Study	Input	Outcome(s)	Study design	Findings
Lusk et al.,	Areas with	Blood pressure	N=374; Correlating	Areas with high sound
2002 ¹	sound levels	and heart rate	person-level noise	levels are predictive of
	averaged		exposure with	increase in blood
	across a 5		physiological wellbeing;	pressure
	years interval		Method: Linear	
			regression	
Lee et al.,	Discrete sound	HRV (LF,	N=16; Treatment =	HRV decreases with
2010 ²	levels	LF/HF), Mean	Sound level exposure of	higher sound level
		blood pressure,	No noise, 50 dBA, 60	exposures, but no
		Mean heart rate	dBA, 70 dBA and 80	change in blood
			dBA for 5 minutes with	pressure and mean
			2 minutes interval;	heart rate
			Method: Repeated	
			measures ANOVA;	
			Spearman's Rho	
Jahncke et	Noisy	Cortisol,	N=47; Treatment =	Though noisy
al., 2011 ³	background,	Catecholamines,	Completed tasks for 2	background and river
	river sounds,	self-rating of	hours each in a low and	sounds have an effect
	nature movie	tiredness, mood	high noise conditions;	on psychological
			Repeated measures	outcomes, they had no
			ANOVA	significant effect on
				physiological outcomes
Kraus et	Sound levels	HRV (LF/HF,	N=110; Prospective	Sound levels have a
al., 2013 ⁴		SDNN, RMSSD)	panel study with	positive effect below 65
			participants spending up	dBA on SDNN, but is
			to 7.5 hours in a room;	not significantly related
			Method = Additive	to any of the other
			mixed models	outcomes
Sim et al.,	Sound types,	HRV (SDNN,	N=40; Treatment: 45	Increase in sound level
2015 ⁵	sound levels	HF, LF/HF)	dBA exposure for 5	negatively affects
			minutes; Method: Linear	physiological
			regression	wellbeing. Sound types
				do not have a
				significant effect on
				physiological outcomes
Walker et	Noise	HRV (SDNN,	N=10; Treatment = 40	High sound levels at
al., 2016 ⁶	exposure at 75	LF, RMSSD),	minutes noise exposure;	low-frequencies and
	dBA at low	blood pressure,	Method=Multivariate	high-frequencies have
	frequency and	salivary cortisol,	multilevel regression	significant negative
	high-frequency	amylase		effect on HRV

Supplementary Table 1: Literature on effect of workplace sound levels on physiological wellbeing

Park &	Floor impact	Noticeability,	N=21; Treatment = 5	Annoyance,
Lee, 2017^7	noises ranging	Annoyance,	sessions of 15 minutes	noticeability,
2017	from 31.5 dBA	Heart rate,	of different floor impact	electrodermal activity
	to 63 dBA	electrodermal	noises;	and respiration rate
	10 05 dB/	activity,	Method=Repeated	increases with sound
		respiration rate	measures ANOVA	level, but no significant
		respiration rate	Incasures ANOVA	change in heart rate.
				Physiological responses
				are not affected by noise source.
<u> </u>	0 11 1			
Cvijanović	Sound levels	Mental effort,	N=40; Treatment = 6	Though mental effort
et al.,		HRV (LF,	dBA background noise	required increases with
2017 ⁸		LF/HF) and skin	added while participants	sound levels, effect on
		conductance	completed collaborative	physiological wellbeing
			tasks;	was not significant
			Method=Multilevel	
			regression	
Srinivasan	Sound levels,	HRV (SDNN,	N=231; Method =	Sound level has an
et al.,	Temperature,	RMSSD,	Mixed lasso for identify	instantaneous effect on
2017^9	CO ₂ ,	normalized HF,	length of cumulative	HRV whereas other
	Humidity,	LF/HF)	lagged effect of inputs	environment factors
	Atmospheric		on outcomes	have a lagged effect of
	pressure			one hour
Abbasi et	Low-frequency	Mental fatigue,	N=35; Method =	Mental fatigue caused
al., 2018 ¹⁰	noise at four	LF/HF, working	ANOVA for group	by low-frequency noise
	different levels	memory	comparison in a	significantly impacted
			controlled experiment	the employees' psycho-
			setup	physiological and
				working memory
				responses

While multiple studies have analyzed the relationship between sound/noise levels in workspace and perceived stress or work performance, fewer studies have examined the physiological implications of workplace sound levels. Table 1 presents a list of studies that have analyzed the relationship between workplace sound levels and physiological wellbeing. The above list does not include studies focusing on psychosocial stress¹¹, work performance¹², mental wellbeing¹³, general workplace environment^{14,15}, but only studies which have considered

physiological wellbeing as one of their primary outcomes of interest and workplace sound as the input phenomenon.

Variable		Summary		
INTRAPERSONAL		-		
Numerical	Mean	SD	Units	% missing
SDNN	53.08	23.33	ms	-
Normalized-HF	19.81	12.70	%	-
Sound level	51.85	8.79	dBA	4.29
Physical activity level	0.1738	0.3164	G	0.07
Categorical	Category	Hours:Mins	Proportion	% missing
Time of day				0.00
	Morning	1224:10	45.76	
	Afternoon	1039:30	38.85	
	Evening	411:15	15.37	
Day of week				0.00
	Monday	449:25	16.80	
	Tuesday	860:50	32.18	
	Wednesday	916:55	34.28	
	Thursday	431:50	16.14	
	Friday	15:45	0.59	
INTERPERSONAL				
Numerical	Mean	SD	Units	% missing
Neuroticism	3.21	0.97	Scale 1-7	10.38
Noise sensitivity	4.05	1.17	Scale 1-7	9.52
Average sound exposure	51.99	4.89	dBA	4.33
Categorical	Category	No. of	Proportion	% missing
		participants		
Age				9.95
	Less than 30 years	30	12.98	
	30 - 39 years	62	26.83	
	40 - 49 years	43	18.61	
	50 - 59 years	56	24.24	
	60 years or above	17	7.36	
Gender				12.12
	Male	88	38.09	

Supplementary Table 2: Summary statistics of our data

	Female	115	49.78	
BMI				10.39
	18.5 - 25	76	32.9	
	25.1 - 30	81	35.06	
	30.1 - 35	30	12.98	
	Above 35.1	20	8.66	
Computer-dominant work				8.66
	Yes	93	40.26	
	No	118	51.08	
Management work				8.66
	Yes	69	29.87	
	No	142	61.47	
Technical work				8.66
	Yes	90	38.96	
	No	121	52.38	
Meeting heavy work				
	Yes	42	18.18	
	No	169	73.16	
Sleep problems				9.09
	Yes	42	18.18	
	No	168	72.73	
High blood pressure				9.09
	Yes	42	18.18	
	No	168	72.73	
Anxiety				9.09
	Yes	38	16.45	
	No	172	74.46	

Table 2 shows the summary statistics of relevant intrapersonal variables (i.e., wearable device based repeated measures and temporal information) and interpersonal variables (i.e., person-level information) in this study.

References

- Lusk, S. L., Hagerty, B. M., Gillespie, B. & Caruso, C. C. Chronic Effects of Workplace Noise on Blood Pressure and Heart Rate. *Archives of Environmental Health* 57, 273–281 (2002).
- 2. Lee, G.-S., Chen, M.-L. & Wang, G.-Y. Evoked response of heart rate variability using short-duration white noise. *Autonomic neuroscience : Basic & Clinical* vol. 155 94–97 Preprint at https://doi.org/10.1016/j.autneu.2009.12.008 (2010).
- 3. Jahncke, H., Hygge, S., Halin, N., Green, A. M. & Dimberg, K. Open-plan office noise: Cognitive performance and restoration. *Journal of Environmental Psychology* **31**, 373–382 (2011).
- 4. Kraus, U. *et al.* Individual daytime noise exposure during routine activities and heart rate variability in adults: a repeated measures study. *Environ Health Perspect* **121**, 607–612 (2013).
- 5. Sim, C. S. *et al.* The effects of different noise types on heart rate variability in men. *Yonsei Medical Journal* **56**, 235–243 (2015).
- 6. Walker, E. D., Brammer, A., Cherniack, M. G., Laden, F. & Cavallari, J. M. Cardiovascular and stress responses to short-term noise exposures—A panel study in healthy males. *Environmental Research* **150**, 391–397 (2016).
- 7. Park, S. H. & Lee, P. J. Effects of floor impact noise on psychophysiological responses. *Building and Environment* **116**, 173–181 (2017).
- 8. Cvijanović, N., Kechichian, P., Janse, K. & Kohlrausch, A. Effects of noise on arousal in a speech communication setting. *Speech Communication* **88**, 127–136 (2017).
- 9. Srinivasan, K. *et al.* A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications. in *Proceedings of the 7th International Conference on Digital Health* 99–103 (ACM Press, 2017).
- 10. Abbasi, A. M., Motamedzade, M., Aliabadi, M., Golmohammadi, R. & Tapak, L. Study of the physiological and mental health effects caused by exposure to low-frequency noise in a simulated control room. *Building Acoustics* **25**, (2018).
- 11. Leather, P., Beale, D. & Sullivan, L. Noise, psychosocial stress and their interaction in the workplace. *Journal of Environmental Psychology* **23**, (2003).
- 12. Nielsen, K. *et al.* Workplace resources to improve both employee well-being and performance: A systematic review and meta-analysis. *Work and Stress* Preprint at https://doi.org/10.1080/02678373.2017.1304463 (2017).
- 13. Goh, J., Pfeffer, J. & Zenios, S. A. The relationship between workplace stressors and mortality and health costs in the United State. *Management Science* (2016).
- 14. Thayer, J. F. *et al.* Effects of the physical work environment on physiological measures of stress. *European journal of cardiovascular prevention and rehabilitation* **17**, 431–9 (2010).
- 15. Colenberg, S., Jylhä, T. & Arkesteijn, M. The relationship between interior office space and employee health and well-being–a literature review. *Building Research and Information* **49**, (2021).