1	Supplementary Information
T	Supplementary mormation
2	
3	Super-resolving microscopy reveals the localizations and
4	movement dynamics of stressosome proteins in
5	Listeria monocytogenes
6	Buu Minh Tran ¹ , Dmitrii Sergeevich Linnik ¹ , Christiaan Michiel Punter ¹ , Wojciech
7	Mikołaj Smigiel', Luca Mantovanelli', Aditya Iyer', Conor O'Byrne', Tjakko Abee',
8	Jörgen Johansson' and Bert Poolman'
9	¹ Department of Biochemistry, University of Groningen, Groningen, the Netherlands
10	² Microbiology, School of Biological & Chemical Sciences, National University of Ireland
11	Galway, Galway, Ireland
12	³ Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, the
13	Netherlands
14	⁴ Department of Molecular Biology, Umeå University, Umeå, Sweden
15	Keywords: Listeria monocytogenes, protein localization, protein diffusion, Prli42, RsbR1,
16	RsbL, stressosome, super-resolution microscopy, single-particle tracking, single-molecule
17	displacement mapping

19 Table 1. Molecular weight (M_W), pI, and net charge of proteins of interest

Protein/Fusion	Theoretical M _W (kDa)	Average_pI	Average net charge at pH 7.5
mEos3.2	26.2	7.33	-0.49
mEos3.2-prli42	30.1	8.14	1.49
mEos3.2-RsbR1	57.8	5.50	-14.53
mEos3.2-RsbL	55.2	5.29	-21.46
RsbR1	31.6	4.70	-14.28
RsbL	28.8	4.60	-20.21

20 **Protein sequences**

21 >RsbR1 (genome) || Molecular weight: 31620.5 Da

22 MYKDFANFIRTNKADLLNDWMNEMEKQSDQLINDIAKEAMYEETSKEFVDLIVSNVTENGS

23 KFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKREEKPEDDAYYRFET

24 WLSSMYNKVVTAYADTWEKTVSIQKSALQELSAPLLPIFEKISVMPLIGTIDTERAKLIIENLLI

- 25 GVVKNRSEVVLIDITGVPVVDTMVAHHIIQASEAVRLVGCQAMLVGIRPEIAQTIVNLGIELD26 QIITTNTMKKGMERALALTNREIVEKEG
- 27 >RsbL (genome) || Molecular weight: 28816.77 Da

28 MTAYPQFDVILKALNLSSVGVIITDPEQKDNPIIFVNTGFENITGYAKEEALGSNCHFLQGDDT

- 29 DKEEVAKIRHAINEKSTANVLLKNYRKDGTSFMNELTIEPIYDDHEHLYFVGIQKDVTTEHD
- 30 YQLELEKSLTEIEKLSTPIVPIKENICVLPLIGSLTHDRFQHMSEYVSEYMDHGKEDYLIMDLS 21 CLAEENEDAVMNI VKEHCEMKI TGVELUTCISPKEAMTI IPVEENI ASI TTYSTIKEALOEY
- 31 GLAEFNEDAVMNLVKFHGFMKLTGVELIITGISPKFAMTLIRYEENLASLTTYSTIKEALQFY
- 32 >mEos3.2 (in pNF mEos3.2) || Molecular weight: 26217.64 Da

33 MGSAIKPDMKIKLRMEGNVNGHHFVIDGDGTGKPFEGKQSMDLEVKEGGPLPFAFDILTTAF

- 34 HYGNRVFAKYPDNIQDYFKQSFPKGYSWERSLTFEDGGICNARNDITMEGDTFYNKVRFYG
 35 TNFPANGPVMQKKTLKWEPSTEKMYVRDGVLTGDIEMALLLEGNAHYRCDFRTTYKAKEK
- 35 TNFPANGPVMQKKTLKWEPSTEKMYVRDGVLTGDIEMALLLEGNAHYRCDFRTTY
 36 GVKLPGAHFVDHCIEILSHDKDYNKVKLYEHAVAHSGLPDNARRGGTGGS
- 37 >mEos3.2-Prli42 (in pNF mEos3.2-prli42) || Molecular weight: 30098.58 Da

38 MGSAIKPDMKIKLRMEGNVNGHHFVIDGDGTGKPFEGKQSMDLEVKEGGPLPFAFDILTTAF

- **39** HYGNRVFAKYPDNIQDYFKQSFPKGYSWERSLTFEDGGIČNARNDITMEGDTFYNKVRFYG
- 40 TNFPANGPVMQKKTLKWEPSTEKMYVRDGVLTGDIEMALLLEGNAHYRCDFRTTYKAKEK
- 41 GVKLPGAHFVDHCIEILSHDKDYNKVKLYEHAVAHSGLPDNARR**GGTGGS**PWMTNKKVVR
- 42 VVVILMLIAIVLSSVLTGVLMFLVD
- 43 >mEos3.2-RsbR1 (in pNF mEos3.2-RsbR1) || Molecular weight: 57833.06 Da

MGSAIKPDMKIKLRMEGNVNGHHFVIDGDGTGKPFEGKQSMDLEVKEGGPLPFAFDILTTAF 44 45 HYGNRVFAKYPDNIQDYFKQSFPKGYSWERSLTFEDGGICNARNDITMEGDTFYNKVRFYG TNFPANGPVMQKKTLKWEPSTEKMYVRDGVLTGDIEMALLLEGNAHYRCDFRTTYKAKEK 46 47 **GVKLPGAHFVDHCIEILSHDKDYNKVKLYEHAVAHSGLPDNARRGGTGGSGSYKDFANFIR** TNKADLLNDWMNEMEKOSDOLINDIAKEAMYEETSKEFVDLIVSNVTENGSKFNEKLDDFA 48 EKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKREEKPEDDAYYRFETWLSSMYNKV 49 50 VTAYADTWEKTVSIQKSALQELSAPLLPIFEKISVMPLIGTIDTERAKLIIENLLIGVVKNRSEV VLIDITGVPVVDTMVAHHIIQASEAVRLVGCQAMLVGIRPEIAQTIVNLGIELDQIITTNTMKK 51

- 52 GMERALALTNREIVEKEG
- 53 >mEos3.2-RsbL (in pNF mEos3.2-RsbL) || Molecular weight: 55161.5 Da

54 MGSAIKPDMKIKLRMEGNVNGHHFVIDGDGTGKPFEGKQSMDLEVKEGGPLPFAFDILTTAF
 55 HYGNRVFAKYPDNIQDYFKQSFPKGYSWERSLTFEDGGICNARNDITMEGDTFYNKVRFYG

55 HIGHRVFAR IPDNIQDIFRQSFPRGISWERSLIFEDGGICNARNDIIMEGDIFFINRVRFIG 56 TNFPANGPVMQKKTLKWEPSTEKMYVRDGVLTGDIEMALLLEGNAHYRCDFRTTYKAKEK

57 GVKLPGAHFVDHCIEILSHDKDYNKVKLYEHAVAHSGLPDNARR**GGTGGS**EFTAYPQFDVI

- 58 LKALNLSSVGVIITDPEQKDNPIIFVNTGFENITGYAKEEALGSNCHFLQGDDTDKEEVAKIRH
- 59 AINEKSTANVLLKNYRKDGTSFMNELTIEPIYDDHEHLYFVGIQKDVTTEHDYQLELEKSLTE
- 60 IEKLSTPIVPIKENICVLPLIGSLTHDRFQHMSEYVSEYMDHGKEDYLIMDLSGLAEFNEDAV
- 61 MNLVKFHGFMKLTGVELIITGISPKFAMTLIRYEENLASLTTYSTIKEALQFY
- 62

RsbR1: Blue sequence/ RsbL: Dark golden sequence/ mEos3.2: Green sequence/ Prli42: Magenta
 sequence/ GGTGGS: hexa-amino acid linker

65

67 Table 2. List of strains and plasmids used in this paper

Bacteria strains	Reference/source
Escherichia coli	
K12	NovaBlue
MC1061 <i>darcB</i> (Erythromycin sensitive)	1
Listeria monocytogenes	2
EGD-e	K. Boor (Connor O'Byrne's lab)
EGD-e ⊿rsbR1	2
EGD-e mEos3.2::rsbR1	This study
EGD-e ⊿rsbL	3
EGD-e mEos3.2::rsbL	This study
EGD-e ⊿sigB	4
EGD-e ⊿prli42	5
Plasmid	
pMAD	6
pMAD mEos3.2-RsbR1	This study
pMAD mEos3.2-RsbL	This study
pNF GFP-RsbR1	This study
pNF mEos3.2	This study
pNF mEos3.2-Prli42	This study
pNF mEos3.2-RsbR1 (including in-frame RsbS and RsbT))	This study
pNF mEos3.2-RsbL	This study
pNF RsbL	This study

69 Table 3. List of primers

No.	Name	Function	Sequence (5' 3')	Reference
1.	Fw Up_RsbL	Forward primer (carries NcoI site) and reverse primer (carries SalI site) to amplify	CCACCATGGCAGGATCTGG AAAAAGATC	This study
2.	Rv Up_RsbL	the 811 bp sequence upstream of the gene <i>rsbL (lmo0799)</i>	GTCGTCGACCTGCGTGTTTC TCCCCCT	This study
3.	Fw mEos3.2 (L)	Forward primer (carries Sall site) and	GTCGTCGACATGGGAAGTG CGATTAAGCC	This study
4.	Rv mEos3.2 (L)	amplify the gene <i>mEos3.2</i> with a 6-amino acid linker	GAAGAATTCCGAACCGCCG GTACCGCCTCGTCTGGCATT GTCAGG	This study
5.	Fw RsbL	Forward primer (carries EcoRI site) and reverse primer (carries NcoI site) to	GAAGAATTCACCGCTTATCC ACAATTCGATG	This study
6.	Rv RsbL	amplify the gene <i>rsbL (lmo0799)</i> and its 811 bp sequence downstream	CCACCATGGTTCTGATTCTC CGTAAGCTTTTACC	This study
7.	Fw Up_RsbR1	Forward primer (carries NcoI site) and reverse primer (carries SalI site) to amplify	CCACCATGGGCGAAATAAC TCTTTTCTTCAAGGC	This study
8.	Rv Up_RsbR1	the 964 bp sequence upstream of the gene <i>rsbR1(lmo0889)</i>	GTCGTCGACCAGTTATTTTC CAACCTTTCTCCAC	This study
9.	Rv mEos3.2 (1)	Reverse primer (carries BamHI site) to amplify the gene <i>mEos3.2</i> with 6-amino acid linker; used with the forward primer of Fw mEos3.2 (L)	GGAGGATCCCGAACCGCCG GTACCGCCTCGTCTGGCATT GTCAGG	This study
10.	Fw RsbR1	Forward primer (carries BamHI site) and reverse primer (carries NcoI site) to	GGAGGATCCTATAAAGATTT TGCAAACTTCATCCG	This study
11.	Rv RsbR1_short	amplify the gene <i>rsbR1 (lmo0889)</i> and 1160 bp sequence downstream, including the genes <i>rsbS</i> , <i>rsbT</i> , and part of <i>rsbU</i>	CCACCATGGCCCAAAATCA AGTTCATCGTG	This study
12.	Fw upup_RsbL	Forward primer at 1126 bp upstream of the gene <i>rsbL (lmo0799)</i> to confirm the chromosomal integration	GGTTATTTCCGCAATAGAAA GTAG	This study
13.	Rv mid_mEos3.2	Reverse primer in the middle of the gene <i>mEos3.2</i> to confirm chromosomal integration	CCTTCCATTGTTATGTCGTTT C	This study
14.	Fw mid_mEos3.2	Forward primer in the middle of the gene <i>mEos3.2</i> to confirm the chromosomal integration	GGACACTTTCTATAATAAAG TTCGATT	This study
15.	Rv downdown_Rsb L	Reverse primer at 1081 bp downstream of gene <i>rsbL (lmo0799)</i> to confirm the chromosomal integration	CCAGAACACTTGTTTAATCG C	This study
16.	Fw upup_RsbR1	Forward primer at 1015 bp upstream of the gene <i>rsbR1 (lmo0889)</i> to confirm the chromosomal integration	GGACTTAAGGGAGTATATC AGCT	This study
17.	Rv downdown_Rsb R1	Reverse primer at 2029 bp downstream of the gene <i>rsbR1 (lmo0889)</i> to confirm the chromosomal integration	GCTGTATAAGCATCGATCTC C	This study
18.	Rv mEosRST	Reverse primer to clone RsbRST from pMAD mEos3.2-RsbR1; carries NcoI site	GCCGCCATGGTTACCGAACC CATTTCG	This study
19.	Fw pNF	Forward primer to clone the pNF8 backbone creating pNF mEos3.2-RsbRST; carries NcoI site	CCACCATGGCTGCAGGCATG CAAGC	This study
20.	Rv pNF	Reverse primer to clone pNF8 backbone creating pNF mEos3.2-RsbRST; carries Sall site	GTCGTCGACTTAATAAACCT CCTTTCGGATCCGTTG	This study
21.	Rv mEosRsbL/ RsbL(pNF)	Reverse primer to clone mEos3.2-RsbRL or rsbL from pMAD mEos3.2-RsbL; carries NcoI site	CCACCATGGTTAGTAAAATT GTAATGCTTCTTTGATTGTG C	This study
22.	Fw RsbRL(pNF)	Forward primer to clone <i>rsbL</i> (<i>lmo0799</i>) from pMAD mEos3.2-RsbL; carries Sall site	GTCGTCGACATGACCGCTTA TCCACAATTCG	This study
23.	Fw mEos3.2 pNF8	Forward primer to clone gene for mEos3.2 from pMAD mEos3.2-RsbR1	AGGTTTATTAAAUGGGAAG TGCGATTAAGC	This study
24.	Rv mEos3.2 pNF8	Reverse primer to clone gene for mEos3.2 from pMAD mEos3.2-RsbR1	AGTTATTAUGAACCGCCGGT ACCG	This study

25.	Fw pNF8 (prli42)	Forward primer to open pNF8 backbone	ATAATAACUGCAGGCATGC AAGCTTG	This study
26.	Rv pNF8 mEos3.2	Reverse primer to open pNF8 backbone	ATTTAATAAACCUCCTTTCG GATCCGTTG	This study
27.	Fw-pNF8 sequencing	Forward primer for sequencing to check for proper insertion of mEos3.2	TGAGCGCAACGCAATTAAT G	This study
28.	Rv-pNF8 sequencing	Reverse primer for sequencing to check for proper insertion of mEos3.2	CGATTAAGTTGGGTAACGCC AG	This study
29.	Fw prli42 (res)	Forward primer to amplifying <i>prli42</i> from pAD prli42; carries NcoI site	CCACCATGGATGACTAATAA AAAAGTAGTTCGC	This study
30.	Rv prli42 (res)	Reverse primer to amplifying <i>prli42</i> from pAD prli42; carries SalI site	GTCGTCGACTAAAAACATTA ATACCCCGGTT	This study
31.	Fw pNFmEos (res)	Forward primer to amplifying pNF mEos3.2; carries SalI site	GTCGTCGACTAATAACTGCA GGCATGCAAGC	This study
32.	Rv pNFmEos (res)	Reverse primer to amplifying pNF mEos3.2; carries NcoI site	CCACCATGGTGAACCGCCG GTACCG	This study

Supplementary Fig. 1 | Sequencing results of the integration strains. a, and b, *L. monocytogenes* EGD-e *mEos3.2::rsbR1* and *L. monocytogenes* EGD-e *mEos3.2::rsbL*, respectively. Two colonies of each integrant were sequenced. After chromosomal integration of *mEos3.2::rsbR1* and *mEos3.2::rsbL*, the plasmids were excised as shown by Xgal (blue-white) and antibiotic sensitivity screens. Selected colonies were checked for integration by colony-PCR and sequencing with primers upstream, downstream, and two middle positions of the gene *mEos3.2*.

Supplementary Fig. 2 | Growth under ethanol, NaCl, low pH, and H₂O₂ stress of *L. monocytogenes* wild-type, *ArsbR1*, integrant *mEos3.2::rsbR1*, *AsigB*, and *Aprli42*. The growth was monitored in 96-well plates at 30 °C with 200 rpm shaking. Cells were grown in BHI medium supplemented with (a) ethanol at 0% (control), 2%, 4%, and 8% (v.v⁻¹); (b) NaCl at 0% (control), 2%, 4%, and 8% (w.v⁻¹); (c) HCl to set the pH to pH 7.2 (control), pH 5.5, pH 3.5, and pH 2.5; and (d) with H₂O₂ at 0% (control), 0.05%, 0.1% and 0.2%.

Supplementary Fig. 3 | Phenotypic test of survival of *L. monocytogenes* upon acid shock 88 treatment. Mid-log phase cultures untreated at pH 7.2 (No pre-stress) or treated at pH 5.0 89 (Pre-stress) for 15 min and subsequently challenged in acidified BHI (pH 2.5). The detection 90 threshold is 10² CFU.mL⁻¹. Samples were taken at 0, 10, 20, and 30 min. Survival data are 91 expressed as Log₁₀ (CFU.mL⁻¹). $\Delta rsbR1$ and $\Delta sigB$ were notably more sensitive to the acid 92 93 treatment than wild-type, *mEos3.2::rsbR1*, and $\Delta prli42$ and colonies were no longer detected after 10 min treatment at pH 2.5. Error bars represent standard deviations. Three 94 biological replicates were made. 95

97 Supplementary Fig. 4 | Ring formation phenotype on low-agar after twelve oscillating 98 cycles of light and dark (12-hour intervals). a, and b, The integration strain *mEos3.2::rsbRL* 99 and the same strain expressing *rsbL* from the P_{dlt} promoter of pNF RsbL. We used an 100 erythromycin concentration for plasmid selection of 5 µg.mL⁻¹. Images are representative of 101 at least three independent experiments.

103

Supplementary Fig. 5 | Schematic of the highly inclined and laminated optical sheet (HILO) microscopy, adapted from the previous study⁷. a, The set-up of optics. b, Bacterial sample is illuminated with a laminated thin sheet of the laser beam. The *dz* is the thickness of the geometrical optics along the z-direction and $dz = R/tan\theta$, where *R* is the diameter of the illuminated area, and θ is the incidence angle at the sample.

111 Supplementary Fig. 6 | Diffusion at subcellular regions. a, b, and c, show the subcellular division of free mEos3.2, mEos3.2-Prli42, and mEos3.2-RsbR1, respectively. Cells were 112 divided into three main regions: the cell center (60% in length) and the cell poles (each 113 20% in length). The displacements belonging to the corresponding regions were then 114 analyzed separately. The top panels are the distributions of all single-molecule 115 displacements from the corresponding regions shown in the bottom panels. The red curve 116 is obtained from MLE fitting, using equation (4), and the resulting diffusion coefficients are 117 118 presented inside the panels.

Supplementary Fig. 7 | Ensemble diffusion coefficients determined by FRAP 121 measurements. a, and b, Box charts of the D_L from FRAP measurements showing the 122 ensemble mobility of mEos3.2-RsbR1, mEos3.2-RsbL, mEos3.2-Prli42, and mEos3.2 in the 123 wild-type and *Aprli42* strains in the exponential and stationary phase of growth. Each dot 124 shows the data of one cell. The box range indicates the standard deviation (SD), and the 125 126 open circle and dashed symbols inside the boxes indicate the mean and median, respectively. (ns) is not significant and statistical significance was determined by one-way 127 ANOVA followed by Tukey's post-hoc test to calculate P-values. 128

Supplementary Fig. 8 | Experimental overview, protein tagging strategy, electrophoretic 131 mobility, and in-gel fluorescence of proteins. a, Experimental overview for measuring the 132 intracellular dynamics of stressosome proteins in live cells. The targeted proteins are 133 134 RsbR1, and RsbL produced either from a multi-copy plasmid or the chromosome in wildtype (WT) or $\Delta prli42$ strains. The diffusion coefficients of the proteins are measured by 135 136 FRAP, SMdM, or SPT. **b**, A photoconvertible fluorescent protein mEos3.2 is fused to the Nterminus of mEos3.2-RsbR1 and mEos3.2-RsbL, and the fusion proteins are produced from 137 a plasmid or the chromosome. Free cytosolic mEos3.2 and mEos3.2 fused to the N-138 terminus of Prli42 (mEos3.2-Prli42) are produced from pNF mEos3.2-Prli42, which is under 139 the control of the constitutive P_{dlt} promoter; while the chromosomal expression is driven 140 141 by corresponding native promoters, which are P_{sigA} and P_{rsbL} for rsbR1 and rsbL, 142 respectively. c, In-gel fluorescence of the constructs tagged with mEos3.2 produced in the wild-type and *Aprli42* strains. The expected bands are shown by black triangle symbols. A 143 star symbol represents endogenous fluorescence in L. monocytogenes. The molecular 144 weight (kDa) of the marker proteins is indicated on the left of the panel. These results 145 indicate that the tandem fusions inside *L. monocytogenes* are intact. 146

Supplementary Fig. 9 | Pole aggregation of GFP-RsbR1 observed by confocal microscopy. The green fluorescent protein GFP was fused to the N-terminal end of RsbR1 on pNF GFP-RsbR1 under the control of the P_{dlt} promoter. **a**, and **b**, The expression of *gfp-rsbR1* in $\Delta rsbR1$ and wild-type strains is shown, respectively. Left panels are the bright field; middle panels are the fluorescence upon 488 nm excitation; right panels are the overlays of the left and middle panels. Scale bars are 5 µm.

155

Supplementary Fig. 10 | Localization by PALM and lateral diffusion by SPT of mEos3.2-156 **RsbR1 and mEos3.2-RsbL**. **a**, and **b**, Localization of mEos3.2-RsbR1 in wild-type and *Aprli42* 157 strains, respectively. The top panels are bright-field images. Middle panels are 158 reconstructed images from a series of frames. All fusion proteins were expressed from the 159 P_{dlt} promoter of pNF mEos3.2-RsbR1, and pNF mEos3.2-RsbL Scale bars are 500 nm. c, and 160 161 **d**, Distributions of single-molecule displacements of mEos3.2-RsbR1 in wild-type and $\Delta prli42$ 162 strains, respectively. Blue and orange curves, showing membrane-bound (mBd) and (Cl) 163 fractions, were obtained from fitting the histogram to the two-component 2D random walk model using equation (6). The starred membrane-bound fraction (mBd*) indicates mEos3.2-164 165 RsbR1 molecules loosely associated with the membrane in the *∆prli42* strain. The green

dashed line is the sum of two fractions. **e**, and **f**, Localization of mEos3.2-RsbL in wild-type and $\Delta prli42$ strains, respectively. Similar to **(c)** and **(d)**, **g**, and **h**, are distributions of singlemolecule displacements of mEos3.2-RsbL. Differences in maximum displacement distances (r_{max}) were chosen based on the diffusion constants of the proteins.

170

171 **Supplementary Fig. 11 | Reconstruction images of mEos3.2-RsbR1.** The tandem fusion was 172 synthesized in cells from the P_{dlt} promoter of pNF mEos3.2-RsbR1 and performing SMdM 173 measurements (65,000 frames). Single-molecule detection was done using equation (5). **a**, 174 Membrane localizations are detected in the wild-type strain. **b**, Most localized molecules 175 are found in the cytoplasm in the $\Delta prli42$ strain.

177

Supplementary Fig. 12 | Radiance graph (H = E·t). H is the radiant exposure dose in mJ.cm⁻ ², E is the irradiance in mW.cm^{-2,} and t is the exposure time in seconds. The acquisition frequency is 56 Hz; the pulse time of (a) 405 nm and (b) 561 nm are 1 ms and 0.5 ms, respectively; 405 nm pulses in every 2 frames, and 561 nm pulses in every frame; hence, in 1 second, the radiance time of 405 nm and 561 ms are 28 ms.

Supplementary Fig. 13 | RsbL clustering upon laser light irradiation is not Prli42-185 dependent. a, and b, Lateral diffusion of mEos3.2-RsbL in 3 continuous SMdM acquisitions 186 (each of ~20 min) in wild-type and $\Delta prli42$ strains, respectively. Top panel: box charts of the 187 D_L with the free (Fr) fraction and membrane-bound (mBd) fractions. Each dot shows the 188 data of one cell. Box range indicates the standard deviation (SD), and open square and dash 189 symbols inside the boxes indicate the mean and median, respectively. Middle panel: the 190 191 corresponding percentage of the fractions is in the top panel. Error bars represent standard deviations. Bottom panel: the radiance of 561 nm and 405 nm lasers were measured at the 192 focus above the glass slide during the acquisition. 193

195

196 Supplementary Fig. 14 | FRAP acquisition to determine ensemble diffusion coefficients. a, An example of a FRAP acquisition and the fluorescence recovery for the diffusion constant 197 of 1.03±0.06 $\mu m^2.s^{\text{-1}}.$ The orange line marks the analyzed region; each acquisition has 200 198 cycles, and the average intensity before bleaching (the first 3 cycles) is used to normalize 199 the fluorescence. Time zero was recorded immediately after the photobleaching. The scale 200 bar is 1 µm. b, The fluorescent intensity along the orange line of the labelled cell of the 201 panel (a) in time for the experimental data (left), the one-dimensional heat-equation 202 203 simulation (middle), and the residuals (right).

205 **References**

206 207	1.	Ho, F. Y. & Poolman, B. Engineering escherichia coli for functional expression of membrane proteins. Methods in Enzymology 556 , (Elsevier Inc., 2015).
208 209	2.	O'Donoghue, B. A molecular genetic investigation into stress sensing in the food- borne pathogen Listeria Monocytogenes: roles for RsbR and its paralogues. (2016).
210 211 212	3.	O'Donoghue, B. <i>et al.</i> Blue-light inhibition of Listeria monocytogenes growth is mediated by reactive oxygen species and is Influenced by σ B and the blue-light sensor Lmo0799. <i>Appl. Environ. Microbiol.</i> 82 , 4017–4027 (2016).
213 214 215	4.	Guerreiro, D. N. <i>et al.</i> Mild Stress Conditions during Laboratory Culture Promote the Proliferation of Mutations That Negatively Affect Sigma B Activity in Listeria monocytogenes. <i>J. Bacteriol.</i> 202 , 1–20 (2020).
216 217 218	5.	Impens, F. <i>et al.</i> N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. <i>Nat.</i> <i>Microbiol.</i> 2 , (2017).
219 220 221	6.	Arnaud, M., Chastanet, A. & De, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. <i>Appl. Enviromental Microbiol.</i> 70 , 6887–6891 (2004).
222 223 224	7.	Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. <i>Nat. Methods</i> 5 , 159–161 (2008).