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MD-simulation

Table S1 | Binding activities of wild-type hACE2-Fc and hACE2-Fc variants with

immobilized recombinant SARS-CoV-2 spike protein RBD in the ELISA binding affinity

assay and predicted Gibbs free binding energies (ΔGpred) from the MD simulations. Binding

half maximal effective concentration (EC50) values were calculated using GraphPad prism. ΔGpred

values were predicted using the empirical scoring function (ESF).

hACE2 mutation EC50 (nM) ΔGpred (kJ/mol)

WT 0.89 -51.22

K31W 0.16 -58.01

N330Y 0.24 -54.08

T27Y, L79T, E35D 0.14 -59.43

T27Y, L79T, K31W 0.11 -60.32

T27Y, L79T, N330Y, E35D 0.18 -57.41

T27Y, L79T, N330Y, K31W 0.12 -55.91

T27Y, L79T, N330Y, N90E 0.08 -58.77

T27Y, L79T, N330Y, T92C 0.12 -59.61

T27Y, L79T, N330Y, T92C, E35D 0.18 -58.12

T27Y, L79T, N330Y, T92S 0.14 -61.06

T27Y, L79T, N90E 0.17 -57.35

T27Y, L79T, T92C 0.15 -57.20

T27Y, L79T, T92C, E35D 0.11 -57.53

T27Y, L79T, T92S 0.22 -55.72

T27Y, N330Y, A386L 0.20 -62.22

T92C, K31W 0.30 -57.12

L79R, Q24E 2.04 -51.66

N330R 2.39 -52.62

R393E 0.78 -56.18

L79Y 0.62 -54.67

T27Y, L79T, N330Y, A386L 0.24 -61.50

3



Fig. S1 | Validation of the empirical scoring function (ESF) results using an experimental

half maximal effective concentration (EC50) test set. To calculate the correlation between

Gibbs free binding energies (ΔGpred) and EC50 values, logarithmic EC50 values were adjusted

under consideration of temperature (T) and the gas constant R.

Table S2 | List of the spike RBD-hACE2 pairs used for training the ANN is provided in

Table S2. The full list of RBD-hACE2 pairs is provided as a machine readable CSV

(Comma-separated values) file Supplementary_Table_S2.csv.

RBD Mutations hACE2
Mutations

RBD Source hACE2
Source

Pre-Omicron
RBD
Experiment

Pre-Omicron
hACE2
Experiment

Omicron BA.2
Experiment

K417N, E484K,
N501Y H34A

Beta Variant,
WHO

Chan et al.
(2020) X X X

K417N, E484K,
N501Y L79I

Beta Variant,
WHO

Chan et al.
(2020) X X X

.

.

.
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Fig. S2 | Preselection of hACE2 variants with Gibbs free energy predictions. hACE2 variants

selected either by visual inspection, literature research or a combination of both with the goal to

enhance the binding affinity between SARS-CoV-2 RBD and hACE2. Van der Waals (vdw) and

electrostatic (elec) energies from the MD simulation in combination with optimal fitted weights

(𝜔elec = 0.024, 𝜔vdw = 0.765) from the training set resulted in predicted Gibbs free energies (ΔGpred).

5



Artificial Neural Network

Motivation.

We employed the ANN to predict new viable hACE2 candidates. Since randomly searching

through the entire mutation landscape using molecular-dynamics simulations is computationally

infeasible, the binding affinities of all possible single-point mutants of the wildtype-hACE2 were

predicted by the ANN, of which the most promising candidates were then analyzed via the

empirical scoring function.

Network Input Data.

The input channels were decided on to be the following set of Halo properties:

● “e”  representing the electric field

● “A” : representing the force-field experienced by aromatics

● “HP” : The hydrophobicity-field

● “HD” : Hydrogen-bond donor field

● “d” :  Desolvation field

● "I" :  Iodine field

● “BF”: Flexibility field

● “NA”: Nitrogen as H-bond acceptor field

Halos only depend on surface geometry and are independent of the exact underlying structure of

their respective proteins, which allows the ANN to be agnostic to the protein-structure. Fig. S3

shows an example set of Halos. To see their relation to the protein structure,  we refer to Fig. 3.
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Fig. S3 | Example Halos of the eight input-channels for hACE2 (left) and RBD (right)

rendered in Open3D. First column, from top to bottom: electrostatics (e), hydrophobicity (HP),

hydrogen-bond donor (HD), nitrogen as hydrogen-bond acceptor (NA). Second column, from top

to bottom: Iodine (I), desolvation field (d), flexibility/uncertainty field (BF), aromaticity (A).

This decision was made by correlation studies independent from the present work, deciding on

this set of eight largely uncorrelated features. Preliminary ablation studies have shown that, if

each property is used separately one by one, the hydrophobicity field has the strongest predictive

power, outperforming all others by 0.1 to 0.15 kJ/mol validation error. On the other hand, all of

the eight channels alone are sufficient to produce meaningful predictions, with the “nitrogen as

H-bond acceptor” field, which for hACE2 and RBD Halos seems to correlate mainly with their

depth-profile perpendicular to the attachment plane, exhibiting unstable and slow training as well

as worse convergence on validation metrics, suggesting that the surface geometry alone is

important but not sufficient. The best performing combination of fields evaluated for the

prediction of new hACE2 variants has been determined to be, in descending order of importance:

1. Hydrophobicity field

2. Hydrogen-bond donor field
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3. Aromatic field

4. Electric field

The voxelized Halos were padded to a size of 36x38x33 voxels, at a grid spacing of 1.4 Å

between neighboring voxels. A visualization of the Halos for the properties listed above is shown

in Fig. S3.

Training the ANN for hACE2 candidate pre-selection.

The validation set for the experiments was chosen to be any combination containing hACE2

variants with the amino-acid exchanges T27Y and L79T. This results in a set of 70 combinations,

and includes the three best-performing samples, which contain the two highest-affinity hACE2

variants “T27Y, L79T, N330Y, K31W” and “T27Y, L79T, K31W”, leaving the lowest ΔG values

in the training set at -67.1 kJ/mol. Using this validation set to learn how the ANN behaves when

shown out-of-distribution values of ΔG, the model training was stopped when the validation loss

was minimal, under the requirement that all high-performers were assigned ΔG values lower

than -60 kJ/mol.

This approach was chosen since this way the network was trained so that it would have been able

to predict the current highest-affinity hACE2 mutation without having seen them during training.

Results.

Out of all single-point hACE2 mutants, the ANN only found five values with ΔG values lower

than -60 kJ/mol. For ΔG values lower than -59 kJ/mol it found nine, for ΔG values lower than

-58 kJ/mol, 18 candidates were found. The candidates with ΔG values < -60 kJ/mol successfully
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gave three new hACE2 mutations with values < -63 kJ/mol, one of which (K31E) even reached

state-of-the art performance of -71 kJ/mol. Note that the previous highest-affinity hACE2 mutant

was built using four amino-acid exchanges, versus just a single one in this case. Fig. S4 shows

the distribution of the obtained MD results in dependence of the ANN prediction, and shows a

clear trend towards higher MD affinities for higher predictions.

Fig. S4 | Correlation-plot between ANN predictions and MD-results for single-point

hACE2 mutants. The control group shows 100 randomly sampled single-point amino-acid

exchanges from all possible single-point mutations. Blue points indicate the 300 highest

affinities predicted by the ANN from all single-point variants, green outlines indicate that points

belong to the top 1% (110) of ANN predictions.
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Table S3 | Detailed composition of the initial artificial neural network training-set.

RBD Mutations Count ACE2 Mutations Count

0-5 Mutations 621 1 Mutation 120

6-10 Mutations 187 2 Mutations 15

10-15 Mutations 176 3 Mutations 30

15 - 20 Mutations 64 4 Mutations 35

28 Mutations 1 5 Mutations 5

—- —- Wild type 844

Fig. S5 | Qualitative representation of model error dependence on Gibbs free-energy values

(ΔG) from the MD simulations.
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Fig. S6 | Gibbs free-energy value (ΔG) distribution of the entire training set. Strong binders

with energies <-65 kJ/mol and weak binders with energies >-45 kJ/mol are severely

underrepresented, yet the model still produces accurate predictions.

Network Regularization and Augmentation.

No explicit techniques for regularization were employed, only the implicit mechanisms induced

by separated convolutions on the input Halos, as well as a channel-wise bottleneck in the last

convolutional layer.

The data labels were augmented with an additive Gaussian-noise term with mean zero and

variance 0.6 kJ/mol, which amounts to half of the uncertainty of the MD simulation itself.

Furthermore, the MSE loss was again squared, leading to a stronger emphasis on rare outlier

samples. This strategy was chosen over under- or oversampling to avoid memorizing outliers, as

well as to keep retraining the network with the bulk of noisy samples, which adds an additional

stochastic element to the loss landscape, avoiding the overfitting of common samples. Loss
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values under 0.5 kJ/mol were set to zero, as these deviations were not considered physically

meaningful and did not need to be emphasized further during training.
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SARS-CoV-2 neutralization assay

Fig. S7 | Inhibiting effect of hACE2-Fc wild type (hACE2-Fc WT) and three hACE2-Fc

variants on SARS-CoV-2 (wild-type and Beta variant) infection. Each hACE2-Fc variant (25

μg/mL) was preincubated with SARS-CoV-2 (MOI: 0.0003) and then added to VeroE6 cells.

Remdesivir (10 μM) treatment and infections without treatment (“Untreated”) served as controls.

Supernatants (SN) were collected 48 h post-infection and RNA levels were analyzed by

qRT-PCR. a, SARS-CoV-2 wild-type virus inputs for two independent experimental series,

which led to the viral titers shown in b and c. SARS-CoV-2 Beta virus inputs for two
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independent experimental series are shown in d. The associated SN contained viral titres

illustrated in e and f. qRT-PCR data are mean ± SEM of three replicates per tested condition.
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