Supporting Information

Broad-spectrum Cyclopropane-based Inhibitors of Coronavirus 3C-like Proteases: Biochemical, Structural, and Virological Studies.

Chamandi S. Dampalla¹, Harry Nhat Nguyen¹, Athri D. Rathnayake¹, Yunjeong Kim², Krishani Dinali Perera², Trent K. Madden¹, Hayden A. Thurman,¹ Alexandra J. Machen³, Maithri M. Kashipathy³, Lijun Liu³, Kevin P. Battaile⁴, Scott Lovell,³ Kyeong-Ok Chang,^{2*}

William C. Groutas,1*

¹Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, USA

²Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine,

Kansas State University, Manhattan, Kansas 66506, USA

³Protein Structure and X-ray Crystallography Laboratory, The University of Kansas,

Lawrence, Kansas 66047, USA

⁴NYX, New York Structural Biology Center, Upton, NY 11973, USA

*authors to whom correspondence should be addressed.

Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS 67260 Tel. (316) 978 7374 e-mail: bill.groutas@wichita.edu

Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 Tel. (785) 532 3849 e-mail: kchang@vet.ksu.edu

Page Numbers

Figure S1	3
Scheme S1	4
Scheme S2	5
Synthesis of compounds 1c/d-17c/d	6-11
Characterization of compounds <i>1c/d-17c/d</i>	12-40
Determination of purity of compounds 1c-d-17c/d	41-46
Table S1	47-48
Table S2	49-50

Table of Contents

Figure S1. Alcohol inputs 1-17

Synthesis of compounds 1c/d-17c/d

General information

Reagents and dry solvents were purchased from various chemical suppliers (Sigma-Aldrich, Acros Organics, Chem-Impex, TCI America, Oakwood chemical, Cambridge Isotopes, Alpha Aesar and Fisher) and were used as obtained. Silica gel (230-450 mesh) used for flash chromatography was purchased from Sorbent Technologies (Atlanta, GA). Normal phase chromatography was performed on a Teledyne ISCO CombiFlash system using RediSep normal phase silica cartridges (35-70 µm particle size range). Thin layer chromatography was performed using Analtech silica gel plates. Visualization was accomplished using UV light and/or iodine. NMR spectra were recorded in CDCl₃ or DMSO-d₆ using Varian XL-400 spectrometer. The purity of the final compounds was found to be \geq 95 %, as determined by absolute gNMR analysis using a Bruker AV III 500 NMR spectrometer equipped with a CPDUL CRYOprobe and CASE autosampler (the University of Kansas Nuclear Magnetic Resonance Laboratory). Dimethyl sulfone TraceCERT[®] was used as the internal calibrant. High resolution mass spectrometry (HRMS) was performed at the Wichita State University Mass Spectrometry lab using an Orbitrap Velos Pro mass spectrometer (ThermoFisher, Waltham, MA) equipped with an electrospray ion source.

Synthesis of alcohol inputs 1-17

Preparation of α,β-unsaturated alcohols for *1, 2, 5-14* (Scheme S1). General **procedure.** Methyl iodide (5 eq) was added to a solution of α,β-unsaturated carboxylic acid (1 eq) and cesium carbonate (1.5 eq) in anhydrous acetonitrile (54 ml/g α,β-

unsaturated carboxylic acid), and refluxed for 2 h. The reaction mixture was cooled down to room temperature, filtered and concentrated *in vacuo*. The residue was dissolved in ethyl acetate (40 ml/g α , β -unsaturated carboxylic acid) and washed with saturated aqueous NaHCO₃ (2 x 20 mL/ g carboxylic acid), followed by brine (20 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo* to yield the α , β -unsaturated methyl ester which was used in the next step.

 α , β-unsaturated methyl ester (1 eq) in DCM (4 ml/g α, β-unsaturated methyl ester) was cooled to -78 °C and diisobutyl aluminum hydride in toluene (1M, 2 eq) was added, followed by stirring for 1 h at -78 °C. The reaction mixture was neutralized by adding saturated ammonium chloride (2 ml/g α,β-unsaturated ester). When the reaction mixture reached room temperature, the solid was filtered off and washed with DCM. The filtrate was washed with brine (20 mL/g ester) and dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting crude product was purified by flash chromatography (silica gel/ethyl acetate/hexane) to yield to yield the α, β-unsaturated alcohol.

Preparation of α,β-unsaturated alcohols for 3, *4, 15-17* (Scheme S1). General **procedure.** A solution of trimethyl phosphonoacetate (3 eq) in anhydrous DCM (40 ml/g trimethyl phosphonoacetate) was added dropwise to a solution of sodium hydride (90%, 2.5 eq) in anhydrous DCM (25 ml/g sodium hydride) and stirred for 0.5 h at room temperature. The appropriate aldehyde (1 eq) was added, and the reaction mixture was stirred overnight at room temperature. The reaction mixture was then cooled in ice and quenched by adding water dropwise. The organic layer was separated and washed with 5% aqueous hydrochloric acid (2 x 20 mL/g aldehyde), saturated aqueous NaHCO₃ (2 x 20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous Na₂SO₄,

filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography to yield the α , β -unsaturated ester.

α, β-unsaturated ester (1 eq) in DCM (4 ml/g α, β-unsaturated methyl ester) was cooled to -78 °C and diisobutyl aluminum hydride in toluene (1M, 2 eq) was added, followed by stirring for 1 h at -78 °C. The reaction mixture was neutralized by adding saturated ammonium chloride (2 ml/g ester). When the temperature of the solution reached room temperature, the solid was filtered off, washed with DCM, and the combined filtrates were washed with brine (20 mL/g ester) and dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting crude product was purified by flash chromatography (silica gel/ethyl acetate/hexane) to yield the α, β-unsaturated alcohol.

General procedure for making cyclopropane alcohols (Simmons-Smith reaction). A solution of Et₂Zn in hexane (1M, 2 eq) and anhydrous dichloromethane (mL) were mixed and cooled to 0-5 °C. CH_2I_2 (or CD_2I_2) (4 eq) was added dropwise and stirred for 10 min, whereupon a white precipitate formed. *Caution!* The reaction was found to react violently upon addition of CH_2I_2 producing a higher pressure inside the round bottom flask. A solution of the α , β -unsaturated alcohol in DCM (20 ml/g alcohol) was added dropwise at 0-5 °C into above precipitate and the reaction mixture was stirred at RT overnight. The reaction mixture was quenched by adding saturated ammonium chloride (10 ml/g alcohol). The organic layer was separated. The aqueous layer was extracted with DCM (20 mL/g alcohol) and the combined organic layer was washed with brine (20 mL/g alcohol) and dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting crude product was purified by flash chromatography (silica gel/ethyl acetate/hexane) to yield cyclopropane alcohols **1**,**3**, **5-17**.

General procedure for making *gem*-difluorocyclopropane alcohols 2 and 4. To a solution of α , β -unsaturated alcohol (1 eq) in anhydrous DCM (2 ml/g α , β -unsaturated alcohol) was added TEA (1 eq) and acetic anhydride (1 eq), followed by 4-dimethylamino pyridine (4-DMAP) portion-wise and stirred overnight at room temperature. The reaction mixture was quenched by adding water dropwise. The organic layer was separated and washed with 5% aqueous hydrochloric acid (2 x 20 mL/g aldehyde), saturated aqueous NaHCO₃ (2 x 20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to yield the α , β -unsaturated acetate ester.

Sodium fluoride (0.012 eq), α , β -unsaturated acetate ester (1 eq) and anhydrous toluene (1 eq) were added into a dry round bottom flask and heated up to 130 ± 5 °C in an oil bath. Trimethylsilyl-2,2-difluoro-2-(fluorosulfonyl) acetate (1 eq) was added dropwise over 2h while heating. The reaction mixture was refluxed for 2 h and then cooled down to room temperature and concentrated *in vacuo*. The residue was dissolved in ethyl acetate (40 ml/g α , β -unsaturated acetate ester) and washed with brine (20 mL/g α , β -unsaturated acetate ester) and washed with brine (20 mL/g α , β -unsaturated acetate ester) and washed over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography (silica gel/ethyl acetate/hexane) to yield the *gem*-difluorocyclopropane acetate ester.

Lithium hydroxide (4 eq) was added to a solution of *gem*-difluorocyclopropane acetate ester (1 eq) in THF (7 ml/g ester) and stirred at room temperature for 3 h. The reaction mixture was acidified using 5% hydrochloric acid and extracted into ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The

crude product was purified by flash chromatography to yield *the gem*difluorocyclopropane acetate ester.

Synthesis of compounds 1c/d-17c/d

Preparation of compounds *1b-17b* (Scheme S2). General procedure. To a solution of alcohol (1 eq) (Fig 2) in anhydrous acetonitrile (10 mL/g alcohol) was added N, N'-disuccinimidyl carbonate (1.2 eq) and TEA (3.0 eq) and the reaction mixture was stirred for 4h at room temperature. The solvent was removed *in vacuo* and the residue was dissolved in ethyl acetate (40 mL/g alcohol). The organic phase was washed with saturated aqueous NaHCO₃ (2 x 20 mL/ g alcohol), followed by brine (20 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to yield the mixed carbonate which was used in the next step without further purification.

To a solution of Leu-Gln surrogate amino alcohol **a** (1.0 eq) in dry methylene chloride (10 mL/g of amino alcohol) was added TEA (1.5 eq) and the reaction mixture was stirred for 20 min at room temperature (solution 1). In a separate flask, the mixed carbonate was dissolved in dry methylene chloride (10 mL/g of carbonate) (solution 2). Solution 1 was added to solution 2 and the reaction mixture was stirred 3h at room temperature. Methylene chloride was added to the organic phase (40 mL/g of carbonate) and then washed with saturated aqueous NaHCO₃ (2 x 20 mL/ g alcohol), followed by brine (20 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resultant crude product was purified by flash chromatography (silica gel/hexane/ethyl acetate) to yield dipeptidyl alcohol **b** as a white solid.

Preparation of compounds *1c-17c* (Scheme S2). General procedure. To a solution of dipeptidyl alcohol *b* (1 eq) in anhydrous dichloromethane (300 mL/g dipeptidyl alcohol) kept at 0-5 °C under a N₂ atmosphere was added Dess-Martin periodinane reagent (3.0 eq) and the reaction mixture was stirred for 3 h at 15-20 °C. The organic phase was washed with 10% aq Na₂S₂O₃ (2 x 100 mL/g dipeptidyl alcohol), followed by saturated aqueous NaHCO₃ (2 x 100 mL/ g dipeptidyl alcohol), distilled water (2 x 100 mL/ g dipeptidyl alcohol), and brine (100 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The resulting crude product was purified by flash chromatography (silica gel/hexane/ethyl acetate) to yield aldehyde *c* as a white solid.

Preparation of compounds 1-17d (Scheme S2). General procedure. To a solution of dipeptidyl aldehyde *c* (1 eq) in ethyl acetate (10 mL/g of dipeptidyl aldehyde) was added absolute ethanol (5 mL/g of dipeptidyl aldehyde) with stirring, followed by a solution of sodium bisulfite (1 eq) in water (1 mL/g of dipeptidyl aldehyde). The reaction mixture was stirred for 3 h at 50 °C. The reaction mixture was allowed to cool to room temperature and then vacuum filtered. The solid was thoroughly washed with absolute ethanol and the filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated to yield a white solid. The white solid was stirred with dry ethyl ether (3 x 10 mL/ g of dipeptidyl aldehyde), followed by careful removal of the solvent using a pipette and dried using a vacuum pump for 2 h to yield dipeptidyl bisulfite adduct *d* as a white solid.

Characterization of compounds 1c/d-17c/d

((1S,2S)-2-phenylcyclopropyl) methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl) propan-2-yl)amino)pentan-2-yl)carbamate (**1***c*). 1H NMR (400 MHz, dmso) δ 9.39 (dd, J = 6.3, 3.0 Hz, 1H), 8.46 (dd, J = 18.2, 7.4 Hz, 1H), 7.71 – 7.32 (m, 2H), 7.23 (t, J = 7.5 Hz, 2H), 7.18 – 7.10 (m, 1H), 7.07 (d, J = 7.5 Hz, 2H), 4.73 – 4.11 (m, 1H), 4.10 – 3.72 (m, 3H), 3.29 – 2.98 (m, 2H), 2.36 – 2.05 (m, 2H), 1.95 – 1.71 (m, 2H), 1.71 – 1.30 (m, 6H), 0.95 (d, J = 6.2 Hz, 2H), 0.91 – 0.78 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₃N₃NaO₅ 466.2318; Found 466.2297.

((1R,3R)-2,2-difluoro-3-phenylcyclopropyl) methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**2***c* $). Yield (90%). 1H NMR (400 MHz, cdcl3) <math>\delta$ 9.47 (s, 1H), 8.49 (dd, J = 15.0, 5.5 Hz, 1H), 7.38 – 7.15 (m, 5H), 5.98 (d, J = 13.7 Hz, 1H), 5.41 – 5.31 (m, 1H), 4.44 – 4.16 (m, 4H), 3.42 – 3.25 (m, 2H), 2.75 – 2.63 (m, 1H), 2.54 – 2.19 (m, 3H), 2.00 – 1.84 (m, 2H), 1.82 – 1.46 (m, 4H), 1.03 – 0.82 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₁F₂N₃NaO₅ 686.2829; Found 686.2793.

((1S,2R)-2-benzylcyclopropyl) methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**3***c*). Yield (75%). 1H NMR (400 MHz, cdcl3) δ 9.53 (d, J = 33.7 Hz, 1H), 8.48 – 8.22 (m, 1H), 7.42 – 7.27 (m, 2H), 7.26 – 7.15 (m, 3H), 6.20 – 5.98 (m, 1H), 5.32 – 5.12 (m, 1H), 4.62 – 4.23 (m, 2H), 4.23 – 3.79 (m, 2H), 3.43 – 3.23 (m, 2H), 2.72 – 2.26 (m, 3H), 2.14 – 1.77 (m, 3H), 1.76 – 1.61 (m, 3H), 1.59 – 1.46 (m, 1H), 1.35 – 1.16 (m, 1H), 1.15 – 0.78 (m, 8H), 0.59 – 0.46 (m, 1H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₅N₃NaO₅ 480.2475; Found 480.2476.

((1S,3R)-3-benzyl-2,2-difluorocyclopropyl) methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (*4c*). Yield (46%). 1H NMR (400 MHz, cdcl3) δ 9.53 (d, J = 38.5 Hz, 1H), 8.52 – 8.37 (m, 1H), 7.45 – 7.06 (m, 5H), 5.92 – 5.68 (m, 1H), 5.28 – 5.12 (m, 1H), 4.44 – 3.95 (m, 4H), 3.43 – 3.21 (m, 2H), 2.90 – 2.72 (m, 1H), 2.53 – 2.27 (m, 2H), 2.19 – 1.80 (m, 3H), 1.78 – 1.42 (m, 6H), 1.00 – 0.86 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₃F₂N₃NaO₅ 516.2286; Found 516.2269.

((1S,2S)-2-(3-fluorophenyl) cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**5c** $). Yield (82%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.40 (d, J = 2.8 Hz, 1H), 8.44 (d, J = 7.5 Hz, 1H), 7.63 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.30 – 7.22 (m, 1H), 6.99 – 6.85 (m, 3H), 4.28 – 4.09 (m, 1H), 4.08 – 3.96 (m, 2H), 3.94 – 3.80 (m, 1H), 3.20 – 3.03 (m, 2H), 2.35 – 2.23 (m, 1H), 2.19 – 2.06 (m, 1H), 2.01 – 1.83 (m, 2H), 1.70 – 1.54 (m, 3H), 1.53 – 1.33 (m, 3H), 1.04 – 0.95 (m, 2H), 0.93 – 0.77 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₂FN₃NaO₅ 484.2224; Found 484.2216.

((1S,2S)-2-(3-chlorophenyl) cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**6***c*). Yield (90%). 1H NMR (400 MHz, dmso) δ 9.40 (d, J = 2.6 Hz, 1H), 8.44 (d, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.29 – 7.17 (m, 2H), 7.15 – 7.12 (m, 1H), 7.07 – 7.01 (m, 1H), 4.23 – 4.13 (m, 1H), 4.09 – 3.97 (m, 2H), 3.93 – 3.79 (m, 1H), 3.20 – 3.03 (m, 2H), 2.35 – 2.21 (m, 1H), 2.20 – 2.08 (m, 1H), 2.01 – 1.84 (m, 2H), 1.68 – 1.56 (m, 3H), 1.53 – 1.34 (m, 3H), 1.06 – 0.95 (m, 2H), 0.91 – 0.79 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for $C_{24}H_{32}CIN_3NaO_5$ 500.1928; Found 500.1932.

((1S,2S)-2-(4-fluorophenyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**7***c* $). Yield (86%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.40 (d, J = 2.8 Hz, 1H), 8.44 (d, J = 7.5 Hz, 1H), 7.63 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.15 - 7.01 (m, 4H), 4.23 - 4.14 (m, 1H), 4.09 - 3.94 (m, 2H), 3.93 - 3.82 (m, 1H), 3.20 - 3.03 (m, 2H), 2.35 - 2.20 (m, 1H), 2.18 - 2.08 (m, 1H), 1.96 - 1.82 (m, 2H), 1.70 - 1.53 (m, 3H), 1.51 - 1.29 (m, 3H), 0.98 - 0.79 (m, 8H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₂FN₃NaO₅ 484.2224; Found 484.2224.

((1S,2S)-2-(4-chlorophenyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**8***c* $). Yield (81%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.40 (d, J = 2.7 Hz, 1H), 8.44 (d, J = 7.5 Hz, 1H), 7.63 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 4.26 - 4.12 (m, 1H), 4.11 - 3.96 (m, 2H), 3.93 - 3.82 (m, 1H), 3.22 - 3.03 (m, 2H), 2.37 - 2.21 (m, 1H), 2.19 - 2.04 (m, 1H), 2.01 - 1.83 (m, 2H), 1.63 (s, 3H), 1.52 - 1.35 (m, 3H), 1.05 - 0.92 (m, 2H), 0.89 - 0.78 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₂ClN₃NaO₅ 500.1928; Found 500.1927.

((1S,2S)-2-(3-methoxyphenyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**9***c* $). Yield (91%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.40 (s, 1H), 8.44 (d, J = 7.5 Hz, 1H), 7.63 (s, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 7.9 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 6.66 – 6.57 (m, 2H), 4.24 – 4.10 (m, 1H), 4.11 – 3.95 (m, 2H), 3.94 – 3.80 (m, 1H), 3.72 (s, 3H), 3.20 – 3.03 (m, 2H), 2.35 – 2.08 (m, 2H), 1.96 – 1.80 (m, 2H), 1.74 – 1.54 (m, 3H), 1.54 – 1.28 (m, 3H), 1.03 – 0.76 (m, 8H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₅N₃NaO₆ 496.2424; Found 496.2404.

((1S,2S)-2-(4-methoxyphenyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**10c** $). Yield (88%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.40 (d, J = 3.0 Hz, 1H), 8.45 (d, J = 7.5 Hz, 1H), 7.64 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 7.3 Hz, 2H), 6.81 (d, J = 6.9 Hz, 1H), 4.26 – 4.13 (m, 1H), 4.12 – 3.93 (m, 2H), 3.93 – 3.82 (m, 1H), 3.71 (s, 3H), 3.22 – 3.02 (m, 2H), 2.37 – 2.20 (m, 1H), 2.20 – 2.08 (m, 1H), 1.98 – 1.79 (m, 2H), 1.72 – 1.55 (m, 3H), 1.54 – 1.38 (m, 2H), 1.37 – 1.22 (m, 1H), 0.97 – 0.74 (m, 8H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₅N₃NaO₆ 496.2424; Found 496.2398.

((1S,2S)-2-(2-methoxyphenyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**11c** $). Yield (72%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.39 (s, 1H), 8.44 (d, J = 7.5 Hz, 1H), 7.63 (s, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.17 - 7.08 (m, 1H), 6.92 (d, J = 8.1 Hz, 1H), 6.83 (d, J = 5.1 Hz, 2H), 4.31 - 4.12 (m, 1H), 4.11 - 4.01 (m, 1H), 4.00 - 3.88 (m, 2H), 3.79 (s, 3H), 3.19 - 3.01 (m, 2H), 2.35 - 2.21 (m, 1H), 2.18 - 2.01 (m, 2H), 1.96 - 1.81 (m, 1H), 1.72 - 1.54 (m, 3H), 1.52 - 1.31 (m, 3H), 0.96 - 0.73 (m, 8H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₅N₃NaO₆ 496.2424; Found 496.2404.

((1R,2S)-2-(2-methoxyphenyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**12c** $). Yield (87%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.38 (d, J = 1.7 Hz, 1H), 8.38 (d, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.25 – 7.13 (m, 2H), 7.07 (t, J = 6.9 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.86 (t, J = 7.0 Hz, 1H), 4.23 – 4.10 (m, 1H), 4.03 – 3.91 (m, 1H), 3.80 (s, 3H), 3.77 – 3.67 (m, 1H), 3.32 – 3.24 (m, 1H), 3.21 – 3.00 (m, 2H), 2.34 – 2.03 (m, 3H), 1.95 – 1.80 (m, 1H), 1.70 – 1.53

(m, 3H), 1.52 – 1.34 (m, 3H), 1.04 – 0.78 (m, 8H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₅N₃NaO₆ 496.2424; Found 496.2406.

((1S,2S)-2-propylcyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**13c** $). Yield (56%). 1H NMR (400 MHz, dmso) <math>\delta$ 9.40 (d, J = 1.0 Hz, 1H), 8.42 (d, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.28 (d, J = 8.1 Hz, 1H), 4.23 - 4.12 (m, 1H), 4.09 - 3.96 (m, 1H), 3.88 - 3.65 (m, 2H), 3.21 - 3.04 (m, 2H), 2.32 - 2.19 (m, 1H), 2.19 - 2.06 (m, 1H), 1.95 - 1.83 (m, 1H), 1.70 - 1.59 (m, 2H), 1.53 - 1.38 (m, 2H), 1.34 (p, J = 7.3 Hz, 2H), 1.26 - 1.10 (m, 2H), 0.88 (td, J = 7.0, 4.3 Hz, 11H), 0.72 - 0.59 (m, 1H), 0.44 - 0.34 (m, 1H), 0.33 - 0.21 (m, 1H). HRMS m/z: [M+Na]⁺ Calculated for C₂₁H₃₆N₃O₅ 410.2655; Found 410.2636.

((1R,2S)-2-propylcyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**14c** $). Yield (83%). 1H NMR (400 MHz, cdcl3) <math>\delta$ 9.54 (d, J = 28.9 Hz, 1H), 8.27 (d, J = 6.2 Hz, 1H), 6.41 (d, J = 41.1 Hz, 1H), 5.42 - 5.22 (m, 1H), 4.57 - 4.05 (m, 3H), 4.03 - 3.90 (m, 1H), 3.43 - 3.25 (m, 2H), 2.55 - 2.39 (m, 1H), 2.14 - 1.84 (m, 3H), 1.80 - 1.33 (m, 7H), 1.26 - 1.08 (m, 2H), 0.98 - 0.85 (m, 10H), 0.77 - 0.67 (m, 1H), 0.07 - 0.01 (m, 1H). HRMS m/z: [M+Na]⁺ Calculated for C₂₁H₃₅N₃NaO₅ 432.2475; Found 432.2474.

((1R,2S)-2-cyclohexylcyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**15c** $). Yield (93%). 1H NMR (400 MHz, cdcl3) <math>\delta$ 9.50 (s, 1H), 8.28 (t, J = 6.3 Hz, 1H), 6.15 (s, 1H), 5.24 (d, J = 8.9 Hz, 1H), 4.41 - 4.23 (m, 2H), 4.12 - 3.70 (m, 2H), 3.41 - 3.30 (m, 2H), 2.52 - 2.35 (m, 2H), 2.07 - 1.81 (m, 3H), 1.77 - 1.52 (m, 8H), 1.19 - 0.83 (m, 12H), 0.61 - 0.44 (m, 2H), 0.43

– 0.31 (m, 2H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₉N₃NaO₅ 472.2788; Found 472.2780.

((1S,2S)-2-(cyclohexylmethyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (**16c** $). Yield (91%). 1H NMR (400 MHz, cdcl3) <math>\delta$ 9.50 (s, 1H), 8.32 – 8.20 (m, 1H), 6.30 (s, 1H), 5.27 (d, J = 8.8 Hz, 1H), 4.42 – 4.05 (m, 2H), 4.04 – 3.68 (m, 2H), 3.42 – 3.30 (m, 2H), 2.54 – 2.35 (m, 1H), 2.05 – 1.82 (m, 2H), 1.78 – 1.45 (m, 9H), 1.37 – 1.09 (m, 6H), 0.99 – 0.78 (m, 10H), 0.72 – 0.61 (m, 1H), 0.47 – 0.38 (m, 1H), 0.34 – 0.25 (m, 1H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₄₁N₃NaO₅ 486.2944; Found 486.2905.

((1S,2R)-2-(4,4-difluorocyclohexyl)cyclopropyl)methyl ((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)pentan-2-yl)carbamate (*17c*). Yield (88%). $1H NMR (400 MHz, cdcl3) <math>\delta$ 9.49 (s, 1H), 8.42 – 8.30 (m, 1H), 6.01 (s, 1H), 5.27 – 5.17 (m, 1H), 4.37 – 4.27 (m, 1H), 4.07 – 3.68 (m, 1H), 3.43 – 3.32 (m, 2H), 2.51 – 2.38 (m, 1H), 2.12 – 1.35 (m, 16H), 0.98 (d, J = 5.8 Hz, 8H), 0.73 – 0.52 (m, 2H), 0.52 – 0.36 (m, 2H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₈F₂N₃O₅ 486.2779; Found 486.2926.

sodium (2S)-1-hydroxy-2-((S)-4-methyl-2-(((((1S,2S)-2-phenylcyclopropyl)methoxy)carbonyl)amino)pentanamido)-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**1***d*). ¹H NMR (400 MHz, dmso) δ 8.45 – 8.40 (m, 1H), 7.66 – 7.59 (m, 1H), 7.24 (t, *J* = 7.5 Hz, 3H), 7.17 – 7.09 (m, 1H), 7.09 – 7.00 (m, 2H), 5. 15 – 4.80 (m, 1H) 4.06 – 3.70 (m, 2H), 3.10 – 3.00 (m, 3H), 2.38 – 1.82 (m, 5H), 1.82 – 1.34 (m, 6H), 0.99 – 0.92 (m, 2H), 0.92 – 0.79 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₄N₃Na₂O₈S 570.1862; Found 570.1841.

(2S)-2-((S)-2-(((((1R,3R)-2,2-difluoro-3-

sodium

phenylcyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-((S)-2oxopyrrolidin-3-yl)propane-1-sulfonate (*2d*). Yield (88%). ¹H NMR (400 MHz, dmso) δ 7.71 – 7.39 (m, 3H), 7.38 – 7.19 (m, 5H), 5.50 (dd, *J* = 19.3, 6.2 Hz, 1H), 4.50 – 4.19 (m, 2H), 4.16 – 3.82 (m, 2H), 3.21 – 2.92 (m, 2H), 2.30 – 1.69 (m, 4H), 1.67 – 1.50 (m, 3H), 1.50 – 1.30 (m, 3H), 0.90 – 0.74 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₂F₂N₃Na₂O₈S 768.2554; Found 768.3384.

sodium (2S)-2-((S)-2-((((((1S,2R)-2-benzylcyclopropyl)methoxy)carbonyl)amino)-4methylpentanamido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (*3d*). Yield (74%). ¹H NMR (400 MHz, dmso) δ 7.69 – 7.42 (m, 3H), 7.38 – 7.13 (m, 5H), 5.67 – 5.35 (m, 1H), 4.30 – 3.64 (m, 4H), 3.20 – 2.93 (m, 2H), 2.70 – 2.55 (m, 1H), 2.50 – 2.39 (m, 1H), 2.31 – 2.06 (m, 3H), 2.06 – 1.70 (m, 1H), 1.70 – 1.52 (m, 2H), 1.49 – 1.31 (m, 2H), 1.08 – 0.94 (m, 2H), 0.91 – 0.75 (m, 6H), 0.52 – 0.41 (m, 2H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₆N₃Na₂O₈S 584.2019; Found 584.2019.

sodium (2S)-2-((S)-2-(((((1R,3S)-3-benzyl-2,2-

difluorocyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (*4d*). Yield (73%). ¹H NMR (400 MHz, dmso) δ 7.72 – 7.41 (m, 2H), 7.37 – 7.12 (m, 6H), 5.52 – 5.29 (m, 1H), 4.30 – 3.77 (m, 4H), 3.20 – 2.95 (m, 2H), 2.88 – 2.67 (m, 1H), 2.23 – 2.02 (m, 2H), 2.02 – 1.85 (m, 1H), 1.82 – 1.72 (m, 1H), 1.69 – 1.51 (m, 3H), 1.50 – 1.32 (m, 4H), 0.93 – 0.72 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₄F₂N₃Na₂O₈S 620.1830; Found 620.1810.

sodium (2S)-2-((S)-2-((((((1S,2S)-2-(3fluorophenyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-

((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (*5d*). Yield (56%). ¹H NMR (400 MHz, dmso) δ 7.68 – 7.43 (m, 2H), 7.43 – 7.31 (m, 1H), 7.28 – 7.22 (m, 1H), 6.98 – 6.86 (m, 3H), 5.54 – 5.31 (m, 1H), 4.07 – 3.77 (m, 4H), 3.20 – 2.95 (m, 2H), 2.23 – 2.04 (m, 2H), 2.02 – 1.84 (m, 2H), 1.70 – 1.50 (m, 3H), 1.50 – 1.33 (m, 3H), 1.05 – 0.94 (m, 2H), 0.90 – 0.74 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₃FN₃Na₂O₈S 588.1768; Found 588.1774.

sodium (2S)-2-((S)-2-((((((1S,2S)-2-(3-chlorophenyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (*6d* $). Yield (66%). ¹H NMR (400 MHz, dmso) <math>\delta$ 7.65 – 7.42 (m, 2H), 7.40 – 7.31 (m, 1H), 7.26 (t, *J* = 7.8 Hz, 1H), 7.20 – 7.11 (m, 2H), 7.10 – 6.99 (m, 1H), 5.45 – 5.21 (m, 1H), 4.12 – 3.81 (m, 4H), 3.21 – 2.97 (m, 2H), 2.33 – 2.04 (m, 2H), 2.03 – 1.77 (m, 2H), 1.74 – 1.50 (m, 3H), 1.49 – 1.31 (m, 3H), 1.03 – 0.95 (m, 2H), 0.91 – 0.77 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for $C_{24}H_{33}CIN_3Na_2O_8S$ 604.1473; Found 604.1477.

fluorophenyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**7***d*). Yield (35%). ¹H NMR (400 MHz, dmso) δ 7.65 – 7.43 (m, 2H), 7.36 (dd, *J* = 25.0, 7.9 Hz, 1H), 7.16 – 7.01 (m, 4H), 5.52 – 5.29 (m, 1H), 4.13 – 3.81 (m, 4H), 3.20 – 2.97 (m, 2H), 2.32 – 2.03 (m, 2H), 2.02 – 1.83 (m, 2H), 1.70 – 1.50 (m, 3H), 1.48 – 1.31 (m, 3H), 1.01 – 0.73 (m, 8H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₃FN₃Na₂O₈S 588.1768; Found 588.1742. sodium (2S)-2-((S)-2-(((((15,2S)-2-(4-100))))))

(2S)-2-((S)-2-(((((1S,2S)-2-(4-

sodium

fluorophenyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-

((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**8***d*). Yield (70%). ¹H NMR (400 MHz, dmso) δ 7.64 – 7.50 (m, 2H), 7.48 – 7.38 (m, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.16 – 7.06 (m, 2H), 5.44 – 5.31 (m, 1H), 4.10 – 3.80 (m, 4H), 3.18 – 2.92 (m, 2H), 2.24 – 2.04 (m, 2H), 2.01 – 1.80 (m, 2H), 1.72 – 1.49 (m, 3H), 1.48 – 1.31 (m, 3H), 1.02 – 0.90 (m, 2H), 0.88 – 0.74 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₃FN₃Na₂O₈S 604.1473; Found 604.1481.

sodium (2S)-1-hydroxy-2-((S)-2-((((((1S,2S)-2-(3-methoxyphenyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**9d**). Yield (86 %). ¹H NMR (400 MHz, dmso) δ 7.56 (dd, J = 19.6, 9.6 Hz, 1H), 7.45 (s, 1H), 7.34 (dd, J = 24.7, 8.3 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 6.73 – 6.61 (m, 3H), 5.45 – 5.25 (m, 1H), 4.13 – 3.80 (m, 4H), 3.72 (s, 3H), 3.21 – 2.95 (m, 2H), 2.26 – 2.03 (m, 2H), 2.01 – 1.84 (m, 2H), 1.70 – 1.50 (m, 3H), 1.49 – 1.33 (m, 3H), 1.00 – 0.92 (m, 2H), 0.89 – 0.77 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₃FN₃Na₂O₈S 600.1968; Found 600.1939.

sodium (2S)-2-((S)-2-((((((1S,2S)-2-(4-fluorophenyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**10d** $). Yield (78%). ¹H NMR (400 MHz, dmso) <math>\delta$ 7.68 – 7.13 (m, 3H), 7.05 – 6.97 (m, 2H), 6.85 – 6.77 (m, 2H), 5.52 – 5.22 (m, 1H), 4.13 – 3.80 (m, 4H), 3.70 (s, 3H), 3.18 – 2.97 (m, 2H), 2.28 – 2.05 (m, 2H), 2.03 – 1.72 (m, 2H), 1.68 – 1.52 (m, 3H), 1.50 – 1.38 (m, 3H), 1.37 – 1.21 (m, 2H), 0.96 – 0.74 (m, 6H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₃₃FN₃Na₂O₈S 600.1968 ; Found 600.1958.

(2S)-1-hydroxy-2-((S)-4-methyl-2-(((((1S,2S)-2-(o-

sodium

tolyl)cyclopropyl)methoxy)carbonyl)amino)pentanamido)-3-((S)-2-oxopyrrolidin-3yl)propane-1-sulfonate (**11d**). Yield (83%). ¹H NMR (400 MHz, dmso) δ 7.65 – 7.48 (m, 1H), 7.45 (s, 1H), 7.39 – 7.25 (m, 1H), 7.15 – 7.08 (m, 1H), 6.92 (d, *J* = 8.1 Hz, 1H), 6.86 – 6.79 (m, 2H), 5.47 – 5.28 (m, 1H), 4.07 – 3.86 (m, 4H), 3.79 (s, 3H), 3.19 – 2.96 (m, 2H), 2.33 – 1.84 (m, 4H), 1.71 – 1.51 (m, 3H), 1.47 – 1.27 (m, 3H), 0.98 – 0.72 (m, 8H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₆N₃Na₂O₈S 600.1968; Found 600.1946. sodium (2S)-1-hydroxy-2-((S)-2-(((((1R,2S)-2-(2methoxyphenyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-3-((S)-2oxopyrrolidin-3-yl)propane-1-sulfonate (**12d**). Yield (72%). ¹H NMR (400 MHz, dmso) δ 7.60 – 7.35 (m, 2H), 7.27 – 7.15 (m, 2H), 7.12 – 7.03 (m, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 5.45 – 5.27 (m, 1H), 4.06 – 3.86 (m, 2H), 3.81 (s, 3H), 3.76 – 3.66 (m, 2H), 3.18 – 2.97 (m, 2H), 2.27 – 1.95 (m, 4H), 1.68 – 1.31 (m, 6H), 1.01 – 0.93 (m, 1H), 0.92 – 0.73 (m, 7H). HRMS m/z: [M+Na]⁺ Calculated for C₂₅H₃₆N₃Na₂O₉S 600.1968; Found 600.1941.

sodium (2S)-1-hydroxy-2-((S)-4-methyl-2-((((((1S,2S)-2propylcyclopropyl)methoxy)carbonyl)amino)pentanamido)-3-((S)-2-oxopyrrolidin-3yl)propane-1-sulfonate (**13d**). Yield (83%). ¹H NMR (400 MHz, dmso) δ 7.57 (d, *J* = 9.1 Hz, 1H), 7.53 – 7.43 (m, 1H), 7.24 (dd, *J* = 20.1, 8.0 Hz, 1H), 5.57 – 5.32 (m, 1H), 4.11 – 3.89 (m, 2H), 3.87 – 3.66 (m, 2H), 3.17 – 2.99 (m, 2H), 2.37 – 2.06 (m, 2H), 2.04 – 1.81 (m, 1H), 1.69 – 1.52 (m, 2H), 1.51 – 1.40 (m, 2H), 1.38 – 1.28 (m, 3H), 1.25 – 1.02 (m, 2H), 0.86 (dt, *J* = 11.3, 6.7 Hz, 10H), 0.71 – 0.57 (m, 1H), 0.44 – 0.34 (m, 1H), 0.31 –

0.22 (m, 1H). HRMS m/z: $[M+Na]^+$ Calculated for $C_{21}H_{36}N_3Na_2O_8S$ 536.2019; Found 536.1994.

sodium (2S)-1-hydroxy-2-((S)-4-methyl-2-(((((1R,2S)-2-propylcyclopropyl)methoxy)carbonyl)amino)pentanamido)-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**14d**). Yield (49%). ¹H NMR (400 MHz, dmso) δ 7.54 (dd, *J* = 16.6, 8.8 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.33 – 7.22 (m, 1H), 5.55 – 5.31 (m, 1H), 4.10 – 3.80 (m, 4H), 3.22 – 2.99 (m, 2H), 2.32 – 2.07 (m, 2H), 2.05 – 1.84 (m, 1H), 1.74 – 1.51 (m, 3H), 1.50 – 1.30 (m, 5H), 1.28 – 1.16 (m, 1H), 1.14 – 1.00 (m, 1H), 0.93 – 0.76 (m, 10H), 0.70 – 0.59 (m, 1H), 0.07 – 0.01 (m, 1H). HRMS m/z: [M+Na]⁺ Calculated for C₂₁H₃₆N₃Na₂O₈S 536.2019; Found 536.2017.

sodium (2S)-2-((S)-2-((((((1R,2S)-2-cyclohexylcyclopropyl)methoxy)carbonyl)amino)-4methylpentanamido)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**15d**). Yield (72%). ¹H NMR (400 MHz, dmso) δ 7.67 – 7.56 (m, 1H), 7.53 – 7.44 (m, 1H), 7.27 – 7.10 (m, 1H), 5.47 (d, *J* = 53.4 Hz, 1H), 4.12 – 3.54 (m, 4H), 3.24 – 2.96 (m, 2H), 2.37 – 2.06 (m, 2H), 2.05 – 1.84 (m, 1H), 1.82 – 1.50 (m, 11H), 1.47 – 1.28 (m, 2H), 1.25 – 0.95 (m, 3H), 0.89 – 0.74 (m, 6H), 0.68 – 0.45 (m, 2H), 0.39 – 0.26 (m, 2H). HRMS m/z: [M+Na]⁺ Calculated for C₂₄H₄₀N₃Na₂O₈S 576.2332; Found 576.2311.

sodium (2S)-2-((S)-2-((((((1S,2S)-2-((cyclohexylmethyl)cyclopropyl)methoxy)carbonyl)amino)-4-methylpentanamido)-1hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propane-1-sulfonate (**16d** $). Yield (48%). ¹H NMR (400 MHz, dmso) <math>\delta$ 7.78 – 7.55 (m, 1H), 7.54 – 7.44 (m, 1H), 7.33 – 7.14 (m, 1H), 5.55 – 5.32 (m, 1H), 4.13 – 3.57 (m, 4H), 3.25 – 2.94 (m, 2H), 2.41 – 2.05 (m, 2H), 2.04 – 1.86 (m, 1H), 1.85 – 1.53 (m, 6H), 1.50 – 1.40 (m, 2H), 1.38 – 1.00 (m, 4H), 0.98 – 0.74 (m, 8H),

¹H-NMR of compounds 1-17c/d

Peaks corresponding to residual solvents (H_2O , DCM, DMSO, CHCI₃) have not been integrated in below spectrums.

AA

1.02

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

5.5 5.0 4.5

2.00-T

2384 2384

2.96-

2.12

T-88.0

3.25-1

H-64.

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

Determination of purity of compounds 1c/d-17c/d

Sample preparation. Compounds (*1c/d-17c/d*) were weighed into glass vials using an analytical balance (Mettler Toledo XS105) with 0.01 mg accuracy (specific quantities are listed in the table). A stock solution of dimethyl sulfone (*Trace*CERT®, 99.82 ±0.18%, lot BCBZ3940, traceability: NIST SRM 84L) in DMSO-d₆ (with 1% v/v TMS) was prepared. A concentration of stock solution was prepared for *1c-17c*, *1d-5d* and *14d-17d* at 2.00 mg/600 μ L and for *6d-13d* was 4.00 mg/600 μ L. A 600 μ L aliquot of stock solution was added into each vial and capped with a lid. The vials were vortex mixed for two minutes to ensure compounds dissolved completely. The content in the vials were quantitatively transferred to 5 mm standard NMR tubes. The tubes were capped, wrapped with PTFE tape, followed by paraffin tape.

Compound code	1c	2c	3с	4c	5c	6c	7c	8c	9c
Weight(mg)	12.40	13.19	11.26	10.50	11.76	12.97	11.70	13.40	12.50
Compound	100	110	120	120	140	150	160	170	
code	100	110	120	130	140	150	100	1/0	
Weight(mg)	11.71	12.80	12.08	9.01	11.77	12.44	9.80	10.86	

Compound code	1d	2d	3d	4d	5d	6d	7d	8d	9d
Weight(mg)	13.13	11.18	14.08	11.18	11.95	11.98	12.47	12.53	11.85

Compound code	10d	11d	12d	13d	14d	15d	16d	17d
Weight(mg)	13.77	13.32	14.19	14.97	14.67	13.94	11.72	9.81

Acquisition. The instrument and controlled parameters used during the acquisition are listed below.

NMR instrument	: Bruker AV III 500	Relaxation delay (D1=T ₁ x5)	: 12 s
Probe	: CPDUL CRYOprobe CP BBO 500S2	Acquisition time (AQ)	: 2.1845 s (set by TD)
Preacquisition delay (DE)	: 10 µs	Spectral window (SW)	: 30 ppm
Pulse program	: Single pulse, zg with 90 ⁰ pulse	Transmitter offset	: 7.5 ppm
Sample temperature	: 25.0 ± 0.1 ^o C	Number of scans	: 32
Data points acquired (TD)	: 64 K	360 ⁰ Pulse	: 51.079 µs
Dummy scans (DS)	: 4	90 ⁰ Pulse	: 12.769 µs
Pulse width (PW):	: 90 ⁰	Automatic tuning and a matching were perform Automatic locking and shimming were perform	automatic ned. automatic med.

Post-acquisition processing

Apodization	: LB = 0.1 Hz
Zero-filling	: 256 K
Phasing	: Manual phase correction
Baseline correction	: Polynomial fit, 5 th order

Quantitative measurement of integrals. TMS was set at 0.0000 ppm. The integral values and range (ppm) of all signals used for quantification have been documented below. The integral of the internal calibrant resonance signal (dimethyl sulfone) is in *Italic*.

Code	1c	2c 3c 4c		4c
Integr	7.15 7.10 27601.65	7.387.32 56224.79	7.43 7.09 171597.05	3.20 3.02 49658.31
al	7.09 7.02 55534.37	7.31 7.23 84120.20	3.20 3.01 53109.98	3.01 2.98 166111.04
	3.19 3.01 53790.64	3.193.01 74113.90	3.01 2.98 165393.47	0.93 0.76 162350.10
	3.01 2.99 134221.44	3.00 2.99 136770.50	1.06 0.92 37663.64	
	1.00 0.90 56632.74	0.92 0.79 165155.96	0.92 0.76 173979.53	
	0.90 0.76 171059.26		0.51 0.40 33147.32	
Avg.	28047.59	29201.14	31299.83	26501.05

Code	50	C	(6c 7c		7c 8c		Bc
Integr	7.30 7.23	39512.15	7.29 7.23	39227.19	7.14 7.01	125503.11	7.31 7.26	65771.14
al	6.99 6.84	89627.98	7.22 7.17	31990.27	3.01 2.99	162118.90	7.13 7.06	62643.44
	3.20 3.02	54910.15	7.16 7.12	32509.44	0.99 0.77	251341.77	3.20 3.02	58559.03
	3.00 2.99	152052.33	7.07 7.00	33841.56			3.01 2.98	152578.87
	1.04 0.95	57632.52	3.20 3.02	62493.98			1.05 0.91	64872.28
	0.92 0.78	173592.17	3.01 2.99	162817.09			0.91 0.74	190084.58
			1.05 0.94	65759.92				
			0.91 0.77	197330.68				
Avg.	29662.5		33082.36		31403.7		31947.6	

Code	g)c	1	0c	1	1c	1	2c
Integr	7.18 7.11	31862.83	7.04 6.94	57334.04	7.16 7.09	33197.60	7.25 7.16	44541.58
al	6.73 6.58	95583.23	6.84 6.76	57974.81	6.95 6.89	35414.47	7.09 7.04	28746.73
	3.74 3.69	98004.31	3.71 3.69	82761.22	6.86 6.78	63855.40	6.97 6.91	29074.14
	3.19 3.04	66066.20	3.19 3.04	53981.74	3.82 3.77	93258.08	6.89 6.81	30665.39
	3.01 2.98	161741.07	3.01 2.98	153721.86	3.20 3.02	65634.73	3.83 3.77	87161.54
			0.97 0.77	229313.02	3.01 2.98	161301.27	3.01 2.97	156484.15
					0.97 0.73	271185.37	1.05 0.70	236886.60
Avg.	32390.73		28315.58		33090.92		30471.73	

Code	13c	14c 15c		16c
Integr	3.21 3.03 50735.30	3.213.02 68684.05	3.203.05 64008.81	3.20 3.05 46845.05
al	3.01 2.98 153813.18	3.00 2.99 160715.41	3.01 2.98 143266.72	3.01 2.98 152562.35
	0.700.59 27616.61	0.93 0.77 377425.44	2.34 2.23 28453.87	0.700.61 26374.78
	0.42 0.35 23538.75	0.700.61 37506.23	2.18 2.09 30133.96	0.43 0.35 23693.53
	0.300.22 24152.70		0.64 0.44 63974.68	0.280.19 23580.00
			0.41 0.26 55750.75	
Avg.	25208.67	34543.98	30290.26	24098.67

Code	17c					
Integr	3.20 3.04	55776.64				
al	3.01 2.97	164506.63				
	0.98 0.67	233475.40				
	0.62 0.51	23305.10				
	0.45 0.30	46823.96				
Avg.	27644.7					

Code	1d	2d	3d	4d
Integr	7.27 7.20 58128.34	7.38 7.23 119977.09	7.33 7.15 147249.89	3.01 2.97 162671.85
al	7.18 7.02 76365.05	3.00 2.98 163499.22	3.00 2.98 152606.91	0.93 0.74 141224.94
	3.01 2.97 148877.68	0.900.76 140604.97	0.91 0.77 166997.61	
	1.02 0.90 53973.14		0.51 0.41 32025.85	
	0.890.75 159588.58			
Avg.	26773.47	23689.28	28856.11	23537.49

Code	5d		6d		7d		8d	
Integr	7.30 7.23 32364.	19	7.29 7.23	31557.31	7.31 7.25	50398.24	7.30 7.25	49587.72
al	6.98 6.85 81015.	99	7.21 7.00	72165.85	7.15 7.06	45621.89	7.13 7.07	42647.81
	3.01 2.98 162112	2.51	3.01 2.98	160598.11	3.00 2.98	268957.15	3.00 2.99	266588.84
	1.03 0.95 51182.	52	1.03 0.95	47085.52	1.03 0.91	46140.94	1.02 0.91	45294.24
	0.90 0.75 158157	7.98	0.90 0.75	144654.41	0.90 0.77	135347.83	0.88 0.77	132164.18
Avg.	26893.39		24621.92		23125.74		22474.50	

Code	9d	10d	11d	12d
Integr	7.17 7.10 18767.60	7.04 6.97 48649.37	7.16 7.09 24220.69	7.22 7.17 29529.03
al	6.73 6.60 56852.66	6.84 6.78 49996.91	6.94 6.90 24577.07	7.10 7.04 27367.66
	3.74 3.70 57949.80	3.71 3.69 73315.25	6.86 6.79 44966.77	6.96 6.91 26002.00
	3.01 2.97 257392.13	3.01 2.98 267459.75	3.81 3.77 68358.79	6.896.82 26127.23
	1.01 0.76 167755.45	0.95 0.78 203613.72	3.01 2.98 267098.83	3.82 3.79 86009.97
			0.98 0.73 198351.82	3.02 2.97 280486.35
				1.02 0.75 210298.68
Avg.	20088.37	25038.35	24031.68	27022.3

Code	1:	13d 14d 15d		16d				
Integr	3.17 3.09	19710.27	3.18 3.09	27082.74	3.18 3.09	31948.57	3.19 3.09	30718.38
al	3.08 3.01	17432.69	3.09 3.01	21616.39	3.09 3.01	26635.23	3.08 3.01	21982.97
	3.01 2.96	160845.93	3.01 2.97	228007.38	3.01 2.98	162246.78	3.01 2.98	154122.65
	0.70 0.59	19638.02	0.94 0.77	248988.14	0.91 0.77	197240.35	0.70 0.60	24975.16
	0.43 0.34	17103.57	0.71 0.59	24195.02			0.46 0.35	23409.90
	0.31 0.20	18140.96					0.28 0.19	22935.89
Avg.	18405.1		24760.2		31978.02		24804.46	

Code	1	7d
Integr	3.17 3.09	25788.16
al	3.08 3.02	21650.05
	3.01 2.99	160256.81
	0.89 0.81	157335.03
	0.79 0.70	20322.52
	0.61 0.50	19325.96
	0.45 0.32	39028.50
Avg.	20246.44	

Calculation of purity

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC}$$

- *P* purity of the target analyte, %
- P_{IC} purity of the internal calibrant, %
- n_{IC} number of protons that give rise to Int_{IC}
- n_t number of protons that give rise to Int_t
- *Int_{IC}* integral of the internal calibrant resonance signal
- *Int_t* integral of the target analyte resonance signal

- *MW_{IC}* molecular weight of the internal calibrant
- *MW_t* molecular weight of the target analyte
- *m*_{*IC*} weight of the internal calibrant
- *m_s* weight of the target analyte

Compound code	Purity (%)
1c	95.1
2c	98.8
3с	97.9
4c	95.4
5c	97.4
6c	95.3
7c	97.2
8c	95.0
9c	96.5

Purity (%)
94.8
96.6
97.1
94.8
95.2
97.2
95.1
95.6

Purity of c-series compounds

Purity of d-series compounds

Compound code	Purity (%)
1d	95.4
2d	96.2
3d	96.0
4d	98.4
5d	99.9
6d	94.8
7d	99.3
8d	99.7
9d	96.8

Compound code	Purity (%)
10d	99.9
11d	99.3
12d	99.8
13d	99.9
14d	96.8
15d	99.6
16d	99.2
17d	96.6

Compound Code	13c	14d	15d	16d	17d
PDB Code	7TQ7	7TQ8	8CZT	8DGY	8CZV
Data Collection					
Unit-cell parameters (Å, °)	<i>a</i> =101.44	<i>a</i> =100.73	a=101.62	a=100.44 b=57.31	a=101.47
	<i>b</i> =57.94	<i>b</i> =57.61	<i>b</i> =56.94	<i>c</i> =49.68 β=112.2	b=57.45
	<i>c</i> =49.85	<i>c</i> =49.74	<i>c</i> =49.83		<i>c</i> =49.86
	<i>β</i> =112.4	<i>β</i> =112.2	<i>β</i> =112.4		<i>β</i> =112.5
Space group	C2	C2	C2	C2	C2
Resolution (Å) ¹	49.29-1.70	49.01-1.65	48.69-2.10	48.79-2.70 (2.77-	48.99-1.95
	(1.73-1.70)	(1.68-1.65)	(2.15-2.10)	2.70)	(2.00-1.95)
Wavelength (Å)	1.0000	1.0000	0.9795	0.9795	0.9795
Temperature (K)	100	100	100	100	100
Observed reflections	101,432	162,225	50,621	25,372	68,418
Unique reflections	29,349	31,177	14,941	6,987	19,245
<i <sub="">0(I)>1</i>	11.3 (1.8)	10.1 (2.5)	10.6 (2.9)	7.0 (2.2)	9.8 (1.8)
Completeness (%) ¹	99.6 (97.3)	98.2 (94.0)	96.5 (99.5)	95.7 (99.9)	99.5 (99.7)
Multiplicity ¹	3.5 (3.1)	5.2 (4.4)	3.4 (3.4)	3.6 (3.8)	3.5 (3.6)
R_{merge} (%) ^{1, 2}	6.0 (66.9)	8.5 (77.7)	6.6 (35.9)	14.1 (69.1)	8.9 (66.1)
$R_{\rm meas}$ (%) ^{1, 4}	7.1 (80.9)	9.5 (88.3)	8.4 (43.2)	16.5 (80.2)	9.9 (72.8)
$R_{\rm pim}$ (%) ^{1, 4}	3.8 (45.1)	4.2 (41.0)	4.3 (22.8)	8.6 (40.4)	5.5 (40.5)
CC _{1/2} ^{1, 5}	0.998 (0.718)	0.997 (0.716)	0.998 (0.933)	0.994 (0.800)	0.997 (0.840)
Refinement					
Resolution (Å) ¹	46.10-1.70	46.05-1.65	48.69-2.10	46.49-2.70	48.99-1.95
Reflections (working/test) ¹	27,890/1,448	29,587/1,566	14,231/688	6,636/330	18,350/968
$R_{\text{factor}} / R_{\text{free}} (\%)^{1,3}$	15.9/19.0	15.9/19.1	20.0/26.2	21.2/25.8	18.4/24.1
No. of atoms (Protein/Ligand/Water)	2,280/58/205	2,281/58/226	2,270/32/53	2,269/33/-	2,269/68/85
Model Quality					
R.m.s deviations					
Bond lengths (Å)	0.011	0.009	0.002	0.003	0.007
Bond angles (°)	1.003	1.044	0.488	0.557	0.865
Average B-factor (Å ²)					
All Atoms	26.0	25.8	40.4	48.2	35.2
Protein	25.3	24.9	40.5	48.1	35.3
Ligand	25.1	25.2	37.7	52.3	35.5

Table S1. Crystallographic data for MERS 3CLpro.

Water	33.7	34.3	38.4	-	33.1
Coordinate error(maximum likelihood) (Å)	0.17	0.17	0.24	0.31	0.26
Ramachandran Plot					
Most favored (%)	99.7	99.0	98.3	95.3	98.3
Additionally allowed (%)	0.3	1.0	1.7	4.7	1.7

1)

Values in parenthesis are for the highest resolution shell. $R_{merge} = \sum_{hkl} \sum_i |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_i |I_i(hkl)$, where $I_i(hkl)$ is the intensity measured for the *i*th reflection and $\langle I(hkl) \rangle$ is the average intensity of all reflections with indices hkl. 2)

 $R_{\text{factor}} = \Sigma_{hkl} ||F_{\text{obs}} (hkl)| - |F_{\text{calc}} (hkl)|| / \Sigma_{hkl} |F_{\text{obs}} (hkl)|;$ Rfree is calculated in an identical manner using 5% of randomly selected reflections that were not included in the refinement. 3)

 R_{meas} = redundancy-independent (multiplicity-weighted) R_{merge}^{74} . R_{pim} = precision-indicating (multiplicity-weighted) $R_{\text{merge}}^{75,76}$. CC_{1/2} is the correlation coefficient of the mean intensities between two random half-sets of data ^{77.78}. 4)

5)

Table S2. Crystallographic data for SARS-CoV-2 3CLpro.

Compound Code	1c	5c	6c	10d	13d	15d	17d
PDB Code	7TQ2	7TQ3	7TQ4	7TQ5	7TQ6	8CZW	8CZX
Data Collection							
Unit-cell parameters (Å, °)	a=45.59, b=54.61, c=114.32, β=101.0	a=54.25 b=98.85 c=58.58 β=107.6	a=113.88 b=53.87 c=45.62 β=101.6	a=55.38 b=98.44 c=59.28 β=108.3	a=55.26 b=98.72 c=58.92 β=108.2	a=55.17 b=98.53 c=59.14 β=108.0	a=54.86 b=98.50 c=58.68 β=107.7
Space group	P 2 ₁	P 2 ₁	P 2 ₁	P 2 ₁	P 2 ₁	P 2 ₁	<i>P</i> 2 ₁
Resolution (Å) ¹	49.11-2.30 (2.38-2.30)	48.61-2.00 (2.05-2.00)	48.51-2.45 (2.55-2.45)	48.86-1.65 (1.68-1.65)	48.69-1.55 (1.58-1.55)	46.31-1.70 (1.73-1.70)	48.63-1.65 (1.68-1.65)
Wavelength (Å)	1.0000	1.0000	1.0000	1.0000	1.0000	0.9795	0.9795
Temperature (K)	100	100	100	100	100	100	100
Observed reflections	86,865	138,606	35,501	250,742	300,837	231,847	254,941
Unique reflections	24,770	40,112	10,065	72,411	86,805	65,228	58,790
<i σ(i)="">1</i>	7.3 (2.2)	12.2 (1.9)	8.5 (1.8)	11.2 (1.6)	13.2 (1.8)	11.2 (1.9)	11.5 (1.6)
Completeness (%) ¹	99.9 (99.8)	98.9 (99.7)	99.7 (100)	99.9 (100)	99.9 (99.9)	98.8 (99.3)	98.3 (97.5)
Multiplicity ¹	3.5 (3.6)	3.5 (3.6)	3.5 (3.6)	3.5 (3.4)	3.5 (3.5)	3.6 (3.6)	3.6 (3.8)
$R_{ m merge}$ (%) ^{1, 2}	11.2 (60.9)	5.9 (76.9)	9.8 (64.3)	5.4 (74.9)	4.2 (71.2)	5.6 (73.9)	3.9 (62.6)
$R_{ m meas}$ (%) ^{1, 4}	13.3 (71.5)	7.0 (90.5)	11.6 (75.6)	6.3 (89.3)	4.9 (84.3)	6.5 (86.7)	4.6 (72.8)
$R_{\rm pim}(\%)^{1,4}$	7.0 (37.2)	3.7 (47.3)	6.2 (39.5)	3.3 (48.1)	2.6 (44.7)	3.4 (44.8)	2.4 (36.8)
CC _{1/2} ^{1, 5}	0.994 (0.771)	0.999 (0.753)	0.996 (0.866)	0.998 (0.668)	0.998 (0.732)	0.998 (0.700)	0.999 (0.802)
Refinement							
Resolution (Å) ¹	38.79-2.30	37.01-2.00	34.40-2.45	46.37-1.65	35.96-1.55	28.77-1.70	33.46-1.65
Reflections (working/test) ¹	23,533/1,19 8	37,986/1,9 00	9,537/507	68,809/3,54 6	82,418/4,32 8	62,016/3,16 4	66,582/3,42 2
$R_{ m factor}$ / $R_{ m free}$ (%) ^{1,3}	18.1/26.3	18.2/24.7	21.3/29.6	17.9/21.7	18.5/21.6	17.8/21.6	17.8/22.0
No. of atoms (Protein/Ligand/ Water)	4,407/64/12 7	4,389/132/ 205	2,135/33/3 0	4,511/120/3 52	4,503/102/3 38	4,555/118/4 26	4,617/116/4 07
Model Quality							
R.m.s deviations							
Bond lengths (Å)	0.009	0.010	0.005	0.010	0.009	0.007	0.007

	Bond angles (°)	0.936	1.032	0.565	1.031	0.972	0.926	0.877
Avera (Ų)	age <i>B</i> -factor							
	All Atoms	36.2	37.8	53.9	31.7	30.5	32.4	31.3
	Protein	36.4	37.5	54.2	31.1	30.0	31.8	30.6
	Ligand	36.5	45.7	44.0	33.1	28.9	33.3	31.9
,	Water	32.3	37.8	43.1	38.1	37.3	38.5	39.0
	Coordinate error(maximum likelihood) (Å)	0.36	0.27	0.36	0.23	0.20	0.20	0.19
Rama	achandran Plot							
	Most favored (%)	96.8	94.7	95.1	97.5	98.0	97.7	98.5
	Additionally allowed (%)	2.9	5.0	4.5	2.4	2.0	2.3	1.5

Values in parenthesis are for the highest resolution shell. 1)

2)

 $R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} |I_i(hkl), \text{ where } I_i(hkl) \text{ is the intensity}$ measured for the *i*th reflection and $\langle I(hkl) \rangle$ is the average intensity of all reflections with indices hkl.

 $R_{\text{factor}} = \Sigma_{hkl} ||F_{\text{obs}}(hkl)| - |F_{\text{calc}}(hkl)|| / \Sigma_{hkl} |F_{\text{obs}}(hkl)|;$ Rfree is calculated in an identical manner using 5% of randomly selected reflections that were not included in the refinement. 3)

 R_{meas} = redundancy-independent (multiplicity-weighted) R_{merge}^{74} . R_{pim} = precision-indicating (multiplicity-weighted) $R_{\text{merge}}^{75,76}$. $CC_{1/2}$ is the correlation coefficient of the mean intensities between two random half-sets of data 77,78 . 4)

5)