Supporting Information

The Identification of Potent, Selective, and Brain Penetrant $PI5P4K\gamma$ Inhibitors as In

Vivo-Ready Tool Molecules

Timothy P. C. Rooney,[‡] Gregory G. Aldred,[‡] Helen K. Boffey,[‡] Henriëtte M. G. Willems,[‡] Simon Edwards, Stephen J. Chawner, Duncan E. Scott, Christopher Green, David Winpenny, John Skidmore, Jonathan H. Clarke, Stephen P. Andrews*

Affiliations

The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom

*corresponding author: spa26@cam.ac.uk

Table of Contents

	Page
Biophysical experiments	S2
X-ray crystallography data and kinase inhibitor similarity searching	S7
Kinase selectivity screening	S8
Cerep selectivity screening	S14
ADMET experimental methods	S16
UPLC method parameters	S17
Synthetic Schemes	S18
References for supporting information	S20
NMR spectra of compounds from Table 6	S21
HPLC traces of compounds from Table 6	S34

Biophysical Experiments

A selection of compounds from the series was validated biophysically against the PI5P4K γ -WT protein both by microscale thermophoresis (MST) and differential scanning fluorimetry (DSF). In the MST experiments, PI5P4K γ -WT protein was labelled with a suitable fluorophore and compounds were titrated against the labelled-protein. The MST experiments showed a good MST response in the presence of compounds that were active in the kinetic assay and no response in titrations of compounds inactive in the kinetic assay, Figure S1 and Figure S3. In particular, compound **1** and isomers **15** and **14**, which differ by a single methyl group, gave the expected MST responses (Figure S1). A good correlation between the potencies in the kinetic and MST experiments was obtained, suggesting minimal influence of the covalently attached fluorophore. A good correlation between MST pK_{DS} and ADP-Glo pIC₅₀S (with PI5P4K γ +) was also observed.

Figure S1. Sensitivity of the MST response to moving a methyl group is shown; MST activity is retained for active compound **15** versus **1**, which is not observed for inactive compound **14**.

An exemplar set of biophysical validation data is shown for compound **25** (Figure S2). In addition to MST data (Figure S2A-B), compound binding to PI5P4K γ was further characterized using DSF as a label-free biophysical technique. The active compounds showed clear stabilisation of melting temperature (T_M) of the PI5P4K γ -WT protein with increasing concentration of **25**, Figure S2C. Further, the raw DSF titration data was fitted according to Bai *et. al.*¹ (Figure S2D), to provide an estimation of the pK_D (7.3 ± 0.2), which was in good agreement with that obtained in both the kinetic assay and the MST experiment.

Figure S2. Biophysical validation of **25** binding to PI5P4K γ -WT. (A) Raw MST response of labelled-protein in the presence of **25** and (B) the fitted data for the same titration. (C) The protein melting temperature in a DSF titration of **25** is plotted and (D) the raw data processed into an isothermal DSF plot, Bai *et. al.*¹

MST experimental

Labelling PI5P4Ky-WT for MST experiments

PI5P4K γ -WT was labelled with a Monolith RED-NHS Protein Labelling Kit (NanoTemper, Cat# MO-L001) containing proprietary labelling buffer, buffer exchange column A and purification column B. Briefly, a solution of PI5P4K γ -WT (212 μ M) was diluted to 20 μ M with labelling buffer and buffer exchanged into labelling buffer by centrifugation (1500 g for 2 minutes, column A). The buffer-exchanged protein solution (100 μ L) was mixed with a solution of RED-NHS dye (63 μ M, 100 μ L) to give a 200 μ L solution with approximately 3:1 dye to protein ratio. The solution was incubated at room temperature in the dark for 30 minutes. Purification column B was equilibrated with PBS (pH 7.4) and the unreacted dye separated from the protein by passing through column B and collecting fractions. The collected fractions were assessed by MST (NanoTemper Monolith NT.115, 20% LED power) by diluting 1 μ L of each fraction 100-fold. Each fraction was also assessed by UV absorbance and

fractions were pooled that contained both significant absorbance at 280 and 650 nm. The resulting labelled protein stock PI5P4K γ (4 μ M) was divided into 10 μ L aliquots and stored at -20 °C.

Performing MST experiments with labelled PI5P4Ky-WT

An aliquot of labelled PI5P4K γ -WT protein (4 µL at 4 µM) was diluted into 396 µL MST buffer (PBS pH 7.4 with 0.05% TWEEN-20) and spun down for 10 mins at 15,000 g at 4 °C. The supernatant (~390 µL) was collected and used in MST experiments. The protein solution (19 µL) was mixed with a DMSO solution of the compound (1 µL) to give the final protein concentration as 40 nM in MST buffer with 5% DMSO and equilibrated for 30 minutes at room temperature. The solution was transferred into a premium coated capillary (NanoTemper, Cat# MO-K005) and the MST signal measured with a NanoTemper Monolith NT.115 instrument running MO.Control v1.5.2 software. The temperature was controlled at 22 °C, the excitation power was between 20%-40% with either medium or high MST power for 20 seconds (see Table S1). The pre- and post-MST time was 4 seconds and 1 second respectively. The compounds were titrated in a two-fold dilution series across 16 capillaries from 5 µM to 0.153 nM. Titration data was fitted with NanoTemper software MO.Affinity Analysis v2.2.6 to obtain the K_D (n=2). Representative MST data for compounds **14** and **45** is shown in Figure S3.

Compound	I ED nowon	MST nowon	MST analysis	ΡΙ5Ρ4Κγ-WT	PI5P4Kγ+
Compound	LED power	wist power	range	MST pK _D	ADP-Glo pIC50
1	20%	Medium	4.0-5.0 s	6.8 ± 0.2	6.5
15	40%	Medium	4.0-5.0 s	6.7 ± 0.1	7.0
25	20%	High	1.5-2.5 s	8.2 ± 0.2	7.7
14	30%	Medium	4.0-5.0 s	< 5.0	5.4
45	40%	Medium	4.0-5.0 s	6.2 ± 0.1	6.8

Table S1. MST pK_Ds (PI5P4Kγ-WT) compared to ADP-Glo pIC₅₀s (PI5P4Kγ+)

Figure S3. MST traces (left) and fitted data (right) for titrations of (A) inactive compound 14 and (B) active compound 45.

Differential Scanning Fluorimetry titrations

The DSF experiments were performed under conditions previously reported by Boffey *et. al.*² Briefly, the thermal shift experiment was performed with an Applied Biosystem StepOne Real-Time PCR System in 96-well plates (Life technologies, cat. 4346906) sealed with optically clear lids (Life technologies, cat. 4360954). The final concentration of the wild-type PI5P4K- γ protein was 4 μ M and the ligand was titrated in 2-fold dilutions from 62.5 μ M to 0.061 μ M (11 points) with DMSO-only controls. A 5000x stock solution of Sypro Orange was used (Life technologies, cat. S6650), at a final concentration of 5x. The buffer was 50 mM HEPES pH 7.4, 5 mM MgCl₂, and 100 mM NaCl with 5% DMSO in a total volume of 20 μ L. The plates were heated from 25 to 90 °C at a rate of 0.5 °C/min. The raw data was fitted using the analysis python script 'DSF-fitting' reported by Bai *et. al.*¹ and the data plotted in Prism version 9.3.1. The isothermal DSF pK_D for compounds **1**, **25** and **45** were

calculated as 6.0 ± 0.1 , 7.3 ± 0.2 and 6.1 ± 0.3 respectively. The DSF titrations for **1** and **45** are shown in Figure S4.

Figure S4. (left) PI5P4K γ -WT melting temperature in DSF titrations and (right) raw data fitted to isothermal DSF plots (as in ref 1) for (A) **1** and (B) **45**.

Table S2. Data collection and refinement statist	tics for X-ray crystal structures	of PI5P4Ky bound to compound
15.		
		_
	8 D O I	

PDB ID	8BQ4
Protein/Ligand	PI5P4Kγ/compound 15
Wavelength [Å]	0.97624
Space group	P 2 ₁ 2 ₁ 2
Cell dimensions	
a; b; c; [Å]	120.01; 78.86; 96.97
α; β; γ; [°]	90.0; 90.0; 90.0
Resolution [Å]	2.42 (2.46-2.42) ^a
Unique reflections	$35432 (1773)^2$
Multiplicity	$6.4 (6.5)^2$
Completeness [%]	$98.8 (100)^2$
R _{sym} [%]	$7.2(260)^2$
R _{meas} [%]	$7.9(238)^2$
Mean(I)/sd	$11.4 \ (0.6)^2$
CC(1/2)	0.999 (0.403)
Number of reflections (free)	35005 (1752)
R _{cryst} [%]	22.2
$R_{free}[\%]$	24.7
Total number of atoms:	
Protein	4744
Water	38
Ligand	42
Deviation from ideal geometry:	
Bond lengths [Å]	0.01
Bond angles [°]	1.12

^avalues in parenthesis refer to the highest resolution bin.

Similarity Searching

The ChEMBL database was searched for compounds similar to the novel inhibitors reported in this manuscript and hits obtained were further examined for available kinase activity in the ChEMBL database. Substructure search for **15** and **1** did not yield any hits in the ChEMBL database. The chemotype was assessed more generally by performing a similarity search in ChEMBL for **15** and **1**. There were no similarity hits for compound **15** at >=40% similarity. There were 23 hits with 50-64% similarity to compound **1**. Three of these hits had reported kinase activity. CHEMBL355983 was reported to show a pIC₅₀ of 7.5 in an EGFR inhibition assay.³ ChEMBL3628791 was reported to show a pIC₅₀ of 5.5 in an EGFR inhibition assay and to be inactive against KDR.⁴ CHEMBL3628798 was tested in 9 kinase assays, and shown to inhibit KIT with a pIC₅₀ of 9, KDR, FLT4, PDGFRB and RAF1 with pIC₅₀'s between 5 and 6, and was inactive against EGFR, MET, SRC and FLT1.⁴ The 3 hits contain the N-phenylbenzo[b]thiophen-4-amine core, but not the sulfone substituent. Searches were performed in ChEMBL version 31 in November 2022.

Kinase	% activity remaining	s.d.
MKK1	108	14
MKK2	95	21
MKK6	109	2
ERK1	104	13
ERK2	113	8
ERK5	97	3
JNK1	118	12
JNK2	101	4
JNK3	95	5
p38a MAPK	106	11
p38b MAPK	96	10
p38g MAPK	102	4
p38d MAPK	98	4
ERK8	90	13
RSK1	106	0
RSK2	104	7
PDK1	114	7
РКВа	100	2
РКВЬ	95	3
SGK1	68	4
S6K1	94	21
РКА	123	1
ROCK 2	128	12
PRK2	99	2
РКСа	112	5
ΡΚϹγ	124	20
PKCz	103	3
PKD1	107	0
STK33	95	9

Table S3. Kinase selectivity screening for compound **15** at 10 μ M against a general kinase panel of 140 targets in radiometric filter binding assay using 33P-g-ATPat the MRC PPU International Centre for Kinase Profiling, University of Dundee.

MSK1	91	9
MNK1	91	4
MNK2	80	0
MAPKAP-K2	107	6
МАРКАР-К3	93	22
PRAK	111	17
САМККЬ	101	4
CAMK1	109	5
SmMLCK	106	8
РНК	93	2
DAPK1	107	4
CHK1	99	11
CHK2	83	24
GSK3b	124	7
CDK2-Cyclin A	75	3
CDK9-Cyclin T1	100	17
PLK1	106	3
Aurora A	113	7
Aurora B	31	0
TLK1	121	21
LKB1	119	4
AMPK (hum)	91	3
MARK1	124	18
MARK2	106	8
MARK3	100	27
MARK4	109	6
BRSK1	97	7
BRSK2	104	1
MELK	101	7
NUAK1	103	9
SIK2	103	7
SIK3	95	1
TSSK1	95	3
	1	

CK1y2	94	7
CK18	103	2
CK2	103	1
TTBK1	106	11
TTBK2	124	19
DYRK1A	96	3
DYRK2	80	5
DYRK3	101	9
NEK2a	91	6
NEK6	107	1
IKKb	106	5
IKKe	104	15
TBK1	100	0
PIM1	120	7
PIM2	110	0
PIM3	66	2
SRPK1	106	4
EF2K	108	2
EIF2AK3	102	6
HIPK1	106	7
HIPK2	101	3
HIPK3	106	9
CLK2	37	1
PAK2	124	0
PAK4	110	0
PAK5	116	6
PAK6	94	18
MST2	108	8
MST3	107	2
MST4	103	22
GCK	103	13
MAP4K3	108	5
MAP4K5	101	0
	1	l

MINK1	86	13
MEKK1	101	9
MLK1	97	8
MLK3	93	1
TESK1	96	2
TAO1	111	9
ASK1	112	22
TAK1	109	0
IRAK1	86	6
IRAK4	99	2
RIPK2	74	1
OSR1	115	2
ТТК	88	6
MPSK1	106	4
WNK1	107	7
ULK1	107	2
ULK2	128	10
TGFBR1	109	11
Src	108	8
Lck	102	3
CSK	91	7
YES1	111	12
ABL	98	4
BTK	111	2
JAK3	103	13
SYK	91	4
ZAP70	101	9
TIE2	144	56
BRK	90	18
EPH-A2	98	10
EPH-A4	125	21
EPH-B1	107	1
EPH-B2	101	13
L		

EPH-B3	86	18
EPH-B4	112	4
FGF-R1	109	39
HER4	99	11
IGF-1R	124	4
IR	107	11
IRR	101	15
TrkA	83	21
DDR2	127	0
VEG-FR	100	3
PDGFRA	99	14
PINK	111	7

Table S4. Lipid kinase selectivity screening for compound 15 at 10 μ M against a kinase panel of 15 protein kinasetargets using ADP-Glo assay at the MRC PPU International Centre for Kinase Profiling, University of Dundee.

Kinase	% activity remaining	s.d.
PI3K a	99	12
PI3K b	110	9
PI3K g	91	6
PIK4CB	71	23
PIP5K2a	90	6
DGK b	100	1
SPHK2	104	8
PI4K2a	107	4
PI3KaE545K	91	1
СНКЬ	102	2
SPHK1	105	1
DGK z	106	7
DGK g	112	3
СНКа	113	6
PI3KaE524K	82	2

Table S5. Lipid kinase selectivity screening for compound **15** at 10 μ M against a kinase panel of 13 protein kinase targets generated using KINOMEscanTM technology^a at DiscoverX.

Kinase	% activity remaining
PIK3C2B	68
PIK3C2G	28
РІКЗСА	100
PIK3CB	86
PIK3CD	80
PIK3CG	67
PIK4CB	70
PIKFYVE	100
PIP5K1A	92
PIP5K1C	24
PIP5K2B	100
PIP5K2C	1.9
VPS34	64
PIK3C2B	68

Table S6. Lipid kinase K_D data for compound **15** generated using KINOMEscan[™] technology^a at DiscoverX.

Kinase	K _D (nM)
PIK3C2G	>3000
PIP5K1C	230
PIP5K2C	7.1

^a Data were generated at Eurofins Discovery using DiscoverX KINOMEscanTM technology. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands for 30 minutes at room temperature to generate affinity resins for kinase assays. The liganded beads were blocked with excess biotin and washed with blocking buffer (SeaBlock (Pierce), 1% BSA, 0.05% Tween 20, 1 mM DTT) to remove unbound ligand and to reduce non-specific binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1x binding buffer (20% SeaBlock, 0.17x PBS, 0.05% Tween 20, 6 mM DTT). Test compounds were prepared as 111X stocks in 100% DMSO. K_Ds were determined using an 11-point 3-fold

compound dilution series with three DMSO control points. All compounds for K_D measurements are distributed by acoustic transfer (non-contact dispensing) in 100% DMSO. The compounds were then diluted directly into the assays such that the final concentration of DMSO was 0.9%. All reactions performed in polypropylene 384-well plate. Each was a final volume of 0.02 ml. The assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1x PBS, 0.05% Tween 20). The beads were then resuspended in elution buffer (1x PBS, 0.05% Tween 20, 0.5 μ M nonbiotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates was measured by qPCR.

Table S7. Reaction Biology PI3KC2a IC₅₀ data for compound 15 using ADP-Glo assay.

Kinase	IC ₅₀ (nM)
PI3KC2a	>3000

Table S8.	Eurofins	Discovery	Services S	lafetyScreen	TM Functiona	l Panel for	compound	15 (10µM):	cellular
functional	l assays.								

Assay	% of Control Agonist Response			
	Agonist Effect	Antagonist Effect		
A2A	-0.9	67.3		
alpha 1A (h)	3.3	77		
alpha 2A (h)	0.3	113.2		
beta 1 (h)	-2.5	89.4		
beta 2 (h)	-2.8	90.5		
CB1 (h)	-36.5	89.2		
CB2 (h)	-43	89.7		
CCK1 (CCKA) (h)	-0.7	104.3		
D1 (h)	-2.3	80.7		
D2S (h)	-3	108.8		
ETA (h)	-1.3	106.7		
H1 (h)	-3.8	86.8		
H2 (h)	-0.8	106.4		
kappa (KOP) (h)	-1.6	86.1		
M1 (h)	0.5	77.7		
M2 (h)	2.2	82.7		

M3 (h)	3.6	68.1
delta (DOP) (h)	-0.4	102.4
mu (MOP) (h)	32.5	88.7
5-HT1A (h)	-2.1	105.4
5HT1B (h)	19.2	99.6
5-HT2A (h)	-2	103.6
5-HT2B (h)	-6.5	92.1
V1a (h)	15.4	81.4

Table S9. Eurofins Discovery Services SafetyScreen[™] Functional Panel for compound **15** (10µM): enzyme and cell-based assays.

% of Control Values
88.4
82.6
95.9
90.2
107.7
95.2
64.5
81.3
40.9
98.4

Table S10. Eurofins Discovery Services SafetyScreenTM Functional Panel for compound **15** (10 μ M): Ion channel targets.

Assay	Normalised % Inhibition ^a	Normalised peak current ^b
Nav 1.5	0.4	-
Cav 1.2	-4.2	-
KCNQ1/minK	-15.9	-
hERG	12.2	-
GABA A $\alpha 1\beta 2g2$ (+EC ₂₀ GABA)	-	95.6
hnAChR α4β2	-	7.0

^aIonWorks Quattro and ^bIonFlux HT electrophysiological platforms.

ADMET experimental methods

MDR1-MDCK Permeability (bi-directional): was performed by Cyprotex Discovery. Briefly, compounds were administered at 10 μ M (1% DMSO final) to the apical or basolateral side of a confluent monolayer of MDR1-MDCK cells, then incubated at 37 °C for 60 minutes before appearance on the opposite side of the monolayer was determined LC-MS/MS. The efflux ratio (ER) is calculated from the ratio of B-A to A-B permeabilities.

Turbidimetric aqueous solubility: analysis was performed by Cyprotex Discovery. Compound in DMSO at 10 mM was serially diluted to solutions of 0.1, 0.3, 1 and 3 mM in DMSO, then further diluted 1 in 100 in buffer (0.01 M PBS, pH 7.4, 1% DMSO final). 7 replicate wells of each dilution were equilibrated for 2 hours at 37 °C before absorbance is measured at 620 nm. The solubility is estimated from the concentration of test compound that produces an increase in absorbance above vehicle control (1% DMSO in buffer).

Mouse Microsomal stability: analysis was performed by Cyprotex Discovery. Briefly, test compounds in DMSO were incubated at a concentration of 1 μ M (0.25% DMSO final) with mouse hepatic microsomes (0.5 mg protein/mL) in the presence of NADPH (1 mM) at 37 °C. Aliquots were taken at time intervals (0, 5, 15, 30 and 45 min) and stopped by transferring into acetonitrile, then analysed using generic LC-MS/MS conditions for compound remaining, allowing the determination of the half-life for the compound.

Plasma Protein Binding: analysis was performed by Cyprotex Discovery. Briefly, solutions of test compound (0.5% final DMSO concentration) were prepared in 100% mouse plasma. The plasma solution was added to one side of an equilibrium dialysis system while buffer (pH 7.4) was added to the other. Compound concentration on both sides of the membrane was measured by LC-MS/MS and, by comparison to a set of calibration standards (protein-free and protein-containing solutions), the fraction of bound compound was calculated.

Brain Protein Binding: analysis was performed by Shanghai ChemPartner. Briefly, solutions of test compound (1 μ M, 0.2% final DMSO concentration) were incubated with 33% CD-1 mouse brain homogenate (w/v) in 50 mM sodium phosphate buffer, pH 7.4). Aliquots of the brain tissue spiked test compounds were applied to the donor side of a dialysis chamber and buffer applied to the other. The dialysis block was incubated for 5 hr at 37 °C, then samples taken for LC-MS/MS analysis.

In vivo pharmacokinetic parameters: were determined in a 4 in 1 cassette study by Shanghai ChemPartner. Briefly, a dosing solution of the 4 test compounds each at 1 mg/mL was prepared using the formulation 10% DMSO, 10% NMP, 40% PEG400, 20% PG, 20% (20% HP-β-CD in water). Male CD1 mice (n=12), aged 6 to 8 weeks, were purchased from Jihui Laboratory Animal Co. LTD, Qualification No.: SCXK (SH) 20170012 20170012023814. Administration was at 5 mL/kg *via* intraperitoneal injection to achieve a dose of 5 mg/kg for each compound. Plasma samples were taken at 8 time points (0.083, 0.25, 0.5, 1, 2, 4, 8 and 24 hr post dose) and brain sampling performed at 3 time points (0.5, 2 and 8 hr post dose). Bioanalysis of compound concentration was measured by LC-MS/MS by comparison to a set of calibration standards.

All animal experiments reported in the manuscript were conducted in compliance with local guidelines and legislation in an AAALAC accredited animal facility.

Unbound brain partition coefficient ($\mathbf{K}_{pu,u}$): was determined as a ratio of free brain to free plasma concentrations at 0.5 hr. Free concentrations were calculated using the total concentration in each compartment determined in the *in vivo* PK study, and adjusted using the tissue specific binding level determined *in vitro*.

UPLC methods

Method	Column	Additive	Flow rate	Gradient (time, %MeCN in H ₂ O)
А	BEH C18 (130 Å, 1.7	10 mM NH ₃	0.6 mL/min	0 min, 5%; 0.8 min, 5%; 3.3 min,
	μ m, 2.1 mm \times 50 mm)			95%; 4.3 min, 95%; 4.5 min, 5%;
				5.5 min, 5%.
В	BEH C18 (130 Å, 1.7	1 mM NH ₃	0.6 mL/min	0 min, 5%; 0.8 min, 5%; 3.3 min,
	μ m, 2.1 mm \times 50 mm)			95%; 4.3 min, 95%; 4.5 min, 5%;
				5.5 min, 5%.
C	HSS C18 (100 Å, 1.8 μm,	0.1% HCO ₂ H	0.6 mL/min	0 min, 5%; 0.8 min, 5%; 3.3 min,
	$2.1 \text{ mm} \times 50 \text{ mm}$)			95%; 4.3 min, 95%; 4.5 min, 5%;
				5.5 min, 5%.
D	BEH C18 (130 Å, 1.7	10 mM NH ₃	0.6 mL/min	0 min, 5%; 0.8 min, 5%; 8.3 min,
	μ m, 2.1 mm \times 50 mm)			95%; 9.3 min, 95%; 9.5 min, 5%;
				10.5 min, 5%.
E	BEH C18 (130 Å, 1.7	1 mM NH ₃	0.6 mL/min	0 min, 5%; 0.8 min, 5%; 8.3 min,
	μ m, 2.1 mm \times 50 mm)			95%; 9.3 min, 95%; 9.5 min, 5%;
				10.5 min, 5%.
F	HSS C18 (100 Å, 1.8 μm,	0.1% HCO ₂ H	0.6 mL/min	0 min, 5%; 0.8 min, 5%; 8.3 min,
	$2.1 \text{ mm} \times 50 \text{ mm}$)			95%; 9.3 min, 95%; 9.5 min, 5%;
				10.5 min, 5%.

Table S11. UPLC method parameters

Synthetic Schemes:

Scheme S1. *Reagents and conditions*: (a) R-NH₂, HCl, dioxane, 100 °C. (b) R-NH₂, IPA, 120 °C. (c) R-NH₂, Cs₂CO₃, Xantphos, Pd₂(dba)₃, 100 to 130 °C.

Scheme S2. Reagents and conditions: (a) 4-(methylsulfonyl)aniline, IPA, 120 °C. (b) H₂, Pd/C, EtOH, rt.

Scheme S3. *Reagents and conditions*: (a) 3,3-Difluoropyrrolidine.HCl, NEt₃, DCM, rt. (b) HCl, MeOH, H₂O, 85 °C.

Scheme S4. Reagents and conditions: (a) NCS, CH₃CO₂H, 90 °C. (b) POCl₃, toluene, 100 °C.

Scheme S5. *Reagents and conditions*: (a) DMF, NHⁱPr₂, ⁿBuLi, THF, -78 °C. (b) Ethyl *N*-(mesitylsulfonyl)oxyacetimidate, TfOH, DCM, rt.

Scheme S6. *Reagents and conditions*: (a) Ru(BPY)₃, MeCN, TMEDA, CF₃I, LEDs. (b) HN=CHNH₂, IPA, 120 °C. (c) POCl₃, 100 °C.

Scheme S7. *Reagents and conditions*: (a) HSCH₂CO₂CH₃, DIPEA, DCM, -80 °C to rt. (b) 4-(methylsulfonyl)aniline, dioxane, 120 °C. (c) LiOH, MeOH, THF, H₂O, rt. (d) HNMe₂, HATU, DIPEA, DMF, rt. (e) LiAlH₄, THF, 0 °C.

References for Supporting Information

- Bai, N., Roder, H., Dickson, A., Karanicolas, J., Isothermal Analysis of ThermoFluor Data can readily provide Quantitative Binding Affinities. *Sci Rep*, **2019**, *9*, 2650.
- (2) Boffey, H. K., Rooney, T. P. C., Willems, H. M. G., Edwards, S., Green, C., Howard, T., Ogg, D., Romero, T., Scott, D. E., Winpenny, D., Duce, J., Skidmore, J., Clarke, J. H., Andrews, S. P. Development of Selective Phosphatidylinositol 5-Phosphate 4-Kinase γ inhibitors with a Non-ATP-Competitive, Allosteric Binding Mode. *J Med Chem* **2022**, *65* (4), 3359–3370.
- (3) Showalter, H. D. H., Bridges, A. J., Zhou, H., Sercel, A. D., McMichael, A., Fry, D. W. Tyrosine Kinase Inhibitors. 16. 6,5,6-Tricyclic Benzothieno[3,2-*d*]pyrimidines and Pyrimido[5,4-*b*]and -[4,5-*b*]indoles as Potent Inhibitors of the Epidermal Growth Factor Receptor Tyrosine Kinase *J. Med Chem*, **1999**, 42 (26), 5464-5474.
- (4) Ravez, S., Arsenlis, S., Barczyk, A., Dupont, A., Frédérick, R., Hesse, S., Kirsch, G., Depreux, P., & Goossens, L. Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors. *Bioorg. Med. Chem.*, 2015, 23(22), 7340–7347.

NMR Spectra of compounds from Table 6

Compound 1: (Insufficient material for ¹³C spectrum)

Compound 7: (Insufficient material for ¹³C spectrum)

Compound 15

Compound 23

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 $\label{eq:holescale} \begin{array}{l} {}^{1}\mathrm{H}\ \mathrm{NMR}\ (300\ \mathrm{MHz}, \mathrm{DMSO-}d_{6})\ \delta\\ 10.02\ (\mathrm{s},\ \mathrm{H}),\ 8.62\ (\mathrm{s},\ \mathrm{H}),\ 8.23-\\ 8.13\ (\mathrm{m},\ \mathrm{2H}),\ 7.95\ (\mathrm{d},\ J=6.0\ \mathrm{Hz},\\ 1\mathrm{H}),\ 7.87-7.77\ (\mathrm{m},\ \mathrm{3H}),\ 3.20-\\ 3.10\ (\mathrm{m},\ \mathrm{4H}),\ 1.73-1.58\ (\mathrm{m},\ \mathrm{4H}). \end{array}$

Compound **41**: (Insufficient material for ¹³C spectrum)

S=0

Compound 43

HPLC traces of compounds from Table 6

Compound 1

0

0

Ó

Sample Report:

Openlynx Report File:DDI_HClass_0004593 Method:C:\MassLvnx\b basic QC03.olo

Page 1

Exact Mass: 359.0

Column Name ACQUITY UPLC® BEH C18 1.7µm 3: UV Detector: TAC: Wavelength Range: (210 - 400) Smooth (SG, 1x1) 2.517e+2 Range: 2.53e+2 (1) 100% 359.0(78%) 2.0e+2-359.0(79%) 5.46 N 1.0e+2 10.00 Time 0.0 6.00 2.00 4.00 8.00 Compound Found Area %Total 100.00 Mass Found 359.0000, 359.0000 Peak Number Time 5.46 Peak ID Compound Time 1 Found 5.45 Peak ID Compound 1 Found Mass Found Mass Found 358 Time 5.45 360 1:MS ES+ 2:MS ES-1.3e+007 6.9e+006 360.1 100 358.0 100 335.9 359.1 279.1 361.1 × 753.2 0-- m/z - m/z 500.0 1000.0 500.0 1000.0

Compound 35

Exact Mass: 360.1

0 S I O N

F

Compound 37

Openlynx Report Page 1 File:DDL_HClass_0007534 Page 1 Method:C:\MassLynx\b_basic_QC05.olp Page 1	S N HN
Sample Report:	S N O Freet Mass: 224.1
Column Name ACQUITY UPLC® BEH C18 1.7µm 3: UV Detector: TAC: Wavelength Range: (210 - 400) Smooth (SG, 1x1) 7.781e+1 Range: 7.806e+1 (2) 100%	
6.0e+1 334.0(77%) 334.0(77%) 4.59 2.0e+1	
0.0 2.00 2.00 4.00 6.00 8.00 10.00 Peak Number 2 Found 4.59 10.00 334.0000, 334.0000	
Peak ID Compound 2 Time Found Mass Found 4.59 Mass Found 335 Peak ID Compound 1:MS ES+ 2.3e+006 Time 2 Mass Found 333 Mass Found 333 1:MS ES+ 2.3e+006 2.3e+006 333.1	
# 262.2 336.2 688.8 855.8 m/z 334.1 613.6 904.8 957.5 1098.6 500.0 1000.0 500.0 1000.0	

Openlynx Report File:DDI_HClass_0009940 Method:C:\MassLynx\b_basic_QC06.olp

2

Sample Report:

Compound 40

Openlynx Report File:DDI_HClass_0008702 Method:C:\MassLynx\b_basic_QC06.olp Page 1 N=---

Exact Mass: 330.0

{}0

ő

Sample Report:

Compound 42

Openlynx Report File:DDI_HClass_0004693 Method:C:\MassLynx\b_basic_QC03.olp

Sample Report:

НŃ

0

S

Page 1

Exact Mass: 381.1

S40