National Science Review

Supplementary Data for

Key gene networks that control magnetosome biomineralization in magnetotactic bacteria

Peiyu Liu[#], Yue Zheng[#], Karim Benzerara, Nicolas Menguy, Xiang Zhao, Andrew P. Roberts, Rongrong Zhang, Jinling Bai, Kelei Zhu, Yongxin Pan, Jinhua Li^{*}

*Corresponding author: Jinhua Li (lijinhua@mail.iggcas.ac.cn)

[#]Peiyu Liu and Yue Zheng contributed equally to this work

This file includes: Methods and materials Figures S1-S33 Tables S1-S12 Supplementary references related to Supplementary Data.

Methods and materials Sediment sampling, MTB collection, and sample preparation

Sediment sampling in the field and sample transfer and microcosm set-up in the laboratory followed a process described previously [1] (Table S1). MTB in microcosms were checked routinely with the hanging-drop technique [2] using an Olympus BX51 microscope equipped with phase-contrast, fluorescence, and a DP70 digital camera system (Olympus Corp., Tokyo, Japan). Living MTB cells were extracted magnetically from sediments in the microcosms with a homemade magnetic separation apparatus (Table S2) [3], washed three times with Milli-Q water, and were divided into three subsamples for TEM, molecular (16S rRNA and metagenomic sequencing), and FISH-SEM experiments, respectively, following the protocol of Li et al. [4].

16S rRNA gene sequencing and correlative FISH-SEM analysis

The procedure used for PCR amplification, sequencing of 16S rRNA genes (~1,450 bp), and subsequent phylogenetic analysis are as described by [4]. 16S rRNA gene sequences that share identities > 98.7% (species criterion level) are regarded as from the same strain [5]. Bacterial identification was performed by a correlated FISH-SEM approach at the single-cell level [4]. Eight species-specific oligonucleotide probes were used for FISH experiments (Table S11). Their probe specificity was evaluated with the online probe evaluation tool ProbeMatch [6] (Table S12). Fluorescence microscopy experiments were carried out using an Olympus BX51 microscope. After fluorescence microscope observations, the same sample was carbon-coated using a Leica ACE200 Low Vacuum Sputter Coater (Leica Microsystems, Wetzlar, Germany), and was observed using a Zeiss Ultra-55 field-emission gun SEM (Carl Zeiss, Germany) operating at 5 kV.

Metagenome sequencing, scaffold assembly, and genome binning

To acquire sufficient DNA samples for whole-genome sequencing, the genome DNA of living MTB cells was amplified with a REPLI-g Single Cell Kit (Qiagen, Germany) following manufacturer instructions. Amplification products were then purified and small fragments (e.g., shorter than 4000 bp) were discarded with a QIAEX II Gel Extraction Kit (Qiagen, Germany). Purified genome DNA was sequenced using an Illumina HiSeq 6000 with the pair-end strategy of 150-bp reads with an average 270-bp insert size (Annoroad, Beijing, China). Raw Illumina reads were trimmed to remove adapter sequences and low-quality bases using the Trimmomatic software [7]. Then clean reads were assembled into scaffolds using the IDBA software [8] with kmer = 20, 40, 60, 80, 100, and 120, respectively, and optimal scaffolds assembled with different kmer values were filtered. Then optimal scaffolds were binned and reassembled with the MetaWRAP software [9]; scaffolds shorter than 1500 bp were abandoned. Completeness and contamination values of each genome were obtained using lineage-

specific marker genes and default parameters in CheckM v.1.0.12 [10]; high quality genomes were retained (completeness \geq 80%, contamination \leq 5%). Via BLAST search, nine 16S rRNA gene fragments were identified from genome drafts and were linked to decided MTB strains by the correlative FISH-SEM approach (Table S4). The other six genomes also correspond to MTB strains because they were retrieved from phylogenetically and morphologically identified MTB. The average nucleotide identity (ANI) was calculated using the Jspecies software (version 1.2.1) [11].

Gene annotation and phylogenetic analysis

Genomes were annotated with the online database GeneMarkS (http://topaz.gatech.edu/GeneMark/genemarks.cgi) [12]. Homologous magnetosome protein sequences Mam-A, -B, E, -I, -K, -M, -P, and -Q were identified within the refseq protein database using the offline BLAST software with each magnetosome protein from Magnetospirillum gryphiswaldense MSR-1, Magnetococcus marinus MC-1, Desulfovibrio magneticus RS-1, and Ca. Magnetobacterium casensis MYR-1 as query sequence. Proteins within the threshold value (i.e., identification \geq 50%, coverage \geq 90%) are regard as homologous proteins. Other magnetosome proteins and proteins in MGCs were checked manually and verified using the NCBI BLAST webserver [13]. The whole-genome phylogenetic tree was constructed using the genome data acquired here and from the NCBI database (www.ncbi.nlm.nih.gov). The GTDB-Tk v.0.1.3 'classify wf' command was used to find 120 single-copy bacterial marker protein sequences from these genomes to construct their multiple alignments and taxonomic assignments using the GTDB r86 database [14]. A maximum-likelihood tree was calculated with IQ-TREE [15] under evolutionary models selected by ModelFinder [16] with 1000 ultrafast bootstraps. Finally, the whole-genome tree was visualized using FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). Both the 16S rRNA gene sequences of MTB strains and the coding protein sequences of magnetosome genes containing HtrA protease-like domain (i.e., mamO, mamE, mamE-Cter, mamEO, and mamE-Nter) were aligned using the Muscle algorithm (version 3.8.31) [17]. Phylogenetic trees based on 16S rRNA gene sequences and coding protein sequences were both constructed using the same method as stated above.

Conserved protein domain prediction, and 3-D protein structure modeling

Protein transmembrane domains are predicted using the TMHMM 2.0 online server (<u>https://services.healthtech.dtu.dk/service.php?TMHMM-2.0</u>). Functional protein domains were analyzed using the CDD database [18]. The 3-D protein structure models were constructed using the DeepMind AlphaFold2 [19] and RoseTTAFold [20] software. Predicted local-distance difference test (pLDDT) scores were used to assess confidence measures. After comparing predicted protein structures from the two software packages, protein structure models with lower confidence (pLDDT) were

discarded. The 3-D protein structure comparison was performed using the PyMOL software (version 2.4). The root mean squared deviation (RMSD) was used to evaluate the structural similarities of proteins.

TEM Analysis

TEM experiments were performed with a JEM2100 instrument (JEOL Ltd., Tokyo, Japan) operating at 200 kV at the Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. Cell diameter, particle number, and crystal length (along the long axis) and width (perpendicular to the long axis) of magnetite particles were measured from TEM images of individual MTB cells. The shape factor of particles is the width/length ratio. For each MTB strain, at least 30 individual cells were selected randomly for statistical analysis of cell diameter and particle number, with at least 300 individual particles selected randomly for statistical analysis of crystal length and width.

Figure S1. Bacterial identification, morphological, and genomic features of strain YQC-9. (a) Fluorescence microscopy image of YQC-9 cells *in situ* hybridized with the 5'-FAM-labeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of YQC-9 cells hybridized *in situ* with the 5'-Cy3-labeled YQC-9-specific probe YQC9-115. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) Low-magnification SEM image of the same field of view as in (c). (e) and (f) SEM images of two YQC-9 cells indicated by corresponding lowercase letters in (d). These cells contain non-linear magnetosome chains. (g) TEM image of YQC-9. (h) High-magnification TEM image of magnetic particles in a YQC-9 cell. (i) The bar chart represents the completeness, contamination, and strain heterogeneity of the YQC-9 genome.

Figure S2. Bacterial identification, morphological, and genomic features of strain XQGC-1. (a) Fluorescence microscopy image of XQGC-1 cells *in situ* hybridized with the 5'-FAMlabeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of XQGC-1 cells hybridized *in situ* with the 5'-Cy3-labeled XQGC-1-specific probe XQGC1-539. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) SEM image of the same field of view as in (c). (e) High-magnification SEM image for a region with two XQGC-1 cells indicated by the white dashed square in (d). Both cells of strain XQGC-1 contain two magnetosome chains. (f) High-magnification SEM image of an unknown MTB cell indicated by the corresponding lowercase letter in (d). This MTB cell contains one magnetosome chain. (g) TEM image of a XQGC-1 cell. (h) High-magnification TEM image of magnetic particles in XQGC-1. (i) The bar chart represents the completeness, contamination, and strain heterogeneity of the XQGC-1 genome.

Figure S3. Bacterial identification, morphological, and genomic features of strain MYC-9. (a) Fluorescence microscopy image of MYC-9 cells *in situ* hybridized with the 5'-FAM-labeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of MYC-9 cells hybridized *in situ* with the 5'-Cy3-labeled MYC-9-specific probe MYC9-924. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) SEM image of the same field of view as in (c). (e) High-magnification SEM image for a region with two MYC-9 cells outlined by the white dashed box in (d). Both cells of strain MYC-9 contain two double magnetosome chains. (f) TEM image of a MYC-9 cell. (g) High-magnification TEM image of magnetic particles in MYC-9. (h) The bar chart represents the completeness, contamination, and strain heterogeneity of the MYC-9 genome.

Figure S4. Bacterial identification, morphological, and genomic features of strain YQC-5. (a) Fluorescence microscopy image of a YQC-5 cell *in situ* hybridized with the 5'-FAM-labeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of a YQC-5 cell hybridized *in situ* with the 5'-Cy3-labeled YQC-5-specific probe YQC5-911. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) SEM image of the same field of view as in (c). (e) SEM image of a YQC-5 cell indicated by corresponding lowercase letters in (d). This cell contains double magnetosome chains. (f) TEM image of a YQC-5 cell. (g) High-magnification TEM image of magnetic particles in YQC-5. (h) The bar chart represents the completeness, contamination, and strain heterogeneity of the YQC-5 genome.

Figure S5. Bacterial identification, morphological, and genomic features of strain WYHS-4. (a) Fluorescence microscopy image of WYHS-4 cells *in situ* hybridized with the 5'-FAM-labeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of WYHS-4 cells hybridized *in situ* with the 5'-Cy3-labeled WYHS-4-specific probe WYHS4-1217. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) Low-magnification SEM image of the same field of view as in (c). (e) SEM image of a WYHS-4 cell indicated by the corresponding lowercase letter in (d). The WYHS-4 cell contains a single magnetosome chain. (f) TEM image of a WYHS-4 cell. (g) High-magnification TEM image of magnetic particles in a WYHS-4 cell. (h) The bar chart represents the completeness, contamination, and strain heterogeneity of the WYHS-4 genome.

Figure S6. Bacterial identification, morphological, and genomic features of strain YQV-1. (a) Fluorescence microscopy image of a YQV-1 cell *in situ* hybridized with the 5'-FAM-labeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of a YQV-1 cell hybridized *in situ* with the 5'-Cy3-labeled YQV-1-specific probe YQV1-195. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) Low-magnification SEM image of the same field of view as in the boxed area in (c). (e) SEM image of a YQV-1 cell indicated by the corresponding lowercase letter in (d). The YQV-1 cell contains a single magnetosome chain. (f) TEM image of a YQV-1 cell. (g) High-magnification TEM image of magnetic particles in YQV-1. (h) The bar chart represents the completeness, contamination, and strain heterogeneity of the YQV-1 genome.

Figure S7. Bacterial identification, morphological, and genomic features of strain MYC-10. (a) Fluorescence microscopy image of MYC-10 cells *in situ* hybridized with the 5'-FAM-labeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of MYC-10 cells hybridized *in situ* with the 5'-Cy3-labeled MYC-10-specific probe MYC10-60. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) SEM image of the same field of view as in (c). (e) SEM image of a MYC-10 cell indicated by the corresponding lowercase letter in (d). The MYC-10 cell contains multiple magnetosome chain bundles. (f) TEM image of a MYC-10 cell. (g) High-magnification TEM image of magnetic particles in MYC-10. (h) The bar chart represents the completeness, contamination, and strain heterogeneity of the MYC-10 genome.

Figure S8. Bacterial identification, morphological, and genomic features of strain YQR-1. (a) Fluorescence microscopy image of a YQR-1 cell *in situ* hybridized with the 5'-FAM-labeled universal bacterial probe EUB338. (b) Fluorescence microscopy image of a YQR-1 cell hybridized *in situ* with the 5'-Cy3-labeled YQR-1-specific probe YQR1-1423. (c) Overlapping fluorescence microscopy image of (a) and (b). (d) SEM image of the same field of view as in (c). (e) High-magnification SEM image of YQR-1 cell. (g) High-magnification TEM image of magnetic particles in YQR-1. (h) The bar chart represents the completeness, contamination, and strain heterogeneity of the YQR-1 genome.

Figure S9. Morphological and genomic features of strain DMHC-1. (a) TEM image of a DMHC-1 cell. (b) High-magnification TEM image of magnetic particles in DMHC-1. (c) The bar chart represents the completeness, contamination, and strain heterogeneity of the DMHC-1 genome.

Figure S10. Morphological and genomic features of strain DMHC-6. (a) TEM image of a DMHC-6 cell. (b) High-magnification TEM image of magnetosome assembly configurations of DMHC-6. (c) Bar chart represents the completeness, contamination, and strain heterogeneity of the DMHC-6 genome.

Figure S11. Morphological and genomic features of strain DMHC-8. (a) TEM image of a DMHC-8 cell. (b) High-magnification TEM image of magnetic particles in DMHC-8. (c) The bar chart represents the completeness, contamination, and strain heterogeneity of the DMHC-8 genome.

Figure S12. Morphological and genomic features of strain THC-1. (a) TEM image of a THC-1 cell. (b) High-magnification TEM image of magnetic particles in THC-1. (c) The bar chart represents the completeness, contamination, and strain heterogeneity of the THC-1 genome.

Figure S13. Morphological and genomic features of strain WYHC-3. (a) TEM image of a WYHC-3 cell. (b) High-magnification TEM image of magnetic particles in WYHC-3. (c) The bar chart represents the completeness, contamination, and strain heterogeneity of the WYHC-3 genome.

Figure S14. Morphological and genomic features of strain YQC-3. (a) TEM image of a YQC-3 cell. (b) High-magnification TEM image of magnetic particles in strain YQC-3. (c) The bar chart represents the completeness, contamination, and strain heterogeneity of the YQC-3 genome.

Figure S15. Morphological and genomic features of strain SHHR-1. (a) TEM image of the SHHR-1 cell. (b) High-magnification TEM image of magnetic particles in strain SHHR-1. (c) The bar chart represents the completeness, contamination, and strain heterogeneity of the SHHR-1 genome.

Figure S16. Phylogenetic distribution of phylogenetically and morphologically identified MTB (blue solid circles), MTB with accessible genome (yellow solid circles), and MTB in this study (red solid circles). The phylogenetic tree was constructed based on 16S rRNA gene sequences. Bootstrap values at nodes are percentages of 1,000 replicates.

Figure S17. Magnetosome gene content in 47 tested MTB strains. MTB strains are shown in groups according to their phylogeny. Strain names in bold and yellow background, white background, and gray font represent genomes reported in this study, reported previously, and containing high contamination (> 10%), respectively. Black solid circles indicate that the gene was identified in MGCs. Yellow solid circles indicate that the gene was identified outside MGCs. Red solid circles indicate that the gene is absent in genomes. Black hollow circles with a red asterisk inside indicate that the gene was not detected possibly due to incomplete genome sequencing. For instance, the absence of *mamI* in YQC-3 is possibly due to incomplete gene sequencing (~80.2% completeness).

Figure S18. Content of *mad* and *man* genes in MTB strains affiliated with the Desulfobacterota and Nitrospirota phyla. MTB strains are shown in groups according to their phylogeny. Strain names in bold and yellow background represent genomes from this study; those in gray font have high contamination (> 10%). Black solid circles indicate that the gene was discovered in genomes. Black hollow circles indicate that the gene was absent in genomes. Black hollow circles with a red asterisk inside indicate that the gene was not detected possibly due to incomplete genome sequencing. The absence of some *man* genes in the genome of *Candidatus* Magnetobacterium bavaricum (~87.1% completeness) and strain CS-04 (~81.6% completeness) are possibly due to incomplete gene sequencing.

Figure S19. Phylogenetic distribution of magnetosome genes containing HtrA protease-like domain (i.e., *mamO*, *mamE*, *mamE-Cter*, *mamEO*, and *mamE-Nter*). The phylogenetic tree is based on the coding protein sequences of the magnetosome genes. The HtrA protease family proteins DegS, DegP, and DegQ from strains in the Pseudomonadota phylum were used to root the tree. Bootstrap values at nodes are percentages of 1,000 replicates.

Figure S20. Gene organization and order of MGCs in MTB strains affiliated with the Nitrospirota phylum. Strain names in bold and yellow background represent genomes reported in this study; those in gray font have high contamination (> 10%). Dotted lines between MGCs indicate homologous genes.

Figure S21. Gene organization and order of MGCs in MTB strains affiliated with the Desulfobacterota phylum. Dotted lines between MGCs indicate homologous genes.

Figure S22. Gene organization and order of MGCs in MTB strains affiliated with the Pseudomonadota phylum. Strain names in bold and yellow background represent genomes reported in this study.

Figure S23. (a) Modeling of the 3-D structure of the Mad23 protein from strain YQR-1 with an average pLDDT 75.3. The HEAT repeat domain is marked in red. (b) Scatter plot of the confidence of amino acid in (a). The x-axis represents the amino acid positions. The y-axis represents the amino acid pLDDT value.

Figure S24. (a) Modeling of the 3-D structure of the Mad9 protein from strain BW-1 with an average pLDDT 91.6. The iron-sulphur binding domain is marked in cyan; the helixes and pleated sheets in the iron-sulphur binding domain are marked in green and red, respectively. (b) Scatter plot of the confidence of amino acid in (a). The x-axis represents the amino acid position. The y-axis represents the amino acid pLDDT value.

Figure S25. Modeling of the 3-D structures of the proteins Mms6 and Mms6-L. The transmembrane domains, regions outside the magnetosome membrane, and regions inside the magnetosome membrane are marked in blue, red, and green, respectively. Fe binding residues are highlighted in yellow. (a) and (b) Predicted 3-D structure of the Mms6 protein from strain AMB-1 and Mms6-L protein from strain THC-1 with the pLDDT 83 and 91, respectively. (c) and (d) Scatter plots of the confidence of amino acid in (a) and (b), respectively. The x-axis represents the amino acid position. The y-axis represents the error estimate (Å) of each amino acid. (f) 3-D structure comparison between (a) and (b) (in cyan) with the RMSD 3.7 Å.

Figure S26. Modeling of the 3-D structures of the potential Fe binding Mad proteins. The transmembrane domains, regions outside the magnetosome membrane, and regions inside the magnetosome membrane are marked in blue, red, and green, respectively. Fe binding residues are highlighted in yellow. (a), (c), (e), (g), and (i) Predicted 3-D structures of the proteins Mad3-5, Mad8, and Mad19 from strain BW-1 with the pLDDT 53-83. (b), (d), (f), (h), and (j) Scatter plots of the confidence of amino acid in (a) (c), (e), (g), and (i), respectively. The x-axis represents the amino acid position. The y-axis represents the error estimate (Å) or amino acid pLDDT value.

Figure S27. Modeling of the 3-D structures of the potential Fe binding Man proteins. The transmembrane domains, regions outside the magnetosome membrane, and regions inside the magnetosome membrane are marked in blue, red, and green, respectively. Fe binding residues are highlighted in yellow. (a) - (c) Predicted 3-D structure of the proteins Man1, Man3, and Man4 from strain YQR-1 with the average pLDDT 59-94.4. (d) - (f) Scatter plots of the confidence of amino acid in (a), (b), and (c), respectively. The x-axis represents the amino acid position. The y-axis represents the error estimate (Å) or amino acid pLDDT value.

Figure S28. Relationship between magnetosome magnetite morphology and magnetosome gene cluster content. MTB strains are shown in groups according to their phylogeny and magnetosome crystal morphologies. The Greek letters α , η , and γ represent Alphaproteobacteria, Candidatus Etaproteobacteria, and Gammaproteobacteria classes. Strain names in bold and yellow background represent genomes reported in this study; gray font indicates high contamination (> 10%). Black solid circles indicate the presence of the corresponding magnetosome gene cluster, while black hollow circles correspond to its absence.

Figure S29. Relationship between similarities of MamK proteins and chain configuration of Proteobacteira strains. MTB strains are plotted on the horizontal axis and similarities between MamK proteins in each strain are represented on the vertical axis. Strain MYC-9 is an exception and contains two copies of the *mamK* gene and their coding protein sharing $< \sim 67\%$ similarity. A possible explanation is that this strain also contains another copy of the *mamK* gene, which is absent due to incomplete gene sequencing ($\sim 96.4\%$ completeness).

Figure S30. Modeling of 3-D structures of the SMC family proteins Mad24 and Man5. SMC domains and ATPase domain are marked in green and magenta, respectively. The potential Fe binding residues are highlighted in yellow. (a) - (c) Predicted 3-D structure of the Mad24 protein from strains BW-1 and RS-1, and Man5 protein from strain YQR-1 with the pLDDT 73-89.9. (d) - (f) Scatter plots of the confidence of amino acid in (a), (b), and (c), respectively. The x-axis represents the amino acid position. The y-axis represents the error estimate (Å) or amino acid pLDDT value.

Figure S31. Modeling of the 3-D structures of the ATPase proteins in the Desulfobacterota phylum. ATPase domains are marked in blue. (a) – (d) Predicted 3-D structure of the proteins Mad22, Mad25, Mad27, and Mad29 from strain BW-1 with the pLDDT 72.3-90.4. (e) – (h) Scatter plots of the confidence of amino acid in (a), (b), (c), and (d), respectively. The x-axis represents the amino acid position. The y-axis represents the amino acid pLDDT value.

Figure S32. Modeling of the 3-D structures of the ATPase proteins in the Nitrospirota phylum. (a) and (b) Predicted 3-D structure of the proteins Mad26 and Man6 from strain YQR-1 with the pLDDT 90.7 and 68.9, respectively. (c) and (d) Scatter plots of the confidence of every amino acid in (a), and (b), respectively. The x-axis represents the amino acid position. The y-axis represents the amino acid pLDDT value.

Figure S33. Relationship between magnetosome chain assemblies and magnetosome gene cluster contents. MTB strains are shown in groups according to their phylogeny and magnetosome chain assemblies. Strain names in bold and yellow background represent genomes reported in this study, and in gray font represent containing high contamination (> 10%). Black solid circles indicate the presence of the corresponding magnetosome gene cluster, while the black hollow circle indicates its absence.

Supplementary Tables

Sample site	Location	Sampling time	Water Temp. (°C)	pН	Salinity (‰)	Latitude (N)	Longitude (E)	Environment
Miyun Lake	Beijing city	June, 2016	19	7.52	0.19	40°31′11.7″	116°50′7.0″	
Yuqiao Lake	Tianjing city	July, 2017	21	7.57	0.24	40°2′28″	117°27′21″	Encohrvieten
Weiyanghu Lake	Xi'an city	October, 2018	21	8.38	0.58	34°24'12.1"	108°59′9.4″	Freshwater
Daminghu Lake	Jinan city	January, 2017	3	7.87	0.38	36°40′19″	117°1′18.53″	
Xingqinggong Lake	Xi'an city	July, 2019	22	7.93	0.55	34°15′49.8″	108°58'9.3"	
Fuzhou Saltern	Dalian city	August, 2019	26	8.01	38.4	39°40′31.11″	121°59′33.98″	Salt pond

Table S1. Sampling locations and environmental factors at the time of sampling.

Notes: Miyun (MY) and Yuqiao (YQ) lakes are located in Beijing and Tianjin cities, respectively. Both lakes are artificial reservoirs that serve as the main drinking water source for city residents. Weiyanghu (WYH) and Xingqinggong (XQG) lakes are located in Xi'an city, Shaanxi province. They are artificial lakes in the Weiyang Lake Amusement Park and Xingqing Palace Park, respectively. Daminghu (DMH) lake is located in Daming Lake Park in the center of Jinan city, Shandong province. Fuzhou saltern (FZS) is located in Dalian city, Liaoning province, and contains many salt evaporation ponds in Bohai Bay.

Microcosms	Strain	No. of clones	Percentage of clones (%)	Most similar strain	Accession	Identity (%)	Reference
Mi	WYHC-3 ^{&}	17	85	-	MN396581	100	[1]
Microcosm-1	OTU1	3	15	Azospirillum sp. B510	AP010949	98.2	[21]
Mi	YQV-1*	16	80	XQGS-1	MZ268120	95.98	[22]
Microcosm-2	OTU2	4	20	clone TIIF1	DQ297956	99.22	Unpublished
Mianagam 2	WYHS-4*	12	41.4	LBB-42	MH571849	91.35	[23]
Microcosiii-5	THC-1 ^{&}	17	58.6	THC-1	MN396570	100	[1]
Microcosm-4	XQGC-1#	20	100	OTU51	GQ468517	99.73	[24]
	MYC-9#	11	36.7	Clone 17	EU780677	99.79	[25]
Microcosm-5	MYC-10#	13	43.3	MY3-11A	HM454282	99.93	[26]
	OTU3	6	20	clone SK14	KF182247	99.8	Unpublished
	YQC-3	6	24	-	MN396541	100	[1]
Microcosm-6	YQC-5*	5	20	CS308	X61607	99.25	[27]
	YQR-1*	14	56	MY3-5B	HM454281	91.89	[26]
N: 7	YQC-9*	17	89.5	UR-1	MK813936	98.08	[28]
Microcosm-/	THC-1	2	10.5	THC-1	MN396570	99.7	[1]
Microcosm-8	DMHC-1 ^{&}	19	100	-	MN396579	100	[1]
	DMHC-6 ^{&}	18	90	-	MN396584	100	[1]
Microcosm-9	OTU4	2	10	Clone KNA6S-1	LC122007	97.2	Unpublished
Microcosm-10	DMHC-8 ^{&}	19	100	-	MN396585	100	[1]
	SHHR-1 ^{&}	9	34.6	-	KX344069	99.6	[4]
NC 11	FZSR-1	2	7.7	-	MW466803	100	[29]
Microcosm-11	OTU5	4	15.4	Bacillus sp. M90	GQ340519	98.7%	[30]
	OTU6	11	42.3	Sulfurimonas sp. M-100	AB697382	97.6%	Unpublished

Table S2. 16S rRNA gene sequences retrieved from laboratory microcosms.

Notes: Sediments from Microcosms-1 and -3 were collected from Weiyanghu lake, Microcosm-4 is from Xingqinggong lake, Microcosm-5 is from Miyun lake, Microcosms-2, -6, and -7 are from Yuqiao lake, Microcosms-8 to -10 are from Daminghu lake, and Microcosm-11 is from a salt evaporation pond in Fuzhou saltern. A total of 15 uncultured MTB strains were studied here. Among them, five strains indicated by * are novel MTB species, and three strains indicated by # have been reported previously only based on 16S rRNA gene sequencing and have not yet been identified morphologically. These eight strains were, therefore, identified phylogenetically and morphologically at the single cell level via the coupled FISH-SEM method here. Seven other strains indicated by & were identified in our previous studies [1, 4]. MTB populations sampled from the same location may change over time due to subtle microcosm differences. MTB cells were separated magnetically from microcosms for subsequent molecular (i.e., 16S rRNA gene amplifying and sequencing) and microscopic (i.e., coupled FISH-SEM and TEM observations) analyses. In each case, 20 to 30 clones were used for 16S rRNA gene sequencing. Beside MTB sequences, some sequences (i.e., OTU1 to OTU6) retrieved from different magnetic collections may belong to non-MTB strains because they share a high similarity (identity > 97%) of 16S rRNA gene sequences with reported bacteria, such as *Azospirillum* sp. B510, *Azospirillum* sp. B510, and *Bacillus* sp. M90.

			Accession		Cell		Chain	Countral			Magnetosome				Genome			
Taxonomy	MTB strain	16S rDNA	Genome	Shape	Diameter (um)	Length (um)	configuration	model	Number	Length (nm)	Width (nm)	Axial Ratio	Size (Mb)	Scaffolds (no.)	GC content (%)	Completeness (%)	Contamination (%)	Reference
	Magnetofaba australis IT-1	JX534168	NZ LVJN00000000		1.4±0.3			Octahedral	~10	83±26	74±23	0.89	4.99	21	61.3	98.7	0.84	[31]
	Magnetococcus marinus MC-1	NR 074371	NC 008576	-	1~2				14±3	83±14	72±11	0.93	4.72	1	54.17	100	0	[32, 33]
	Ca Magnetococcus massalia MO-1	EE643520	L0017727	-	1.6±0.2		Single chain	Cubo-	17±5	64±20	57±17	0.89	5.04	1	55.18	100	0	[34, 35]
	WYHC-3*	MN396581	IAMOBC000000000	-	1.4±0.2		~	octahedral	12±3	60.0±13.4	56.9±13.4	0.95	4.1	354	59.92	87.1	7.84	[1]
	DMHC-1*	MN396579	JAMOAV000000000	-	1.3±0.2				10±2	96.4±26	74.5±22.5	0.77	4.68	186	54.53	95.6	0	[1]
	DMHC-6 [#]	MN396584	JAMOAW000000000	-	2.1±0.2			-	70±13	69.3±8.7	45.7±5.6	0.66	3.7	118	45.99	95.3	2.10	[1]
Ca Eta.	THC-1*	MN396570	JAMOBB000000000	-	2.5±0.2				35±15	70.6±8.6	42.3±5.2	0.6	4.4	87	52.19	99.2	1.68	[1]
proteobacteria	YQC-9*	ON340520	JAMOBI00000000	Cocci	1.2±0.2		Non-linear chain		28±7	77.5±10.4	43.5±6.5	0.56	3.9	212	58.27	97.1	2.1	This study
	Ca. Magnetaquicoccus inordinatus UR-1	MK813936	NZ_RXIU00000000		NA				NA	77.4±11.8	46.2±7.9	0.64	4.14	546	52.51	96.6	4.62	[28]
	YQC-3#	MN396541	JAMOBG00000000	-	1.3±0.1			Frismatic	10±2	86.6±26.1	60.6±18.9	0.70	3.5	520	53.52	80.2	0	[1]
	YQC-5*	ON340535	JAMOBH000000000		1.2±0.2		Double chains		12±3	81.2±14.9	61.7±12.6	0.75	5.7	553	50.73	91.6	3.62	This study
	XQGC-1*	ON340524	JAMOBF000000000		1.1±0.1				11±3	77.9±15.1	62.4±12.7	0.80	4.8	722	56.48	89.4	8.17	This study
	MYC-9*	ON340531	JAMOAY000000000		1.4±0.3		Two double		27±8	85.7±15.1	61.6±10	0.76	3.5	50	60.68	96.4	1.68	This study
	DMHC-8#	MN396585	JAMOAX000000000	-	1.8±0.2		chains		42±8	89.1±22.6	71.5±20.6	0.80	3.2	305	61.03	90	4.67	[1]
	Magnetospirillum magneticum AMB-1	AP007255	NC_007626		0.4~0.6	3	Sub-chains		>15	~50	~45	0.85	4.97	1	65.09	100	0	[36, 36]
	Magnetospirillum sp. XM-1	KP966105	LN997848		NA	1~5		-	~10	43.7	NA	0.85	4.83	1	65.64	100	0	[38, 39]
	Magnetospirillum magnetotacticum MS-1	M58171	NZ_JXSL00000000		0.2~0.4	46			NA	40~50	40~50	0.9	4.52	36	63.56	98.3	0	[40, 41]
	Magnetospirillum sp. ME-1	NA	NZ_CP015848		NA	NA			17±4	32.5±4.5	28.9±4.5	0.89	4.55	1	65.63	100	0	[42, 43]
	Magnetospirillum caucaseum SO-1	NR_149241	NZ_AONQ0000000		0.3	1.3~3.0		Cubo-	NA	NA	NA	NA	4.87	236	65.98	98.3	0	[44]
	Magnetospirillum kuznetsovii LBB-42	MH571849	NZ_PGTO01000000	Spirilium	0.5±0.1	2.7±0.9	Single chain	octaneurar	15±6	38±7	NA	NA	4.40	69	63.44	99.16	0	[23]
	Magnetospirillum gryphiswaldense MSR-1	NR_121771	NC_023065		0.7~1.0	3~20			0~40	~42	~42	NA	4.37	1	63.2	100	0	[45, 46]
Alpha-	Magnetospirillum marisnigri SP-1	NR_149242	NZ_LWQT0000000	-	0.3~0.4	2.5~0.4			NA	NA	NA	NA	4.62	131	64.73	99.9	1.26	[44]
proteobacteria	Magnetospirillum moscoviense BB-1	NR_149243	NZ_LWQU0000000	-	0.3	2.0~4.0			NA	NA	NA	NA	4.16	207	65.18	99.9	0	[44]
	WYHS-4*	ON340536	JAMOBD00000000		0.6±0.1	2.2±0.3			21±4	75.5±10	43±8	0.57	3.7	172	65.96	98.8	1.74	This study
	Magnetovibrio blakemorei MV-1	NR_118660	NZ_MCGG00000000	Vibrio	0.2~0.4	1~3	Sub-chains	-	10±4	53	35	0.63	3.64	91	54.29	98.32	0	[47, 48]
	Ca. Terasakiella magnetica PR-1	NA	FLYE01000000	-	0.5±0.2	1.6±0.3		Prismatic	14±4	44±13	34±11	0.77	4.41	48	45.97	99.9	1.26	[49]
	Terasakiella sp. SH-1	NA	NZ_CP038255	Spirillum	NA	NA			NA	48.3±8.9	35.7±5.2	0.74	3.83	1	47.53	100	0	[50]
	Rhodospirillaceae sp. LM-1	JF490044	CACUVI00000000		NA	NA	Single chain		NA	NA	NA	NA	3.57	30	59.52			[51]
	Magnetospira sp. QH-2	EU6/5666	NZ_F0538765	N/ib-i-	0.8±0.2	2.0±0.4			16±5	81±23	58±20	0.71	4.05	1	59.47	100	0	[52]
	YQV-1*	ON340537	JAMOBE000000000	VIDIIO	0.8 ± 0.1	2.5±0.2		octahedral	19±2	88.6±13	82±11	0.93	4.00	228	66.22	97.5	0.50	This study
Gamma	BW-2	HQ595728	CP032507		2.2 ± 0.2	4.4 ± 0.6	A longer linear	Cubo- octahedral	30±9	67±16	63±15	0.97	4.07	1	52.6	100	0	[53, 54]
proteobacteria	SHHR-1#	KX344069	JAMOBA000000000	Rod	0.9±0.1	2.5±0.5	chain		~15	72.9±15.7	52.6±11	0.73	3.06	535	62.67	89.1	5.46	[4]
	\$\$-5	HO595729	CP032508	-	1.2±0.1	2.5±0.5		Prismatic	20±7	86±27	63±19	0.74	3.73	1	61.65	100	0	[53, 55]
	Desulfovibrio magneticus BS-1	NR 074958	NC 012796		0.9~1.5	3~5			10~15	~60	~40	0.5	5.32	1	62.77	100	0	[56]
	Desulfovibrio en FSS-1	LC311577	NZ BI TE0000000	 Vibrio 	0.8 + 0.1	29+09	Single chain		9+6	53.9+11	25 5+3 3	NA	4 46	58	67.54	99.4	0.60	[57]
Desulfo-	Ca Magnatomonum an HK 1	EU717681	IRDT01000000	MMR	5.7+1.1	2.7 ± 0.7	Multiple	Bullet	214 1108	80.1+16.1	23.643.5	0.48	14.20	3036	34.61	96.2	5.89	[59, 50]
	Devidementer memorenelimentie DW 1	Di252104	NZ EWEV0000000	D-J	NA	NIA	bundles	-	NA	NA	NA	NIA	6.69	246	40.72	93.8	0.84	[50, 55]
	Co. Magnetakasterium kaunium TM 1	V71020	INZ_FWEV0000000	Rou	NA	NA	Single bundle		1000	NA	NA	NA	6.08	340	40.72	92.8	42.9	[60]
	Ca. Magnetobacterium bavaricum 1M-1	A/1858	LAC10000000	-	NA	NA	N 10 1		~1000	NA 100	NA 25.40	NA	0.31	2/51	47.31	8/.1	42.8	[61]
	Ca. Magnetobacterium casensis MYR-1	M1/03955	NZ_JMFO0000000		1-3	0-8	Multiple		~1000	10-180	35-40	NA	3.42	/0	48.87	80.5	0.14	[62, 63]
	Ca. Magnetobacterium cryptolimnobacter strain XYR	NA	JAGYWH000000000	Rod	1-2	5-7	bundles	_	150	30-130	NA	NA	4.23	195	48.61	96.97	2.73	[64]
	YQR-1*	ON340538	JAMOBJ000000000	-	0.8±0.1	2.7±0.2	C 1 1 1		51±11	88±22.8	38±3.8	0.47	3.5	110	42.33	97.7	0.91	This study
APR 1	Ca. Magnetomonas plexicatena LBB01	MK632185	CP049016	Spirillum	0.5±0.1	2.0±0.4	Single bundle	Curved-	33±9	108±21.1	45 ± 8.1	0.45	3.27	1	41.96	100	0	[65]
ivitrospirota	MYC-10*	ON342894	JAMOAZ000000000		1.5 ± 0.2			bullet	43±7	89.2±14.8	29.3±3.3	0.47	3.5	98	45.01	96.4	0.91	This study
	Ca. Magnetominusculus linsii LBB02	MK632186	JAKOEO000000000	-	1.2-1.5				NA	NA	NA	NA	3.47	142	47.48	91.52	0	[65]
	Ca. Magnetoovum chiemensis CS-04	JX402654	JZJI00000000	- Consi	2.5		Multiple		NA	NA	NA	NA	3.82	1019	40.42	81.6	24.1	[61]
	Ca. Magnetoovum sp. WYHC-5	OL423397	JAKKUN000000000	Cocci	3.58±0.4		bundles		NA	70.4±27	27.5±6.3	39.1	3.18	307	37.99	95.3	0.91	[66]
	Ca. Magnetomicrobium Cryptolimnococcus XYC	NA	JAGYWI000000000		2-4				50-145	45-135	NA	NA	3.59	91	37.75	99.94	1.82	[64]
Ca. Omnitrophus	Ca. Omnitrophus magneticus SKK-01	JN412733	JYNY00000000	Cocci	2.5±0.1		Multiple	Bullet	175±15	110±23	37±5	0.34	3.15	656	35.75	70.3	NA	[61, 67]

Table S3. Morphology and genome data for morphologically and phylogenetically identified MTB

Ominopings Unitaries Note: Eight names in bold with * are novel strains identified morphologically here. Seven strains marked by # are novel genomes acquired here. The sizes of fifteen genomes range from 3.2 Mb to 5.7 Mb, and GC contents range from 42.33% to 66.22% (Figs. S1-S15). Nine of the genomes were linked with the above MTB according to the matched 16S rDNA sequence (WYHC-3, SHHR-1, THC-1, DMHC-3, MVC10, VQC-3, VQC1, 1/ Table S4). The other six genomes also correspond to tho TB strains because they were retrieved from phylogenetically identified MTB. To compare genomic level similarity, werage nucleotidic identified MTB strains because they were retrieved from phylogenetically identified MTB. To compare genomic level similarity, werage nucleotidic identified MTB strains base conducted for novely identified MTB. To compare genomes (Fig. S1-S15). Nine of the sponses (Fig. S2-S, the remaining MTB strains because they were retrieved from phylogenetical nuclei phylogenetic identified MTB. To compare genomic level similarity (90.94%) with strain S5-5, the remaining MTB strains based on whole genomes (Fig. 2a) indicate that the fifteen strains are affiliated with the Alphaproteobacteria (strains WTHE-3, MYC-4, VQC-3, DQC-3, DQC-4, DMEC-4, IDMHC-6, DMHC-4, IDMHC-6, DMHC-6, IDMHC-6, IDMHC-6,

Strain	Acces	ssion	16S rDNA sequence length	Identities between genome and
Suam –	Genome	16S rRNA	in genome (bp)	16S rRNA gene (%)
WYHC-3	JAMOBC00000000	MN396581	1455	100
THC-1	JAMOBB00000000	MN396570	357	100
YQC-3	JAMOBG00000000	MN396541	1462	99.9
YQC-5	JAMOBH00000000	ON340535	346	100
XQGC-1	JAMOBF00000000	ON340524	662	99.8
SHHR-1	JAMOBA00000000	KX344069	304	99.6
MYC-10	JAMOAZ00000000	ON342894	1488	99.9
YQR-1	JAMOBJ00000000	ON340538	1044	100

 Table S4. 16S rDNA sequences in MTB genomes.

Table S5.	ANI values	between MTB	genomes.

ANI (%)	DMHC-1	DMHC-6	DMHC-8	MYC-9	THC-1	WYHC-3	XQGC-1	YQC-3	YQC-5	YQC-9	WYHS-4	YQV-1	SHHR-1	MYC-10	YQR-1
MC-1	65.45	64.46	65.45	66.04	64.97	66.31	65.71	65.95	64.49	65.45	62.71	62.74	63.46	63.36	60.33
MO-1	65.91	64.15	65.82	65.98	64.72	66.15	65.99	66.15	64.29	65.82	63.60	63.59	64.46	63.36	59.86
IT-1	66.58	63.57	66.55	66.19	64.51	67.71	66.33	66.46	64.99	66.79	65.22	65.20	66.17	63.61	60.54
UR-1	66.41	65.73	70.74	70.51	65.73	65.32	70.91	70.28	67.33	66.93	62.85	62.60	63.36	62.86	60.39
DMHC-1		65.07	67.47	67.24	66.01	66.90	67.36	66.78	66.51	66.44	64.32	64.27	63.48	62.78	60.16
DMHC-6	65.33		65.66	69.92	65.26	64.26	66.03	65.94	66.15	65.02	61.76	62.18	61.71	62.28	59.73
DMHC-8	67.70	65.8		77.01	66.24	66.97	76.83	74.56	68.11	68.23	64.34	63.80	64.23	62.90	59.72
MYC-9	66.63	65.83	76.66		65.78	66.04	88.20	74.24	68.82	67.36	63.49	63.17	63.87	62.63	59.92
THC-1	66.20	65.19	66.15	66.62		65.56	66.35	66.27	65.75	65.30	62.66	62.89	62.55	62.37	59.89
WYHC-3	67.24	62.24	67.31	66.64	65.65		66.61	66.66	65.8	66.71	64.94	65.01	65.23	62.97	60.36
XQGC-1	67.46	66.10	75.95	85.41	66.57	66.64		74.23	69.78	67.54	63.44	63.83	64.04	62.82	59.42
YQC-3	67.09	66.36	74.96	74.32	66.30	66.47	75.12		68.09	67.61	63.62	63.58	64.05	63.82	63.51
YQC-5	66.73	66.13	68.03	70.86	66.03	65.81	69.79	68.08		69.40	63.20	62.79	63.02	62.70	60.20
YQC-9	66.49	64.76	68.14	67.82	65.45	66.36	67.69	67.24	69.45		64.57	64.87	64.43	62.91	59.42
AMB-1	64.47	61.71	64.05	64.89	62.86	65.35	63.62	63.38	62.9	64.89	70.04	70.25	65.55	63.15	60.45
MSR-1	64.19	61.82	63.48	64.78	62.74	65.07	63.39	63.43	62.71	64.12	68.98	69.30	65.01	63.07	60.64
SP-1	64.05	61.09	63.63	63.55	62.76	65.38	63.44	63.69	62.84	64.18	69.70	69.70	65.49	61.05	60.19
PR-1	64.03	61.53	63.79	63.82	62.53	65.22	64.27	63.17	63.16	64.36	68.84	69.37	64.97	60.77	60.06
MV-1	63.81	62.02	62.86	64.2	63.07	64.42	63.00	63.27	62.63	63.34	66.77	65.74	64.55	62.37	59.74
QH-2	64.6	61.95	64.01	64.67	63.43	65.75	63.59	63.92	63.04	64.20	68.41	67.55	65.61	63.05	60.52
SH-1	62.72	61.68	61.75	64.23	61.69	63.21	62.09	63.16	61.77	62.26	63.92	63.32	62.18	63.74	59.97
WYHS-4	64.28	61.68	64.62	64.8	62.82	64.77	64.23	63.69	63.21	65.12		69.96	65.94	62.45	59.73
YQV-1	64.81	62.14	63.66	64.42	62.80	65.33	63.90	63.52	63.02	65.22	69.93		65.66	62.73	59.50
SS-5	64.35	61.89	64.46	65.25	62.90	65.41	64.26	64.41	63.36	64.66	65.73	65.94	99.04	63.73	60.72
BW-2	62.55	62.06	62.29	64.38	62.37	63.71	62.78	63.41	61.41	62.65	62.60	62.60	65.59	63.47	60.04
SHHR-1	64.14	61.72	64.81	65.14	62.82	65.13	64.59	64.35	63.18	64.76	65.53	65.78		63.50	59.86
BW-1	61.4	60.83	59.89	63.59	60.27	61.74	61.12	62.04	61.37	60.14	59.83	59.94	60.28	62.89	60.70
HK-1	60.64	61.24	59.54	62.99	60.98	59.80	60.42	61.32	61.44	59.18	59.03	59.09	59.15	62.40	60.40
RS-1	63.26	60.59	62.33	64.44	61.67	64.24	62.48	63.32	62.02	62.99	63.61	63.80	63.78	63.80	60.25
MYR-1	61.53	59.76	61.08	63.41	60.38	62.18	61.08	75.19	60.79	61.04	61.49	61.63	61.06	66.78	65.50
CS-04	60.96	59.73	60.31	63.17	59.94	61.03	60.63	62.02	60.41	60.41	60.77	61.14	62.26	65.01	64.30
YQR-1	59.85	59.69	59.59	62.69	59.85	60.36	59.62	63.58	59.96	59.58	59.59	59.67	59.49	66.91	
XYC	59.96	59.87	59.43	59.37	60.02	61.14	59.72	61.05	59.55	58.89	59.76	59.68	59.90	64.34	64.11
WYHC-5	60.49	60.14	59.98	59.96	60.08	60.67	59.54	61.71	59.45	59.10	59.00	59.41	60.02	64.32	64.28
MYC-10	59.89	59.68	59.27	63.03	59.34	60.74	59.82	61.90	60.06	60.07	60.21	60.41	60.05		66.38

Table S6. Function and conservation score of magnetosome genes.

VetterPredermand/aDesclinitionNonsprintPeriodic ormank/max/2Sequite crystal size marginetions visicle constrangent10010010017, 71mank/max/3Regulte crystal size, marginetions visicle growth000017, 73mank/max/5Castric crystal size, marginetions printerio bachaline, relevance10010010017, 74mank/max/5Castric crystal size, marginetions printerio bachaline, relevance10010017, 74mank/max/5Castric crystal size, marginetions printerio bachaline, relevance1730017, 78mank/max/5Castric crystal size, marginetions printerio1730010017, 78mank/max/5Castric crystal size, marginetions chain ascribly1000017, 78mank/max/5Castric crystal size, marginetic crystal	0			Conservation score (%)		D-f	
number Set proteins and activate magnetosome vesicle 100 100 100 (67) numB Magnetosome vesicle formation and forma forma formatomic 66.7 0 0 17, 73] numDimm2 Control crystal size, morphology, and magnetosome vesicle growth 0.0 0.0 17, 74] numDimm2 Control crystal size, morphology, and magnetosome vesicle growth 0.0 0.0 17, 74] numFirms7 Control crystal size and magnetic homegnetity 0.0 0.0 17, 74] numFirms7 Control crystal size and magnetic homegnetity 0.0 0.0 17, 74] numFirms7 Control crystal size and magnetic homegnetity 0.0 0.0 17, 74] numA Interprotein 0.00 0.0 17, 74] numA Interprotein 0.00 0.0 17, 79] numA Interprotein 0.0 0.0 17, 79] numA Magnetosome morphore formation and magnetic nuclearian 100 100 17, 79] numA Magnetosome morphore formation and magnetin suclearian 100 100 </th <th>Gene</th> <th>Function</th> <th>Pseudomonadota</th> <th>Desulfobacterota</th> <th>Nitrospirota</th> <th>Keterence</th>	Gene	Function	Pseudomonadota	Desulfobacterota	Nitrospirota	Keterence	
max Mage toome vesiele formation and ferrous inor transport 100 100 100 100 100 100 100 100 100 100 100 100 100 12, 73 maxDomn37 Contol crystal size, monphology, and magnetoscene vesicle growth 93.9 0 0 100 174, 47 maxF Scrine protesse, magnetossene protection localization, rock control, and protein localization, rock control, and magnetic nucleation 100 0 0 172 manH Interaction with ananK and magnetic nucleation 100 1	mamA/mms24	Sort proteins and activate magnetosome vesicles	100	100	100	[69]	
numDimn J3 Regulate systal size 66.7 0 0 [2, 73] numDimn J4 Series protease, magnetosone protein localizato, redox control, and protein localizato, 100 100 100 [4, 75] numFirms J4 Series protease, magnetosone protein localizato, redox control, and protein localizato, 100 0 100 [74, 75] numFirms J4 Control crystal size 27.3 0 0 [77, 78] numH Interactions with mom Xa and magnetis muleation 100 0 0 [80] numL Magnetosome visicle formation and magnetis muleation 100 100 100 [81] numL Magnetosome membrane formation 100 100 100 [81] numL Magnetosome membrane formation 100 100 100 [81] numA Feression transport, scalinizatori nitidici and protein localization 100 100 [81] numA Feression transport, scalinizatori nitidici and protein localization 100 100 [81] numA Feression transpart and mainain vescic PH 60.6 <td>mamB</td> <td>Magnetosome vesicle formation and ferrous iron transport</td> <td>100</td> <td>100</td> <td>100</td> <td>[70, 71]</td>	mamB	Magnetosome vesicle formation and ferrous iron transport	100	100	100	[70, 71]	
namb Control crysial size, megnetoseme provide localization, mander formation 93.9 0 0 [7, 4] namb Series protesses, megnetoseme provide localization, and protein location, and protein localization, and magnetic boungeneity 100 100 [74, 73] namb Control crysial size and magnetic boungeneity 100 0 0 [72] namd Magnetosome vesicle formation and magnetic nucleation 100 100 [71, 78] namd Magnetosome vesicle formation and magnetic nucleation 100 100 [71, 79] namd Magnetosome vesicle formation and magnetic nucleation 100 100 [71, 79] namd Magnetosome vesicle formation and magnetic nucleation 100 100 [71, 79] namd Magnetosome resolution and magnetic nucleation 100 100 [71, 79] namd Magnetosome resolution and magnetic nucleation 100 100 [71, 79] namd Magnetosome resolution and magnetic nucleation 100 100 [71, 79] namd Control crystal size and number 57.6 0 0 [7	mamC/mms13	Regulate crystal size	66.7	0	0	[72, 73]	
analit Serie protess, magnetosome protein localization, redox control, and protein localization 100 100 0 174, 75 mand/finals ¹ Control crystal size and magnetic homogeneity 27.3 0 0 172 mand/f Inon transport 100 0 0 177, 78 mand/ Magnetosome vesicle formation and magnetic nucleation 100 100 100 177, 78 mand/ Magnetosome vesicle formation and magnetic nucleation 100 100 0 171, 79 mand/ Magnetosome membrane formation 100 100 0 171, 79 mand/ Magnetosome membrane formation 100 100 100 170 mand/ Forous iron transport, crystallization initiation and protein localization 100 100 170 173 mand/ Precipitation of iron oxide particles 100 100 100 173 173 mand/ Control crystal size and numbre 57.6 0 0 171, 79 mand/ Control crystal size and numbre 175.6	mamD/mms7	Control crystal size, morphology, and magnetosome vesicle growth	93.9	0	0	[73, 74]	
nameTimeTimeTimeTimeTimeTimeTimeTimeTimeTi	mamE	Serine protease, magnetosome protein localization, redox control, and protein location.	100	100	100	[74, 75]	
nam6 Control crystal size 27.3 0 0 [72] manH Inon transport 100 0 0 [77, 78] manJ Magnetosome veside formation and magnetis meleation 100 100 100 [71, 79] manJ Interaction with mom K and magnetosome chain assembly 27, 3 0 0 [80] manJ Magnetosome membrane formation 100 100 0 [71, 79] manJ Magnetosome membrane formation 100 100 0 [71, 79] manW Foress inon transport, crystal size and matrin vise de pH 60.6 50% 0 [72] 8.3] mandO Pecipitation of iron oxide particles 100 100 100 [73, 8] mandP Control crystal size and musher 100 100 100 [71, 79] mandP Control crystal size and musher 100 0 100 100 [71, 79] mandP Control crystal size and prystal number 100 0 [71, 79] 100 101 10	mamF/mmsF	Control crystal size and magnetite homogeneity	100	0	0	[76]	
mandl Ion transport 100 0 0 [7, 78] mandl Magnetosome vesiels formation and magnetisme technia seembly 27.3 0 0 180 mank Organic regulatorsome into chain asembly 27.3 0 0 181 mank Magnetosome membrane formation 100 100 100 17.79 mand Ferrous ion transport respectation initiation and protein localization 100 0 17.79 mand Ferrous ion transport respectation initiation and protein localization 100 100 17.91 mand Transport IF and maintain veside PI 60.6 50% 0 17.58.31 mand Ortor locks, crystal size, and crystal number 100 100 100 17.19 mank Control crystal size and number 100 0 0 17.19 mank Control crystal size and number 100 0 0 171 mank Control crystal size and number 100 0 0 171 mank </td <td>mamG</td> <td>Control crystal size</td> <td>27.3</td> <td>0</td> <td>0</td> <td>[72]</td>	mamG	Control crystal size	27.3	0	0	[72]	
mand Interaction wit mark and magnetito nucleation 100 100 100 101 mand Interaction wit mark and magnetosome chain asembly 27.3 0 0 181 mank Organize magnetosome into chain 100 100 100 171.791 mank Magnetosome membrane formation 100 100 100 71.791 mank Transport H and maintin vesicle PI 60.6 50% 0 77.821 mank Transport H and maintin vesicle PI 60.6 50% 0 75.831 mand Control crystal size and number 100 100 100 17.191 mand Control crystal size and mumber 57.6 0 0 71.191 mank Control crystal size and mumber 100 0 0 171.191 mank Moretion magnetosome biominenization 21.2 0 0 171.191 mank Norle in magnetosome biominenization 21.2 0 0 171.191 mank Norle in magnetosome biomi	mamH	Iron transport	100	0	0	[77, 78]	
manU Intraction with mark and magnetosome chain assembly 27.3 0 0 [80] mank Organizz magnetosome including 100 100 100 [81] manu Magnetosome membrane formation 100 100 0.0 [71, 79] manu Ferross iron transport, crystalization initiation and protein localization 100 100 [70] manu Transport II: and maintain vesicle pH 606 50% 0 [77] Respontements manu Control redox, crystal size and drystal number 100 100 [81] manR Control redox, crystal size and momber 57.6 0 0 [71] Pi] manR Control reduit size and momber 57.6 0 0 [71] Pi] manR Control reduit size and momber 100 0 0 [71] Pi] manR Control reduit size and momber 27.3 0 0 [71] Pi] manR No reli in magnetosome binnitratization 21.2 0 0 [71] manV No reli in	mamI	Magnetosome vesicle formation and magnetite nucleation	100	100	100	[71, 79]	
mark. Organize magnetosome indo chain 100 100 100 100 101 mankl. Magnetosome membrane formation 100 100 100 171.79] mankl. Transport H' and minitain vesicle pH 60.6 50% 0 179.82] manO Precipitation of iron oxide particles 100 0 100 125.83] manO Control redox, crystal size, and crystal number 100 100 100 171.79] manR Control redox, crystal size and umber 57.6 0 0 171.79] manR Control crystal size and number 100 0 0 171.79] manR Control crystal size and number 100 0 0 171.79] manR Control crystal size and number 21.2 0 0 171.79] mankl No role in magnetosome biomineralization 21.2 0 0 171.71 mankl No role in magnetosome biomineralization 21.2 0 0 171.71 mankl	mamJ	Interaction with mamK and magnetosome chain assembly	27.3	0	0	[80]	
mankl Magnetosome membrane formation 100 100 0 [71, 79] mankl Ferous inrasport, synalization initiation and protein localization 100 100 100 [70] mankl Transport II: and minitian vesicle pII 60.6 50% 0 [73, 82] mankl Descipitation of iron oxide particles 100 100 [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [10] [11]	mamK	Organize magnetosome into chain	100	100	100	[81]	
mamMFerrous iron transport, crystallization initiation and protein localization100100100170mamN Transport H: and maintain vesicle pH60.650%0177, 82]mamO Precipitation of iron oxide particles1000100178, 83]mamP Control redox, crystal size, and crystal number100100100171, 79]mamR Control redox, crystal size and number57.600171, 79]mamR Control redox, crystal size and number57.600171, 79]mamR Control restal size and number10000171mamR Control restal size and number10000171mamR Control restal size and number10000171mamR Control restal size and number27.300171mamR No role in magnetosome biomineralization21.200171mamV No role in magnetosome biomineralization21.200171mamV No role in magnetosome biomineralization37.600171mamV No role in magnetosome biomineralization48.500171mamV In transport and redox control63.600171mamS Regulate restal size and morbology40.900173, 87]mamS Regulate crystal size and onphology42.400173, 87]mmAS Regulate crystal size and onphology30.300174mmAS Regulate crystal size and morbology30.30 <td< td=""><td>mamL</td><td>Magnetosome membrane formation</td><td>100</td><td>100</td><td>0</td><td>[71, 79]</td></td<>	mamL	Magnetosome membrane formation	100	100	0	[71, 79]	
mamNTransport H* and maintain vesicle pH60.650%0[79, 82]mamOPrecipitation of inon oxide particles100010015, 83]mamPControl redox, crystal size, and crystal number100100100[84]mamQMagnetosome membrane formation100100100[71, 79]mamRControl crystal size and number57.600[71]mamRControl crystal size10000[71]mamTControl crystal size10000[71]mamTControl crystal growth and redox10000[71]mamTNo role in magnetosome biomineralization21.200[71]mamWNo role in magnetosome biomineralization21.200[71]mamXBalance the redox state of iron57.600[71]mamXBalance the redox state of iron57.600[71]mamXBalance the redox state of iron57.600[72]mamSControl crystal size and morphology42.400[73]mmSRegulate crystal ing and brokes33.300[73]mmSRegulate crystal size and morphology42.400[73]mamSRegulate crystal size and morphology33.300[79]mmS-LHomologous gene of mass feact, insign angletosome sign and reduc scapee for addition of new magnetosome sign and reduc scape fo	mamM	Ferrous iron transport, crystallization initiation and protein localization	100	100	100	[70]	
mam0Precipitation of iron oxide particles1000100[75, 83]mam1Control redox, crystal size, and crystal number100100100[71, 79]mam2Magnetosome membrane formation100100100[71, 79]mam8Control crystal size and number57.600[71]mam5Control crystal size and number10000[71]mam1Control crystal size and number27.300[71]mam1No role in magnetosome biomineralization27.300[71]mam1/No role in magnetosome biomineralization21.200[71]mam2No role in magnetosome biomineralization21.200[71]mam3/Anchor magnetosome biomineralization57.600[71]mam4/No role in magnetosome biomineralization21.200[71]mam5Balance the redox state of iron57.600[71]mam5Regulate crystal size and morphology42.400[77]mm5Regulate crystal size and morphology42.400[79]mm56Regulate crystal size and morphology30.300[79]mm56Regulate crystal size30.300[79]mm56Regulate crystal size30.300[79]mm56Regulate crystal size30.300[79]mm56Regul	mamN	Transport H ⁺ and maintain vesicle pH	60.6	50%	0	[79, 82]	
$manP$ Control redox, crystal size, and crystal number100100100[84] $manQ$ Magnetosome mechanicon100100[71, 79] $manR$ Control crystal size and number57.600[71] $manS$ Control crystal size and number10000[71] $manS$ Control crystal size and number10000[71] $manS$ Control crystal size and number10000[71] $manT$ Control crystal growth and redox10000[71] $manT$ No role in magnetosome biomineralization21.200[71] $manV$ No role in magnetosome biomineralization21.200[71] $manY$ Balance the redox state of iron57.600[73] $manY$ Anchor magnetosome salone the positive curvature line48.500[73] $manS$ Regulate crystal size and norphology90.900[73] $manS_{1}$ Regulate crystal size and morphology42.400[79] $mmsA_{2}$ Regulate crystal size and morphology33.300[79] $mmsA_{3}$ Regulate crystal size30.300[79] $mmsA_{4}$ Regulate crystal size30.300[79] $mmsA_{4}$ Regulate crystal size33.300[79] $mmsA_{4}$ Regulate crystal size33.300[79] $mmsA_{4$	mamO	Precipitation of iron oxide particles	100	0	100	[75, 83]	
mamQMagnetosome membrane formation100100100[71,79]mamRControl crystal size and number57.600[71,79]mamSControl crystal size and number10000[71]mamTControl crystal growth and redox10000[71]mamUNo role in magnetosome biomineralization27.300[71]mamWNo role in magnetosome biomineralization21.200[71]mamWNo role in magnetosome biomineralization21.200[71]mamWNo role in magnetosome biomineralization57.600[71]mamXBalance the redox state of iron57.600[71]mamXBalance the redox state of iron63.600[77]mamSRegulate raystal size and morphology90.900[73]mms5Regulate crystal size and morphology90.900This studymms54Regulate crystal size30.300[79]mms54Regulate crystal size30.300[88]mms64Regulate crystal size30.300[88]mms64Regulate crystal size30.300[88]mms64Regulate crystal size30.300[88]mms64Regulate crystal size30.300[88]mms64Regulate crystal size33.300[88	mamP	Control redox, crystal size, and crystal number	100	100	100	[84]	
mankControl crystal size and number57.600(71, 79]manSControl crystal growth and redox100000(71]manTControl crystal growth and redox100000(71]manUNo role in magnetosome biomineralization27.300(71]manWNo role in magnetosome biomineralization21.200(71]manWNo role in magnetosome biomineralization21.200(71]manWNo role in magnetosome biomineralization21.200(71]manWNo role in magnetosome biomineralization21.200(71]manYBalance the redox state of ron57.600(78, 85]manYAnchor magnetosome alone the positive curvature line48.500(77]mmsZRegulate crystal size and morphology90.900(73, 87]mms5ARegulate crystal size and morphology90.900(79]mms5ARegulate crystal size30.300(79]mms48Regulate crystal size30.300(79]macARecognizes the positive curvature of the inner cell methane and create space for addition of new magnetosomes33.300mms48Regulate crystal size30.300(79]macAMacognizes the positive curvature of the inner cell methane and create space for addition of new magnetosome sprotesing magnetosome chain(s) </td <td>mamQ</td> <td>Magnetosome membrane formation</td> <td>100</td> <td>100</td> <td>100</td> <td>[71, 79]</td>	mamQ	Magnetosome membrane formation	100	100	100	[71, 79]	
mamSControl crystal size10000[71]mamTControl crystal growth and redox100000[71]mamUNo role in magnetosome biomineralization27.3000[71]mamVNo role in magnetosome biomineralization21.2000[71]mamWNo role in magnetosome biomineralization21.2000[71]mamWNo role in magnetosome biomineralization21.2000[71]mamWNo role in magnetosome biomineralization21.2000[71]mamYAnchor magnetosomes alone the positive curvature line48.500178, 85]mamZIron transport and redox control63.600[77]mms5Regulate crystal size and morphology90.9000[73]mms6-LHomologous gene of mms6 gene; may regulate crystal morphology42.400[79]mms6-LHomologous gene of mms6 gene; may regulate crystal size30.300[79]mms4Regulate crystal size30.300[79]mms4Regulate crystal size33.300[79]mms4Regulate crystal size30.300[79]mms4Regulate crystal size33.300[79]mms4Regulate crystal size33.300[79]mca4Regulate crystal size33.3 <td>mamR</td> <td>Control crystal size and number</td> <td>57.6</td> <td>0</td> <td>0</td> <td>[71, 79]</td>	mamR	Control crystal size and number	57.6	0	0	[71, 79]	
mamTControl crystal growth and redox10000(71]mamUNo role in magnetosome biomineralization27.300(71]mamVNo role in magnetosome biomineralization21.200(71]mamVNo role in magnetosome biomineralization21.200(71]mamYBalance the redox state of iron57.600(71]mamYAnchor magnetosomes alone the positive curvature line48.500(78, 85]mamZIron transport and redox control63.600(77]mms6Regulate magnetic biomineralization process33.300187]mms6.LHomologous gene of mms6 gene; may regulate crystal morphology42.400(79)mms48Regulate crystal size30.300179]mms48Regulate crystal size30.300[88]mad1/1May play roles in magnetic bomineralization0100[89]mar41Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[89]mar41.6May be involved in magnetic bomineralization0100[89]mar52Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation processes0100[63]	mamS	Control crystal size	100	0	0	[71]	
manUNo role in magnetosome biomineralization27.300[71]manWNo role in magnetosome biomineralization21.20071]manWNo role in magnetosome biomineralization21.2000[71]manXBalance the redox state of iron57.6000[77]manXBalance the redox state of iron63.600178, 85]manYAnchor magnetosomes alone the positive curvature line48.500186]manSRegulate magnetite biomineralization process33.3000[77]mms6Regulate crystal size and morphology90.900178, 85]mms6Regulate crystal size and morphology90.900178, 87]mms6Regulate crystal size and morphology42.400178, 84]mms78Regulate crystal size30.300179]mms4Regulate crystal size33.300179]mcaBLocalise to magnetosomes between pre-existing magnetosomes33.300188]mcaBLocalise to magnetosomes between pre-existing magnetosomes33.300188]mcaBLocalise to magnetosomes33.300100[89]mms40Recolise to magnetosomes33.300100188]mcaBLocalise to magnetosomes33.300100188]mcaBLocalis	mamT	Control crystal growth and redox	100	0	0	[71]	
manVNo role in magnetosome biomineralization21.200[71]mamWNo role in magnetosome biomineralization21.2000[71]manXBalance the redox state of iron57.6000[78, 85]manYAnchor magnetosomes alone the positive curvature line48.500[86]manZIron transport and redox control63.600[77]mms5Regulate crystal size and morphology90.900[87]mms6-LHomologous gene of mms6 gene; may regulate crystal morphology42.400[79]mms6-BRegulate crystal size30.300[79]mms6-BRegulate crystal size30.300[79]mms6-BRegulate crystal size30.300[88]mms6-BRegulate crystal size33.300[88]mms6-BRegulate crystal size33.300[88]mms6-BRegulate crystal size33.300[88]mms6-BLocalise to magnetosomes33.300[88]mad1-11May play roles in magnetic biomineralization0100[89]mad17-30Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosomes0100[63]manA-6May be involved in magnetosomes or shink is or chain arrangement and segregation proceses00100 </td <td>mamU</td> <td>No role in magnetosome biomineralization</td> <td>27.3</td> <td>0</td> <td>0</td> <td>[71]</td>	mamU	No role in magnetosome biomineralization	27.3	0	0	[71]	
mamWNo role in magnetosome biomineralization21.200[71]mamXBalance the redox state of iron57.600[78, 85]mamYAnchor magnetosomes alone the positive curvature line48.500[86]mamZIron transport and redox control63.600[77]mms5Regulate magnetite biomineralization process33.3000[87]mms6Regulate crystal size and morphology90.9000[73] Regulate crystal size and morphologymms6.LHomologous gene of mms6 gene; may regulate crystal morphology42.400171mms36Regulate crystal size30.300173, 87]mms48Regulate crystal size30.300[79]mcaARecognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes39.400188]mcaBLocalise to magnetosomes33.300100[89]mcaHMostly unknown; mal7 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[89]mcaH-May be involved in the magnetosome synthesis or chain arrangement and segregation of magnetosome chain(s)0100[63]	mamV	No role in magnetosome biomineralization	21.2	0	0	[71]	
manXBalance the redox state of iron57.600[78, 85]manYAnchor magnetosomes alone the positive curvature line48.500[86]manZIron transport and redox control63.600[77]mms5Regulate magnetite biomineralization process33.300[87]mms6Regulate crystal size and morphology90.900[73, 87]mms6.LHomologous gene of mms6 gene; may regulate crystal morphology42.400This studymms6.Regulate crystal size30.3000[79]mms6.Regulate crystal size30.300[79]mms6.Regulate crystal size30.300[88]mms48Regulate crystal size30.300[88]mcaARecognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes33.300[88]mcaBLocalise to magnetosomes33.30100[89][89]mad17-30Mostly unknown; mal17 and mad30 may play arole in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[89]ma1-6May be involved in magnetosome synthesis or chain arrangement and segregation processes0100[63]	mamW	No role in magnetosome biomineralization	21.2	0	0	[71]	
manYAnchor magnetosomes alone the positive curvature line48.500[86]manZIron transport and redox control63.600[77]mms5Regulate magnetite biomineralization process33.3000[87]mms6Regulate crystal size and morphology90.9000[73, 87]mms6-LHomologous gene of mms6 gene; may regulate crystal morphology42.400This studymms36Regulate crystal size30.3000[79]mms48Regulate crystal size30.300[79]mcaARecognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes33.300[88]mcaBLocalise to magnetosomes33.3000[88]madl1-11May play roles in magnetite biomineralization0100[89]mal17-30Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[63]man1-6May be involved in magnetosome synthesis or chain arrangement and segregation processes00100[63]	mamX	Balance the redox state of iron	57.6	0	0	[78, 85]	
manZIron transport and redox control63.600[77] $mms5$ Regulate magnetite biomineralization process33.300[87] $mms6$ Regulate crystal size and morphology90.9000[73, 87] $mms6$ Regulate crystal size and morphology90.9000[73, 87] $mms6$ Regulate crystal size and morphology42.4001 his study $mms6$ Regulate crystal size30.300[79] $mms48$ Regulate crystal size30.300[79] $mcaA$ Recognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes33.300[88] $mcaB$ Localise to magnetosomes between pre-existing magnetosomes33.300[88] $mcal-111$ May play roles in magnetite biomineralization0100[89] $mal17-30$ Mostly unknown; mal17 and mal30 may play a role in iron transport; mal28 may be involved in the positioning and segregation of magnetosome chain(s)0100[63] $mal-6$ May be involved in magnetosome synthesis or chain arrangement and segregation processes00100[63]	mamY	Anchor magnetosomes alone the positive curvature line	48.5	0	0	[86]	
mms5Regulate magnetite biomineralization process33.300[87]mms6Regulate crystal size and morphology90.9000[73, 87]mms6-LHomologous gene of mms6 gene; may regulate crystal morphology42.400This studymms36Regulate crystal size30.300[79]mms48Regulate crystal size30.300[79]mcaARecognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes33.300[88]mcaBLocalise to magnetosomes33.300100[89]mad17-30Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[89]man1-6May be involved in magnetosome synthesis or chain arrangement and segregation processes00100[63]	mamZ	Iron transport and redox control	63.6	0	0	[77]	
mms6Regulate crystal size and morphology90.900[73, 87] $mms6-L$ Homologous gene of mms6 gene; may regulate crystal morphology42.400This study $mms36$ Regulate crystal size30.300[79] $mms48$ Regulate crystal size30.300[79] $mcaA$ Recognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes39.400[88] $mcaB$ Localise to magnetosomes33.300100[89] $mad1-11$ May play roles in magnetite biomineralization0100100[89] $mal1-6$ May be involved in magnetosome synthesis or chain arrangement and segregation processes00100[63]	mms5	Regulate magnetite biomineralization process	33.3	0	0	[87]	
mms6-LHomologous gene of mms6 gene; may regulate crystal morphology42.400This studymms36Regulate crystal size30.300[79]mms48Regulate crystal size30.300[79]mcaARecognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes39.400[88]mcaBLocalise to magnetosomes33.300100[89]mad1-11May play roles in magnetite biomineralization0100100[89]mad17-30Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[63]man1-6May be involved in magnetosome synthesis or chain arrangement and segregation processes00100[63]	mms6	Regulate crystal size and morphology	90.9	0	0	[73, 87]	
mms36Regulate crystal size30.300[79]mms48Regulate crystal size30.300[79]mcaARecognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes39.400[88]mcaBLocalise to magnetosomes33.300100[89]mcal1-11May play roles in magnetite biomineralization0100100[89]mad17-30Mostly unknown; mad17 and ma30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[63]man1-6May be involved in magnetosome synthesis or chain arrangement and segregation processes00100[63]	mms6-L	Homologous gene of mms6 gene; may regulate crystal morphology	42.4	0	0	This study	
mms48Regulate crystal size30.300[79]mcaARecognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes39.400[88]mcaBLocalise to magnetosomes33.300[88]mcaB/May play roles in magnetite biomineralization0100[89]mad17-30Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s)0100[89]man1-6May be involved in magnetosome synthesis or chain arrangement and segregation processes00100[63]	mms36	Regulate crystal size	30.3	0	0	[79]	
mcaA Recognizes the positive curvature of the inner cell membrane and create space for addition of new magnetosomes between pre-existing magnetosomes 39.4 0 0 [88] mcaB Localise to magnetosomes 33.3 0 0 [88] mad1-11 May play roles in magnetit biomineralization 0 100 [89] mad17-30 Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s) 0 100 [89] man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation of magnetosome chain(s) 0 0 100 [63] Name Communities the means the plating approxement of plating approxement in MTE processes May be (norther the plating approxement in MTE processes) MCC emprint MCC emplities the processes	mms48	Regulate crystal size	30.3	0	0	[79]	
mcan addition of new magnetosomes between pre-existing magnetosomes 33.4 0 0 [86] mcaB Localise to magnetosomes 33.3 0 0 [88] mad1-11 May play roles in magnetite biomineralization 0 100 [89] mad17-30 Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s) 0 100 [89] man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation processes 0 0 100 [63]		Recognizes the positive curvature of the inner cell membrane and create space for	30.4	0	0	1001	
mcaB Localise to magnetosomes 33.3 0 0 [88] madl-11 May play roles in magnetite bioinneralization 0 100 100 [89] madl7-30 Mostly unknown; madl7 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s) 0 100 100 [89] manl-6 May be involved in magnetosome synthesis or chain arrangement and segregation processes 0 0 100 [63]	тсия	addition of new magnetosomes between pre-existing magnetosomes	39.4	0	0	[68]	
mad1-11 May play roles in magnetite biomineralization 0 100 [89] mad17-30 Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s) 0 100 100 [89] man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation of magnetosome chain (s) 0 0 100 [89] man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation of magnetosome chain (s) 0 0 100 [63]	mcaB	Localise to magnetosomes	33.3	0	0	[88]	
mad17-30 Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be involved in the positioning and segregation of magnetosome chain(s) 100 100 [89] man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation of magnetosome chain(s) 0 0 100 [89] man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation of magnetosome chain(s) 0 0 100 [63]	mad1-11	May play roles in magnetite biomineralization	0	100	100	[89]	
matrix involved in the positioning and segregation of magnetosome chain(s) o 100 100 (69) man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation processes 0 0 100 [63]	mad17-30	Mostly unknown; mad17 and mad30 may play a role in iron transport; mad28 may be	0	100	100	[80]	
man1-6 May be involved in magnetosome synthesis or chain arrangement and segregation processes 0 0 100 [63]		involved in the positioning and segregation of magnetosome chain(s)	·	100	100	[07]	
	man1-6	May be involved in magnetosome synthesis or chain arrangement and segregation	0	0	100	[63]	
A DECISION OF A	Nota: Consorreti-	processes	has in MTP groups, color-1-t-1-		MGC gang)/(number of	analyzed MTP strains)	

Table S7. Potential functions of several mad and man genes.

Gene	Potential functions	Methods	References
madl	Contains three CXXCH heme-binding motifs. Related to magnetic response of MTB cell and magnetosome morphology control.	Gene mutation	[90]
mad2	Related to magnetic response of MTB cell and magnetosome morphology control.	Gene mutation	[90]
mad3	Contains a hydrophobic N-terminal with a transmembrane domain and a hydrophilic C-terminal. May be a magnetite-binding protein.	Bioinformatics analysis	This study
mad4	May be a magnetite-binding protein.	Bioinformatics analysis	This study
mad5	May be a magnetite-binding protein.	Bioinformatics analysis	This study
mad6	Contains a NapH nitrate reductase domain. Related to magnetic response of MTB cell.	Gene mutation	[90]
mad8	Contains a hydrophilic N-terminal and two transmembrane domains. May be a magnetite-binding protein.	Bioinformatics analysis	This study
mad9	Ferredoxin-like protein. May regulate redox in magnetosome vesicles.	Bioinformatics analysis	This study
mad10	Magnetite-binding protein may be involved in magnetosome formation.	In vitro experiment	[91]
mad11	Magnetite-binding protein may be involved in magnetosome formation.	In vitro experiment	[91]
mad17	Homologous gene of <i>feoB</i> may play a role in ferrous ion transport.	Bioinformatics analysis	[89]
mad19	May be a magnetite-binding protein.	Bioinformatics analysis	This study
mad22	Contains an ATPase domain affiliated with the SMC super family. May be a subunit of the ATPase which provides energy for assembling magnetosomes into chain structures.	Bioinformatics analysis	This study
mad23	Contains a HEAT repeat domain. May be involved in protein recruitment.	Bioinformatics analysis	This study
mad24	Contains two potential magnetite-binding regions in N-, and C-terminals and a SMC domain. May play roles in the assembly and arrangement of magnetosome bundle structures.	Bioinformatics analysis	This study
mad25	Contains an ATPase domain affiliated with the SMC super family. May be a subunit of the ATPase which provides energy for assembling magnetosomes into chain structures.	Bioinformatics analysis	This study
mad26	Contains an ATPase domain affiliated with the SMC super family. May be a subunit of the ATPase which provides energy for assembling magnetosomes into chain structures.	Bioinformatics analysis	This study
mad27	Contains an AAA ATPase (ATPases associated with diverse cellular activity) domain. May provide energy for assembling magnetosomes into chain structures.	Bioinformatics analysis	This study
mad28	Homologous gene of mamK. May be involved in organizing magnetosomes into chain or bundle structures.	Bioinformatics analysis	[89]
mad29	Contains an AAA ATPase (ATPases associated with diverse cellular activity) domain. May provide energy for assembling magnetosomes into chain structures.	Bioinformatics analysis	This study
mad30	Homologous gene of <i>feoB</i> may play a role in ferrous ion transport.	Bioinformatics analysis	[89]
manl	Magnetite-binding protein may be involved in the morphological control of curved bullet-shaped magnetic particles.	Bioinformatics analysis	This study
man2	Homologous protein of MamL. May be involved in the magnetosome membrane formation.	Bioinformatics analysis	This study
man3	Contains a hydrophilic C-terminal and a transmembrane domain. May be a magnetite-binding protein.	Bioinformatics analysis	This study
man4	Contains a hydrophilic C-terminal. May be a magnetite-binding protein.	Bioinformatics analysis	This study
man5	Contains two potential magnetite-binding regions in N-, and C-terminals and a SMC domain. May play roles in the assembly and arrangement of magnetosome bundle structures.	Bioinformatics analysis	This study
man6	Contains an ATPase domain affiliated with the SMC super family. May provide energy for assembling magnetosomes into chain structures.	Bioinformatics analysis	This study

Magnatasama biasynthasis nu	005505	Magnetosome pro	teins in		- Defenences
Wagnetosome biosynthesis pro	cesses	Proteobacteria	Desulfobacterota	Nitrospirae	Kelefences
Magnetosome membra	ne Induce membrane curvature	mamB	mamB	mamB	[71, 77]
formation	Magnetosome vesicle formation	mamILQ	mamILQ	mamIQ, man2	[71, 79]
Protein sorting	Protein sorting	mamAE	mamA, mad23	mamAE, mad23	[69, 74, This study]
	Iron transport	mamBHM(Z)	mamBM, mad17, mad30	mamBM, (mad17), (mad30)	[70, 89]
Iron transport and magne	te Nucleation of iron oxide particles	mamO		mamO	[83]
nucleation	PH control	mamN	mamN	Unknown	[79, 82, 90]
	Redox control	mamEPT(XZ)	mamP, mamE-Cter, mad6, mad9	mamEP	[75, 84, This study]
Note: Genes in bold represent fu	nctions predicted in this study. Genes in	brackets are only cons	erved in some strains.		

Table S8. Discussed or predicted key genes for magnetosome vesicle formation, protein sorting, and iron transport.

Magnetite emistel growth processes	Magnetosome proteins involved in a	- Deferences							
Magnetite crystal growth processes	(Cubo)-octahedron	Prism	Bullet	Curved bullet	Kelerences				
Crystal number control	mamP(R)	mamP(R)	mamP, mamE-Cter	mamP	[84, 90]				
Crystal size control	mamFPST, mms-F, -6	mamDFPST, mmsF	mad-4, -8, -10, -11, (-	man-1, -3, -4,	[72 73 00 01 This study]				
	(mamCDGR, mms-5, -6-L , -36, -48)	(mamCR, mms-5, -6, -6-L)	<i>3</i> , <i>-5</i> , <i>-19</i>)	(mad10)	[/2, /3, 90, 91, This study]				
Crystal morphology control	mms6, (mamCD, mms-5, -6-L)	mamD, (mamC, mms-5, -6, -6-L)	mad-1, -2	man-1, -3, -4, mad2	[73, 90, This study]				
Note: Genes in bold represent functions predicted in this study. Genes in brackets are only conserved in some strains.									

 Table S9. Discussed or predicted key genes for magnetite crystal growth.

Table S10. Discussed	or predicted key	gene in assem	bly of magnetosome	chain configurations.

	Proteins involved in magnetosome chain configuration assembly in												
Processes in magnetosome chain configuration assembly	Alphaproteobacteria		Gammaproteobacteria	Ca. 'Etaproteobacteria'			Desulfobacterota			Nitrospirota		References	
	Sub- chains	Single chain	A longer linear chain	Single chain	Double chains	Two double chains	Non-linear chain	Single chain	Single bundle	Multiple bundles	Multiple bundles	Single bundle	
Organize magnetosomes into chain configurations	mcaA, mamK	mamK	Multiple copies of <i>mamK</i>	mamK	Multiple copies of <i>mamK</i>	Multiple copies of <i>mamK</i>	Multiple copies of <i>mamK</i>	mamK, mad28	mamK, mad28	Multiple copies of <i>mamK</i> and <i>mad28</i>	mamK, mad28	mamK, mad28	[81, 89, This study]
Assist interactions between magnetosomes and MamK proteins	(mamJ)	(mamJ)											[80]
Anchor magnetosomes onto cytomembranes	mcaA mamY	mamY											[86]
Provide energy for chain bundle assembly									mad-22, - 25, -26, -27, -29	mad-22, -25, - 26, -27	mad-22, -24, - 25, -26, man6	mad-22, -24, -25, -26, man6	[This study]
Assemble magnetosomes into chain bundles									mad24	mad24	man5	man5	[This study]
Control number of magnetosome chain/bundles	<i>MamY</i> and of <i>mamK</i>	copy number	The adjacent organization of the two <i>mamK</i> copies	Copy number and encoding protein similarity of mamK multiple copies Copy number of mamK and mad28 Unknown			[This study]						
Note: Genes in bold represent functions predicted in this study. Genes in brackets are only conserved in some strains.													

Table S11.	FISH probes	used in this	study.
1.0010 0110	r norr process		20000

Probe name	Target group	Oligonucleotide sequence (5' to 3')	Positions	T_m (°C)	Formamide conc.	Mismatched sequence number	Reference or source
EUB338	Most bacteria	GCTGCCTCCCGTAGGAGT	338-355	64	35%		[92]
YQC9-115	YQC-9	TTGTCCCCCATCGCAGGGCA	115-134	66	40%	0	_
XQGC1-539	XQGC-1	GAGGATTTCACTTCTGACTTAAA	539-560	56	20%	2	
MYC9-924	MYC-9	GAGGATTTCACTCCTGACTTGAA	924-946	58	25%	1	_
YQC5-911	YQC-5	TCCTGACTTATATAACCGCC	911-930	58	25%	2	- This study
WYHS4-1217	WYHS-4	TTGGCTTCGCAGCCTCGCAA	1217-1236	64	35%	0	
YQV1-195	YQV-1	CCCTTCCTCAAGCGACTTGC	195-214	64	35%	0	_
MYC10-60	MYC-10	GTTACCCCTCCATAACTCCG	60-79	62	30%	2	
YQR1-1423	YQR-1	TGCACATGTATTGCTACATGTACA	1423-1446	58	25%	0	

Notes: Species-specific oligonucleotide probes were designed using the offline tool DNAMAN (Version 7.0, Lynnon Biosoft, USA) and were synthesized by the Huada Genome Center, Beijing, China. The corresponding melting temperature (T_m) was measured directly during probe synthesis, and the formamide concentration was calculated where concentration = $(T_m - 46) \times 2$. Four probes (XQGC1-539, MYC9-924, YQC5-911, and MYC10-60) could also match other 16S rRNA sequences and were, therefore, not strictly species-specific. However, further analysis indicates that these mismatched sequences are either identical to our targets (16S rRNA gene sequence identity >97%) or that they belong to non-MTB species. Although some mismatched sequences come from other MTB species, they were not detected from our samples. Therefore, these four probes were used here. For more detailed information, see Table S12.

Probe name	No. of mismatched sequences	Name of mismatched sequence	Accession	Identity with target group (%)	Taxon
XQGC1-539	3	OTU51	GQ468517	99.7	- 'Ca Etamatashaatania'
	2	OTU15	GQ468514	96.5	Ca. Etaproteobacteria
MYC9-924	1	OTU17	EU780677	99.8	'Ca. Etaproteobacteria'
YQC5-911	2	D896293	FJ959680	75.8	Bacteroidetes
	2	MP 17	X61607	92.3	'Ca. Etaproteobacteria'
MYC10-60	3	OTU50	GQ468511	94.1	'Ca. Etaproteobacteria'
	2	MY3-11A	HM454282	99.9	Nitrospirae

Table S12. Mismatched information	of FISH probes used	in this study.
-----------------------------------	---------------------	----------------

Notes: The specificity of all probes was evaluated using the online probe evaluation tools ProbeMatch [6]. Mismatched sequences were downloaded from the RDP database; those shorter than 1,200 bp and repetitive sequences (identity \ge 99.0%) were removed. Two 16S rRNA sequences match XQGC1-539. However, one magnetotactic cocci sequence OTU51 has high identity (\ge 97.0%) with strain XQGC-1 and may be

affiliated with the same species. The other 'Ca. Etaproteobacteria' strain OTU15 16S rRNA sequence matching XQGC1-539 was not found in this sample. The 'Ca. Etaproteobacteria' sequence OTU17 has high identity (\ge 97.0%) with strain MYC-9 and may be affiliated with the same species. Two 16S rRNA sequences match YQC5-532. One 16S rDNA sequence D896293 belonging to *Bacteroidetes* was not MTB. The

other 'Ca. Etaproteobacteria' strain MP 17 was not found in this sample. Two 16S rRNA sequences match with DMHC9-60. One 16S rDNA sequence OTU50 was not found in this sample. The other MTB MY3-11A has high identity (\ge 97.0%) with strain MYC-10 and may be affiliated with the same species.

Supplementary references

- 1. Liu P, Liu Y, and Zhao X *et al.* Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci. *Environ Microbiol* 2021; **23**: 1115-29.
- 2. Schüler D. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol 2002; 5: 209-14.
- 3. Li J, Pan Y, and Liu Q *et al.* Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. *Earth Planet Sci Lett* 2010; **293**: 368-76.
- 4. Li J, Zhang H, and Menguy N *et al.* Single-cell resolution of uncultured magnetotactic bacteria via fluorescence-coupled electron microscopy. *Appl Environ Microbiol* 2017; **83**: e00409-17.
- 5. Yarza P, Yilmaz P, and Pruesse E *et al.* Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. *Nat Rev Microbiol* 2014; **12**: 635-45.
- 6. Kim Y, Teletia N, and Ruotti V *et al.* ProbeMatch: rapid alignment of oligonucleotides to genome allowing both gaps and mismatches. *Bioinformatics* 2009; **25**: 1424-5.
- 7. Bolger AM, Lohse M and Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 2014; **30**: 2114-20.
- 8. Peng Y, Leung HCM, and Yiu SM *et al.* IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics* 2012; **28**: 1420-8.
- Uritskiy GV, DiRuggiero J and Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. *Microbiome* 2018; 6: 158.
- 10. Parks DH, Imelfort M, and Skennerton CT *et al.* CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 2015; **25**: 1043-55.
- Richter M and Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. *Proc Natl Acad Sci USA* 2009; 106: 19126-31.
- 12. Besemer J, Lomsadze A and Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. *Nucleic Acids Res* 2001; **29**: 2607-18.
- 13. Altschul SF, Madden TL, and Schäffer AA *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 1997; **25**: 3389-402.

- 14. Chaumeil PA, Mussig AJ, and Hugenholtz P *et al.* GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. *Bioinformatics* 2019; **36**: 1925-7.
- 15. Nguyen LT, Schmidt HA, and von Haeseler A *et al.* IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* 2015; **32**: 268-74.
- 16. Kalyaanamoorthy S, Minh BQ, and Wong TKF *et al.* ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods* 2017; **14**: 587-9.
- 17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792-7.
- 18. Lu S, Wang J, and Chitsaz F et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020; 48: D265-D8.
- 19. Jumper J, Evans R, and Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596: 583-9.
- 20. Baek M, DiMaio F, and Anishchenko I *et al.* Accurate prediction of protein structures and interactions using a three-track neural network. *Science* 2021; **373**: 871-6.
- 21. Kaneko T, Minamisawa K, and Isawa T *et al.* Complete genomic structure of the cultivated rice endophyte *Azospirillum* sp. B510. *DNA Res* 2010; **17**: 37-50.
- 22. Liu P, Liu Y, and Ren X *et al.* A novel magnetotactic alphaproteobacterium producing intracellular magnetite and calcium-bearing minerals. *Appl Environ Microbiol* 2021; **87**: e01556-21.
- 23. Koziaeva VV, Rusakova SA, and Slobodova NV *et al. Magnetospirillum kuznetsovii* sp. nov., a novel magnetotactic bacterium isolated from a lake in the Moscow region. *Int J Syst Evol Microbiol* 2019; **69**: 1953-9.
- 24. Lin W and Pan Y. Temporal variation of magnetotactic bacterial communities in two freshwater sediment microcosms. *FEMS Microbiol Lett* 2010; **302**: 85-92.
- 25. Lin W, Li J, and Schüler D *et al.* Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism. *Syst Appl Microbiol* 2009; **32**: 342-50.
- 26. Lin W, Jogler C, and Schüler D *et al*. Metagenomic analysis reveals unexpected subgenomic diversity of magnetotactic bacteria within the phylum Nitrospirae. *Appl Environ Microbiol* 2011; 77: 323-6.
- 27. Spring S, Amann R, and Ludwig W *et al.* Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. *Syst Appl Microbiol* 1992; **15**: 116-22.
- 28. Koziaeva V, Dziuba M, and Leão P et al. Genome-based metabolic reconstruction of a novel uncultivated freshwater magnetotactic coccus

"Ca. Magnetaquicoccus inordinatus" UR-1, and proposal of a candidate family "Ca. Magnetaquicoccaceae". Front Microbiol 2019; 10: 2290.

- 29. Liu P, Tamaxia A, and Liu Y *et al.* Identification and characterization of magnetotactic Gammaproteobacteria from a salt evaporation pool, Bohai Bay, China. *Environ Microbiol* 2022; **24**: 938-50.
- 30. Lima LJ, Kamphuis HJ, and Nout MR *et al.* Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. *Food Microbiol* 2011; **28**: 573-82.
- 31. Morillo V, Abreu F, and Araujo AC *et al.* Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of south-seeking magnetotactic cocci within the Alphaproteobacteria. *Front Microbiol* 2014; **5**: 72.
- 32. Meldrum FC, Mann S, and Heywood BR *et al.* Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. *Proc R Soc Lond B* 1993; **251**: 231-6.
- 33. Schübbe S, Williams TJ, and Xie G *et al.* Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. *Appl Environ Microbiol* 2009; **75**: 4835-52.
- 34. Ji B, Zhang S, and Zhang W *et al.* The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. *Environ Microbiol* 2017; **19**: 1103-19.
- 35. Lefèvre CT, Bernadac A, and Yu-Zhang K *et al.* Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. *Environ Microbiol* 2009; **11**: 1646-57.
- 36. Matsunaga T, Okamura Y, and Fukuda Y *et al.* Complete genome sequence of the facultative anaerobic magnetotactic bacterium *Magnetospirillum* sp. strain AMB-1. *DNA Res* 2005; **12**: 157-66.
- 37. Li J and Pan Y. Environmental factors affect magnetite magnetosome synthesis in *Magnetospirillum magneticum* AMB-1: implications for biologically controlled mineralization. *Geomicrobiol J* 2012; **29**: 362-73.
- 38. Wang Y, Zhang T, and Lin W *et al.* Complete genome sequence of *Magnetospirillum* sp. strain XM-1, isolated from the Xi'an city moat, China. *Genome Announc* 2016; **4**: e01171-16
- 39. Wang Y, Lin W, and Li J *et al.* Characterizing and optimizing magnetosome production of *Magnetospirillum* sp. XM-1 isolated from Xi'an City Moat, China. *FEMS Microbiol Lett* 2015; **362**: fnv167.
- 40. Smalley MD, Marinov GK, and Bertani LE *et al*. Genome sequence of *Magnetospirillum magnetotacticum* strain MS-1. *Genome Announc* 2015; **3**: e00233-15.
- 41. Maratea D and Blakemore R. Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int J Syst Evol Microbiol 1981; 31: 452-5.

- 42. Ke LF, Liu PM, and Liu S *et al.* Complete genome sequence of *Magnetospirillum* sp. ME-1, a novel magnetotactic bacterium isolated from East Lake, Wuhan, China. *Genome Announc* 2017; **5**: e00485-17.
- 43. Ke L, Chen Y, and Liu P *et al.* Characteristics and optimised fermentation of a novel magnetotactic bacterium, *Magnetospirillum* sp. ME-1. *FEMS Microbiol Lett* 2018; **365**: fny052.
- 44. Dziuba M, Koziaeva V, and Grouzdev D et al. Magnetospirillum caucaseum sp. nov., Magnetospirillum marisnigri sp. nov. and Magnetospirillum moscoviense sp. nov., freshwater magnetotactic bacteria isolated from three distinct geographical locations in European Russia. Int J Syst Evol Microbiol 2016; 66: 2069-77.
- 45. Wang X, Wang Q, and Zhang W *et al.* Complete genome sequence of *Magnetospirillum gryphiswaldense* MSR-1. *Genome Announc* 2014; **2**: 4899-910.
- 46. Fdez-Gubieda ML, Muela A, and Alonso J *et al.* Magnetite biomineralization in *Magnetospirillum gryphiswaldense*: time-resolved magnetic and structural studies. *ACS Nano* 2013; 7: 3297-305.
- 47. Trubitsyn D, Abreu F, and Ward FB *et al.* Draft genome sequence of *Magnetovibrio blakemorei* Strain MV-1, a marine vibrioid magnetotactic bacterium. *Genome Announc* 2016; **4**: e01330-16.
- 48. Bazylinski DA, Williams TJ, and Lefèvre CT et al. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Microbiol 2013; 63: 1824-33.
- 49. Monteil CL, Perrière G, and Menguy N *et al.* Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. *Environ Microbiol* 2018; **20**: 4415-30.
- 50. Du H, Zhang W, and Zhang W *et al.* Magnetosome gene duplication as an important driver in the evolution of magnetotaxis in the Alphaproteobacteria. *mSystems* 2019; **4**: e00315-19.
- 51. Lefèvre CT and Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Mol Microbiol 2013; 77: 497-526.
- 52. Zhu K, Pan H, and Li J *et al.* Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. *Res Microbiol* 2010; **161**: 276-83.
- 53. Lefèvre CT, Viloria N, and Schmidt ML *et al.* Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. *ISME J* 2012; **6**: 440-50.
- 54. Geurink C, Lefevre CT, and Monteil CL *et al.* Complete genome sequence of strain BW-2, a magnetotactic Gammaproteobacterium in the family Ectothiorhodospiraceae, isolated from a brackish spring in Death Valley, California. *Microbiol Resour Announc* 2020; **9**: e01144-19.

- Trubitsyn D, Monteil CL, and Geurink C *et al.* Complete genome sequence of strain SS-5, a magnetotactic Gammaproteobacterium isolated from the Salton Sea, a shallow, saline, endorheic rift lake located on the San Andreas Fault in California. *Microbiol Resour Announc* 2021; 10: e00928-20.
- 56. Nakazawa H, Arakaki A, and Narita-Yamada S *et al.* Whole genome sequence of *Desulfovibrio magneticus* strain RS-1 revealed common gene clusters in magnetotactic bacteria. *Genome Res* 2009; **19**: 1801-8.
- 57. Shimoshige H, Kobayashi H, and Shimamura S *et al.* Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus *Desulfovibrio*. *PLoS ONE* 2021; **16**: e0248313.
- 58. Kolinko S, Richter M, and Gloeckner F-O *et al.* Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. *Environ Microbiol Rep* 2014; **6**: 524-31.
- 59. Zhang R, Chen Y, and Du H *et al.* Characterization and phylogenetic identification of a species of spherical multicellular magnetotactic prokaryotes that produces both magnetite and greigite crystals. *Res Microbiol* 2014; **165**: 481-9.
- 60. Lefèvre CT, Menguy N, and Abreu F *et al.* A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. *Science* 2011; **334**: 1720-3.
- 61. Kolinko S, Richter M, and Glöckner F-O *et al.* Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. *Environ Microbiol* 2016; **18**: 21-37.
- 62. Li J, Menguy N, and Gatel C *et al.* Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the *Nitrospirae* phylum. *J R Soc Interface* 2015; **12**: 20141288.
- 63. Lin W, Deng A, and Wang Z *et al.* Genomic insights into the uncultured genus '*Candidatus* Magnetobacterium' in the phylum Nitrospirae. *ISME J* 2014; **8**: 2463-77.
- 64. Zhang W, Wang Y, and Liu L *et al.* Identification and genomic characterization of two previously unknown magnetotactic Nitrospirae. *Front Microbiol* 2021; **12**: 690052.
- 65. Uzun M, Koziaeva V, and Dziuba M *et al.* Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. *Front Microbiol* 2022; **13**: 945734.
- 66. Li J, Liu P, and Menguy N et al. Intracellular silicification by early-branching magnetotactic bacteria. Sci Adv 2022; 8: eabn6045.
- 67. Kolinko S, Jogler C, and Katzmann E *et al.* Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. *Environ Microbiol* 2012; **14**: 1709-21.

- 68. Konstantinidis KT, Rosselló-Móra R and Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11: 2399-406.
- 69. Komeili A, Vali H, and Beveridge TJ *et al.* Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. *Proc Natl Acad Sci USA* 2004; **101**: 3839-44.
- Uebe R, Junge K, and Henn V *et al.* The cation diffusion facilitator proteins MamB and MamM of *Magnetospirillum gryphiswaldense* have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. *Mol Microbiol* 2011; 82: 818-35.
- 71. Murat D, Quinlan A, and Vali H *et al.* Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. *Proc Natl Acad Sci USA* 2010; **107**: 5593-8.
- 72. Scheffel A, Gardes A, and Grunberg K *et al.* The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in *Magnetospirillum gryphiswaldense* but regulate the size of magnetosome crystals. *J Bacteriol* 2008; **190**: 377-86.
- 73. Arakaki A, Yamagishi A, and Fukuyo A *et al.* Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. *Mol Microbiol* 2014; **93**: 554-67.
- 74. Wan J, Browne PJ, and Hershey DM *et al.* A protease-mediated switch regulates the growth of magnetosome organelles in *Magnetospirillum magneticum*. *Proc Natl Acad Sci USA* 2022; **119**: e2111745119.
- 75. Quinlan A, Murat D, and Vali H *et al.* The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. *Mol Microbiol* 2011; **80**: 1075-87.
- 76. Rawlings AE, Bramble JP, and Walker R *et al.* Self-assembled MmsF proteinosomes control magnetite nanoparticle formation *in vitro*. *Proc Natl Acad Sci USA* 2014; **111**: 16094-9.
- 77. Uebe R and Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol 2016; 14: 621-37.
- 78. Raschdorf O, Müller FD, and Pósfai M *et al.* The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in *Magnetospirillum gryphiswaldense*. *Mol Microbiol* 2013; **89**: 872-86.
- 79. Lohße A, Borg S, and Raschdorf O *et al.* Genetic dissection of the *mamAB* and *mms6* operons reveals a gene set essential for magnetosome biogenesis in *Magnetospirillum gryphiswaldense*. *J Bacteriol* 2014; **196**: 2658-69.
- 80. Scheffel A, Gruska M, and Faivre D *et al.* An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. *Nature* 2006; **440**: 110-4.
- 81. Komeili A, Li Z, and Newman DK et al. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science

2006; 311: 242-5.

- 82. Schüler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 2008; 32: 654-72.
- 83. Hershey DM, Ren X, Melnyk RA et al. MamO is a repurposed serine protease that promotes magnetite biomineralization through direct transition metal binding in magnetotactic bacteria. *PLoS Biol* 2016; **14**: e1002402.
- 84. Siponen MI, Legrand P, and Widdrat M *et al.* Structural insight into magnetochrome-mediated magnetite biomineralization. *Nature* 2013; **502**: 681-4.
- 85. Yang J, Li S, and Huang X *et al.* MamX encoded by the *mamXY* operon is involved in control of magnetosome maturation in *Magnetospirillum* gryphiswaldense MSR-1. *BMC Microbiol* 2013; **13**: 1-10.
- 86. Toro-Nahuelpan M, Giacomelli G, and Raschdorf O *et al.* MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. *Nat Microbiol* 2019; **4**: 1978–89.
- 87. Arakaki A, Webb J and Matsunaga T. A novel protein tightly bound to bacterial magnetic particles in *Magnetospirillum magneticum* strain AMB-1. *J Biol Chem* 2003; **278**: 8745-50.
- 88. Wan J, Monteil CL, and Taoka A et al. McaA and McaB control the dynamic positioning of a bacterial magnetic organelle. BioRxiv 2022.
- 89. Lefèvre CT, Trubitsyn D, and Abreu F *et al.* Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. *Environ Microbiol* 2013; **15**: 2712-35.
- 90. Rahn-Lee L, Byrne ME, and Zhang M *et al.* A genetic strategy for probing the functional diversity of magnetosome formation. *PLoS Genet* 2015; **11**: e1004811.
- 91. Pohl A, Young SAE, and Schmitz TC *et al.* Magnetite-binding proteins from the magnetotactic bacterium *Desulfamplus magnetovallimortis* BW-1. *Nanoscale* 2021; **13**: 20396-400.
- 92. Amann RI, Krumholz L and Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. *J Bacteriol* 1990; **172**: 762-70.