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Computational formula 

The specific capacity (C) was calculated on the basis of Eq. (1). 

𝐶 =
∫ 𝐼×𝑑𝑡

𝑚×𝑣×𝛥𝑉
                                                         (1) 

Where C is the specific capacitance (F g
−1

), I is the current (A), v is the scan rate (V 

s
−1

), ΔV is the applied potential window (V), and m is the electrode material mass (g). 

CV curves at different scan rates were used to quantify the contributions from diffu-

sion-controlled process (k1ν
1/2

) and capacitive process (k2ν), according to Eq. (2) and 

Eq. (3). 

𝑖𝑡𝑜𝑡𝑎𝑙 = 𝑖𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + 𝑖𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 = 𝑘1𝑣(1/2) + 𝑘2𝑣                           (2) 

𝑖(𝑉)/𝑣(1/2) = 𝑘1 + 𝑘2𝑣(1/2)                                           (3) 

Where i(V) and ν represent the total current (A) at a given potential and the sweep rate 

(v, V s
-1

) of a CV experiment. k1 or k2 is constant. 

The SAC (mg g
-1

) was calculated based on the conversion of conductivity to NaCl 

concentration, as presented in the following equation: 

𝑆𝐴𝐶 =
(𝐶0−𝐶𝑒)×𝑉

𝑚
                                                     (4) 

where C0 and Ce are the concentration of NaCl at initial and final stages (mg L
-1

), re-

spectively; V is the volume of NaCl solution (L); and m is the total active mass of the 

TiO2/Ti3C2 cathode (e.g., 0.016 g).  

The SAR (mg g
-1

 min
-1

) was calculated following to Eq. (5). 

𝑆𝐴𝑅 =
𝑆𝐴𝐶

𝑡
                                                         (5) 

Where SAC is the desalination capacity (mg·g
−1

), and t is the desalination time (min). 

The energy consumption required for removing 1 Kg NaCl (EM, KWh Kg
-1

 NaCl) and 

for treating 1 L feed water (EV, Wh m
-3

) are calculated by the following formula: 

𝐸𝑖𝑛 = ∫ 𝐼𝑉𝑑𝑡
𝑡𝑐𝑦𝑐𝑙𝑒

0
, 𝑤ℎ𝑒𝑟𝑒 𝐼𝑉 > 0                                        (6) 



𝐸𝑜𝑢𝑡 = ∫ 𝐼𝑉𝑑𝑡
𝑡𝑐𝑦𝑐𝑙𝑒

0
, 𝑤ℎ𝑒𝑟𝑒 𝐼𝑉 < 0                                       (7) 

𝐸𝑚 =
𝐸𝑖𝑛−𝜂𝐸𝑜𝑢𝑡

(𝐶0−𝐶𝑒)𝑉𝑑
                                                       (8) 

𝐸𝑣 =
𝐸𝑖𝑛−𝜂𝐸𝑜𝑢𝑡

𝑉𝑑
                                                       (9) 

where IV is the current-voltage product for a single electrode pair (W), tcycel means the 

time corresponding to one desalination cycle (min). 𝐸𝑖𝑛 is the total energy input 

during the batch-mode cycle (J), 𝐸𝑜𝑢𝑡 is the total recoverable energy from the cell 

over the batch mode cycle (J), and η is the fraction of 𝐸𝑜𝑢𝑡actually recovered and re-

used to power another charging phase. η is a part of Eout, which actually represents the 

next charging stage of recycling and reuse. Theoretically, the η approximately equals 

to 1. 𝑉𝑑 is the volume of desalinated water collected, the value of 𝑉𝑑 in our work is 

0.00004 m
3
. C0 and Ce are the concentration of NaCl at initial and final stages, respec-

tively. 

Charge efficiency (CE, Λ) of the HCDI system was calculated based on the ratio of the 

removed salt to charge passed through the cell, according to the following formula: 

𝛬 =
𝛤𝐹

𝛴
                                                            (10) 

Where Λ is the charge efficiency (%), F is the Faraday constant (96 485 C mol
−1

), Γ is 

the total salt adsorption (mol g
-1

), and Σ is the total charge during the CDI adsorption 

process (C). 

 

  



 

 

Figure S1 Schematic diagram and image of the CDI unit cell. 

 

  



 

Figure S2 SEM images of TiO2/Ti3C2-8. 

  



 

Figure S3 SAED pattern of TiO2/Ti3C2 composite.  



 

Figure S4 XPS survey spectrum and high-resolution Ti 2p of Ti3C2  

  



 

Figure S5 (a) Crystal model of TiO2/Ti3C2 heterojunction after relaxation; (b) Planar 

electrostatic potential and charge difference of TiO2/Ti3C2; DOS analysis of (c) TiO2 

and (d) Ti3C2. 

  



 

Figure S6 CV profiles of TiO2/Ti3C2 in different electrolytes at scan rate of 1 mV s
-1

. 
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Figure S7 Salt adsorption capacity and rate of TiO2/Ti3C2 under different current 

densities in membrane-free CDI system. 

  



 

Figure S8 Desalination capacity retention of TiO2/Ti3C2 electrode at the current density 

of 25 mA g
-1

 over 200 cycles and the corresponding change in desalination capacity 

over time. 

  



 

Figure S9 Desalination capacity retention of TiO2/Ti3C2 electrode at the current density 

of 15 mA g
-1

 over 40 cycles and the corresponding change in desalination capacity 

over time. 

  



 

Figure S10 Plot of NaCl solution conductivity variation versus time during the desal-

ination process tested in 500 mg L
-1

 NaCl solution at an applied voltage of 1.2 V for 

60 min. 

 

  



 

Figure S11 Solution conductivity vs. runtime of TiO2/Ti3C2 electrode in a NaCl aque-

ous solution of 500 mM upon an external voltage of 1.2 V. 
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Figure S12 Energy consumption required for treating 1 L feed water (EV, Wh m
-3

) at 

different current density and voltage windows. 
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Figure S13 Charge efficiency of TiO2/Ti3C2 under various operating conditions. 

 

  



 

Figure S14 Schematic diagram for the asymmetric CDI cell (AC//TiO2/Ti3C2) 

  



Table S1 Atomic fraction of elements on the surfaces of Ti3C2/TiO2 composites. 

Element Atomic Fraction (%) 

C 12.90 

Ti 40.84 

O 38.68 

F 7.58 

  



Table S2 Capacitance comparison with other electrodes based on TiO2/MXene heter-

ostructures  

Electrode materials 

Scan rate/ Current 

density 

Electrolyte 

 

Specific capaci-

ty 

Ref 

TiO2-Ti3C2 5 mV s-1 6 M KOH 143 F g-1 [1] 

TiO2/Ti3C2 0.3 A g-1 2 M KOH 102.5 F g-1 [2] 

TiO2/Ti3C2Tx -350 1 mV s-1 1 M NaCl 164 F g-1 [3] 

PANI@TiO2/Ti3C2Tx 10 mV s-1 1 M KOH 188.3 F g-1 [4] 

GO/TiO2 5 mV s-1 1 M Na2SO4 100 F g-1 [5] 

N-Ti3C2Tx 1 mV s−1 1 M H2SO4 192 F g-1 [6] 

N/S-Ti3C2 2 mV s-1 1 M Li2SO4 175 F g-1 [7] 

Ti3C2/TiO2–nanoparticles 2 mV s-1 6 M KOH 128 F g-1 [8] 

N-TiO2/TiN/Ti3C2Tx-6 5 mV s-1 1 M H2SO4 125 F g-1 [9] 

TiO2/MXene/GO 10 A g-1 1 M LiPF6 78 mAh g-1 [10] 

HC-MXene/TiO2 1 A g-1 1 M NaClO4 250 mAh g-1 [11] 

2D/2D TiO2/MXene 1 A g-1 1 M LiPF6 55 mAh g-1 [12] 

N-TiO2−x/C 0.1 A g-1 1 M NaCl 23.6 mAh g-1 [13] 

TiO2/Ti3C2 

10 mV s-1 1 M NaCl 207 F g-1 

This work 

1 mV s-1 1 M KOH 93 F g-1 

1 mV s-1 1 M Na2SO4 233 F g-1 

1 mV s-1 1 M H2SO4 528 F g-1 

1 mV s-1 1M Li2SO4 123 F g-1 

1 mV s-1 1 M LiPF6 173 F g-1 

  



Table S3 Internal resistance (Rs) and charge transfer resistance (Rct) of Ti3C2 and 

TiO2/Ti3C2 

Sample Rs (Ω) Rct (Ω) 

Ti3C2 1.33 1.25 

TiO2/Ti3C2 1.42 0.81 

  



Table S4 Summary of salt desalination performance of MXene-based electrodes ma-

terials. 

MXene-based 

electrode 

Opera-

tion mode 

Initial con-

centr-ation 

(mg L-1) 

Applied 

volt-

age/Cur-re

nt density 

SAC 

(mg 

g-1) 

SAR 

(mg g-1 

min-1) 

Cycle 

sta-

bility 

Energy 

Con-

sum-pti

on 

Ref. 

NaOH-Ti3C2

Tx 

Flow-by 

CDI 

100 1.2 V 12.19 - 20 - [14] 

PPy-NiCo-L

DH@MXene 

Flow-by 

CDI 

200 1.2 V 31.5 4.7 40 - [15] 

Ti3C2-MXene Flow-by 

CDI 

292 1.2 V 13±2 1 30 - [16] 

Fe3O4@Ti3C2 Flow-by 

MCDI 

500 1.2 V 44 1.47 40 - [17] 

mPDA/MXen

e 

Flow-by 

MCDI 

1000 1.5 V 37.72 1.27 200 0.69 

kWh 

kg-1 

NaCl 

[18] 

poly(vinylalc

ohol)/Ti3C2Tx 

Flow-by 

MCDI 

1000 10 mA g-1 41.4 - 100 25 KWh 

kg-1 

NaCl 

[19] 

N–Ti3C2Tx Flow-by 5000 1.2 V 43.5± - 24 - [20] 



CDI 1.7 

MXene/rGO Flow-by 

CDI 

135 1.2 V 48 4.8 10 - [21] 

Functional-

ized MXene 

Flow-by 

CDI 

5000 1.2 V 49 2.92 100 0.38 

kWh 

kg-1 

NaCl 

[22] 

MXene/BC Flow-by 

CDI 

585 1.2 V 12.27 1.23 20 63 

Wh·m−3 

[23] 

Cellulose 

fibers/ 

Ti3C2Tx 

MXene 

Flow-by 

CDI 

600 1.2 V 34 0.81 10 53.5 

kT/ion 

[24] 

W18O49/Ti3C2 Flow-by 

MCDI 

500 1.2 V 29.25 0.97 10 0.5642 

kWh 

kg-1 

NaCl 

[25] 

MXene@CO

F 

Flow-by 

CDI 

500 1.2 V 24.5 0.81 100 - [26] 

MoS2@MXe

ne 

Flow-by 

CDI 

500 1.2 V 35.6 2.6 40 0.544 

kWh 

kg-1 

[27] 



NaCl 

Ti3C2Tx film Flow-by 

MCDI 

585 20 mA·g−1 67.7 0.78 50 0.24  

kWh 

kg-1 

NaCl 

[28] 

TiO2/Ti3C2 

Flow-by 

CDI 

500 15 mA g-1 55.3 0.63 -- -- 

This 

wor

k 

Flow-by 

MCDI 

500 15 mA g-1 75.62 0.68 40 0.49 

kWh 

kg-1 

NaCl 

(12.42 

Wh m-3) 

Flow-by 

MCDI 

500 1.2 V 64.32 1.07 -- -- 
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