Trem2^{F/F}* and *Trem2^{ΔMye}* mice that were fed with HFD for 24 weeks. Scale bar, 100 µm. *Trem2^{F/F}*, n = 6 mice; *Trem2^{ΔMye}*, n = 8 mice. Sirius Red/Fast Green staining was detected under polarized light. Sirius Red and α -SMA positive areas were quantified by ImageJ Software. Data are shown as mean ± s.e.m.. **p<0.01; ***p<0.001.

(B) Serum ALT, AST, hepatic hydroxyproline, and TNF amounts in liver tissue from mice as in (A) were quantified. Relative mRNA expression of fibrosis-related genes, inflammatory genes, and *Trem2* were measured by RT-qPCR in liver tissue. *Trem2*^{*F*/*F*}, n = 6 mice; *Trem2*^{ΔMye}, n = 8 mice. Data are shown as mean ± s.e.m.. *p<0.05; **p<0.01; ***p<0.001.

(C) Representative Oil Red O staining of liver sections from mice as in (A), scale bar, 100 μ m. Body weights, liver weights, serum TG, liver TG, and total cholesterol in these mice were also analyzed. *Trem2^{F/F}*, n = 6 mice; *Trem2^{ΔMye}*, n = 8 mice. Data are shown as mean ± s.e.m.. NS, not significant.

(D) Apoptotic cells in liver tissue from mice as in (A) were stained with TUNEL and quantified as the percentage of total cells per area (TUNEL, green; DAPI, blue). Scale bar, 100 μ m. *Trem2^{F/F}*, n = 6 mice; *Trem2^{ΔMye}*, n = 8 mice. Data are shown as mean ± s.e.m.. ***p<0.001.

Table S1. NAFLD activity score and fibrosis stage of mice treated with western diet, related to Figure 1.

Treatment	ND	WD_8 weeks	WD_24 weeks
Steatosis	0.0 (0.0)	1.9 (0.3)	3.0 (0.0)**
Lobular inflammation	0.0 (0.0)	0.6 (0.3)	1.9 (0.1)**
Ballooning score	0.0 (0.0)	0.0 (0.0)	1.1(0.3)**
NAFLD activity score	0.0 (0.0)	2.1 (0.4)	6.0 (0.3)***
Fibrosis stage	0.0 (0.0)	0.1(0.1)	2.4 (0.2)***

Results were expressed as mean \pm SEM and were compared by t test. ND: n = 8 mice, WD_8 weeks: n = 8 mice, WD_24 weeks: n = 7 mice. NAFLD, non-alcoholic fatty liver disease; ND, normal diet; WD, western diet. **p <0.01, ***p <0.001 WD_24 weeks vs. WD_8 weeks.

Table S2. Patient samples used for immunofluorescence staining, related to Figure 3.

Histology	ID	Date of collection	Gender	Age	Steatosis	Ballooning	Fibrosis	Inflammation	NAS	Source
	4859712	11/14/18	Female	42	0	0	0	0	0	NJDH
	4861745	11/21/18	Female	52	0	0	0	0	0	NJDH
	4862183	11/21/18	Male	46	0	0	0	0	0	NJDH
	4862845	11/28/18	Male	53	0	0	0	0	0	NJDH
	4865098	12/4/18	Female	32	0	0	0	0	0	NJDH
	4865259	12/5/18	Female	46	0	0	0	0	0	NJDH
	4845682	12/12/18	Female	59	0	0	0	0	0	NJDH
	4867190	12/19/18	Female	56	0	0	0	0	0	NIDH
	4869307	12/10/18	Male	56	0	0	0	0	0	
	4868954	12/13/10	Female	65	0	0	0	0	0	
	4000304	12/21/10	Malo	53	0	0	0	0	0	
	407 1300	12/20/10	Male	42	0	0	0	0	0	
	4070175	12/20/10	Male	4Z 56	0	0	0	0	0	
Normal	4070135	12/20/10	Fomolo	20	0	0	0	0	0	
	4071130	12/20/10	Female	30	0	0	0	0	0	
	4872029	1/8/19	Male	60	0	0	0	0	0	NJDH
	4874283	1/14/19		63	0	0	0	0	0	NJDH
	4881381	2/13/19	Female	45	0	0	0	0	0	NJDH
	4881887	2/15/19	Female	61	0	0	0	0	0	NJDH
	4880990	2/15/19	Female	51	0	0	0	0	0	NJDH
	4882146	2/19/19	Male	44	0	0	0	0	0	NJDH
	ev341L	7/31/17	Female	52	0	0	0	0	0	MSSM
	ev355L	9/11/17	Female	61	0	0	0	0	0	MSSM
	ev377L	11/2/17	Female	NA	0	0	0	0	0	MSSM
	ev404L	2/8/18	Male	80	0	0	0	0	0	MSSM
	ev421L	4/12/18	Male	72	0	0	0	0	0	MSSM
	ev497L	11/27/19	Male	50	0	0	0	0	0	UTSW
	4940478	11/1/19	Female	40	NA	NA	NA	NA	NA	NJDH
	4947448	12/4/19	Male	44	NA	NA	NA	NA	NA	NJDH
	4950436	12/20/19	Male	47	NA	NA	NA	NA	NA	NJDH
	4951557	12/26/19	Female	60	NA	NA	NA	NA	NA	NJDH
	4969248	5/15/20	Female	59	NA	NA	NA	NA	NA	NJDH
	4905743	5/15/20	Female	45	NA	NA	NA	NA	NA	NJDH
	4484117	6/12/20	Male	54	NA	NA	NA	NA	NA	NJDH
	4977176	6/23/20	Male	33	NA	NA	NA	NA	NA	NJDH
	4980541	7/10/20	Male	37	NA	NA	NA	NA	NA	NJDH
	4981115	7/14/20	Female	32	NA	NA	NA	NA	NA	NJDH
	4986296	8/7/20	Male	60	NA	NA	NA	NA	NA	NJDH
	4986857	8/14/20	Male	67	NA	NA	NA	NA	NA	NJDH
	4993740	9/11/20	Female	60	NA	NA	NA	NA	NA	NJDH
	4878616	10/16/20	Female	64	NA	NA	NA	NA	NA	NJDH
Steatosis	5019914	1/26/21	Female	36	NA	NA	NA	NA	NA	NJDH
	5027712	3/5/21	Male	53	NA	NA	NA	NA	NA	NJDH
	4899542	4/26/19	Male	57	NA	NA	NA	NA	NA	NJDH
	4709041	7/12/19	Male	31	NA	NA	NA	NA	ΝΔ	NIDH
	4922136	7/26/19	Female	38	NA	NA	NA	NA	NA	NJDH
	4922513	7/30/19	Female	45	NA	NA	NA	NA	NA	NJDH
	AV0641	2/12/15	Male	62	1	1	2	2	4	MSSM
	ev004L	4/13/17	Female	55	2	0	0	1	т 3	MSSM
	ev210L	4/25/17	Female	54	1	0	0	0	1	MSSM
	ev200L	6/8/17	NA		1	0	0	0	1	MSSM
	ev310L	6/10/17	Fomalo	72	1	0	0	0	1	MSSM
	ev320L	7/12/17	Mala	61	2	0	10	1	2	MSSN
	ev320L	1/13/17	NA		2	0	10	1	3	
	6V494L					0	10	1	2	
	4475075	2/0/20			2	0	4		<u></u> о	
	44/02/0	0/9/20	Female	43	3	1	3	4	9	
	4992833	9/0/20		40	3		3		0	
	4722154	1/3/17	Female	0/	3	2	2	2	9	
NASH	4/4329/	5/4/1/	Female	35	3	2	2	2	9	
	4725350	8/11/1/	⊢emale	48	3	2	2	2	9	
	4/66251	9/8/17	remale	51	3	2	2	2	9	NJDH
	4980849	//14/20	Male	37	3	1	2	2	8	NJDH
	4421813	3/23/17	Male	44	3	1	2	1	7	NJDH

4236607	4/26/17	Female	65	2	2	2	1	7	NJDH
4781173	11/15/17	Female	43	2	1	2	2	7	NJDH
4852038	10/11/18	Male	51	3	2	1	2	8	NJDH
4995309	12/29/20	Male	28	3	1	1	3	8	NJDH
4679596	5/13/16	Male	35	3	2	1	1	7	NJDH
4714550	11/25/16	Female	57	3	1	1	2	7	NJDH
4807723	7/27/18	Female	29	3	2	1	1	7	NJDH
4847573	9/17/18	Female	37	3	1	1	2	7	NJDH
4965941	4/28/20	Male	41	3	1	1	2	7	NJDH
4989971	8/25/20	Female	49	3	1	1	2	7	NJDH
5000705	10/20/20	Male	54	3	1	1	2	7	NJDH
4733307	3/7/17	Male	32	3	1	1	1	6	NJDH
ev112L	6/29/15	Male	64	2	1	2	2	5	MSSM
ev310L	6/2/17	Male	71	2	1	2	2	5	MSSM
ev311L	6/5/17	Female	52	2	1	2	2	5	MSSM
ev344L	8/8/17	Female	66	3	1	2	2	5	MSSM
ev399L	1/11/18	Male	39	3	1	2	1	4	MSSM
ev549L	11/3/20	Male	25	3	1	2	2	5	UTSW

In the study cohort for TREM2 expression analysis by immunofluorescence assay, 26 healthy controls (20 from NJDH, 5 from MSSM, 1 from UTSW), 28 steatosis (20 from NJDH, 6 from MSSM, 2 from UTSW) and 26 steatohepatitis (20 from NJDH, 5 from MSSM, 1 from UTSW) patient samples were collected during surgical operation between 2015 and 2021. The histological grading and staging of NAFLD and fibrosis were determined according to the published criteria¹. NJDH, Nanjing Drum Tower Hospital, Nanjing, China; MSSM, Mount Sinai Hospital, New York, NY, USA; UTSW, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Table S3. Patient samples used for ELISA analysis, related to Figure 4.

Histology	ID	Date of	Gender	Age	Steato	Ballooning	Fibrosi	Inflammation	NAS	Source
Thatology		collection			sis		S		score	
	4859712	11/14/18	Female	42	0	0	0	0	0	NJDH
	4861745	11/21/18	Female	52	0	0	0	0	0	NJDH
	4862183	11/21/18	Male	46	0	0	0	0	0	NJDH
	4862845	11/28/18	Male	53	0	0	0	0	0	NJDH
	4865098	12/4/18	Female	32	0	0	0	0	0	NJDH
	4865259	12/5/18	Female	46	0	0	0	0	0	NJDH
	4845682	12/12/18	Female	59	0	0	0	0	0	NJDH
	4867190	12/19/18	Female	56	0	0	0	0	0	NJDH
	4869307	12/10/18	Male	56	0	0	0	0	0	
	4868054	12/13/10	Fomalo	65	0	0	0	0	0	
Normal	4000904	12/27/10	Mala	52	0	0	0	0	0	
	407 1900	12/20/10	Male	40	0	0	0	0	0	
	4870173	12/28/18	Male	42	0	0	0	0	0	NJDH
	4870135	12/28/18	Male	56	0	0	0	0	0	NJDH
	48/1156	12/28/18	Female	38	0	0	0	0	0	NJDH
	4872029	1/8/19	Male	60	0	0	0	0	0	NJDH
	4874283	1/14/19	Male	63	0	0	0	0	0	NJDH
	4881381	2/13/19	Female	45	0	0	0	0	0	NJDH
	4881887	2/15/19	Female	61	0	0	0	0	0	NJDH
	4880990	2/15/19	Female	51	0	0	0	0	0	NJDH
	4882146	2/19/19	Male	44	0	0	0	0	0	NJDH
	4940478	11/1/19	Female	40	NA	NA	NA	NA	NA	NJDH
	4947448	12/4/19	Male	44	NA	NA	NA	NA	NA	NJDH
	4950436	12/20/19	Male	47	NA	NA	NA	NA	NA	NJDH
	4951557	12/26/19	Female	60	NA	NA	NA	NA	NA	NJDH
	4969248	5/15/20	Female	59	NA	NA	NA	NA	NA	NJDH
	4905743	5/15/20	Female	45	NA	NA	NA	NA	NA	NJDH
	4484117	6/12/20	Male	54	NA	NA	NA	NA	NA	NJDH
	4977176	6/23/20	Male	33	NA	NΔ	ΝΔ	NΔ	NA	NIDH
	4980541	7/10/20	Male	37	ΝΔ	ΝΔ	ΝΔ	NA	NA	NJDH
	4081115	7/14/20	Female	32	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	NIDH
Steatosis	4086206	8/7/20	Male	60	NA		NA	NA	NA	
	4900290	9/14/20	Male	67						
	4900007	0/14/20	Iviale	60					NA	
	4993740	9/11/20	Female	60	NA			NA NA	NA	
	4878010	10/16/20	Female	04	NA NA	INA NA		NA	NA	NJDH
	5019914	1/26/21	Female	36	NA	NA	NA	NA	NA	NJDH
	5027712	3/5/21	Male	53	NA	NA	NA	NA	NA	NJDH
	4899542	4/26/19	Male	57	NA	NA	NA	NA	NA	NJDH
	4709041	//12/19	Male	31	NA	NA	NA	NA	NA	NJDH
	4922136	7/26/19	Female	38	NA	NA	NA	NA	NA	NJDH
	4922513	7/30/19	Female	45	NA	NA	NA	NA	NA	NJDH
	4475275	11/11/16	Female	43	3	1	3	2	9	NJDH
	4992833	9/8/20	Female	45	3	1	3	1	8	NJDH
	4722154	1/3/17	Female	67	3	2	2	2	9	NJDH
	4743297	5/4/17	Female	35	3	2	2	2	9	NJDH
	4725350	8/11/17	Female	48	3	2	2	2	9	NJDH
	4766251	9/8/17	Female	51	3	2	2	2	9	NJDH
	4980849	7/14/20	Male	37	3	1	2	2	8	NJDH
NASH	4421813	3/23/17	Male	44	3	1	2	1	7	NJDH
	4236607	4/26/17	Female	65	2	2	2	1	7	NJDH
	4781173	11/15/17	Female	43	2	1	2	2	7	NJDH
	4852038	10/11/18	Male	51	3	2	1	2	8	NJDH
	4995309	12/29/20	Male	28	3	1	1	3	8	NJDH
	4679596	5/13/16	Male	35	3	2	. 1	1	7	NJDH
	4714550	11/25/16	Female	57	3	1	1	2	7	NIDH
	4807702	7/27/19	Fomalo	20	3	2	1	1	7	
	48/7572	Q/17/10	Female	23	3	1	1	2	7	
	4041313	4/20/20	Mole	11	2	1	1	2	7	
	4900941	4/20/20		41	3 2	1	1	2	7	
	4989971	0/25/20	remale	49	3			2	1	
	5000705	10/20/20	Iviale	54	3	1	1	2	/	NJDH
	4/3330/	3/7/17	Male	32	3	1	1	1	6	NJDH

In the study cohort for quantification of circulating sTREM2 amounts by ELISA assay, 20 healthy, 20 steatosis and 20 steatohepatitis patient samples were collected from NJDH during surgical operation between 2015 and 2021. The histological grading and staging of NAFLD and fibrosis were determined according to the published criteria¹. NJDH, Nanjing Drum Tower Hospital, Nanjing, China.

REFERENCES

1. Kleiner, D.E., Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.W., Ferrell, L.D., Liu, Y.C., Torbenson, M.S., Unalp-Arida, A., et al. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology *41*, 1313-1321. 10.1002/hep.20701.