SUPPORTING INFORMATION

Trojan Horse siderophore conjugates induce *P. aeruginosa* suicide and qualify the TonB protein as a novel antibiotic target

Carsten Peukert^{‡%}, Véronique Gasser^{# ~%}, Till Orth^{‡%}, Sarah Fritsch^{#~}, Vincent Normant^{#~}, Olivier Cunrath^{# ~}, Isabelle J. Schalk^{# ~ *}, Mark Brönstrup^{‡ § \$ *}

‡ Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7,38124 Braunschweig

§ German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany

\$ Center for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover

CNRS, University of Strasbourg, UMR7242, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch, Strasbourg, France

University of Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, F-67412 Illkirch,
Strasbourg, France

% These authors contributed equally

Corresponding authors are marked with an *, e-mail addresses: <u>Mark.Broenstrup@helmholtz-</u> <u>hzi.de</u> and <u>isabelle.schalk@unistra.fr</u>

Table of contents

C	Seneral chemical information	S4
	Chemistry figures, schemes and tables	S5
	Scheme S1:	S5
	Scheme S2:	S6
	Scheme S3:	S7
	Scheme S4:	S8
	Scheme S5:	S9
	Scheme S6:	S10
	Table S1:	S11
	Scheme S7:	S12
	Table S2	S13
	Scheme S8:	S14
	Conjugate synthesis	S15
	Table S3:	S15
	Scheme S9:	S16
	Table S4:	S17
	Scheme S10:	S18
	Table S5:	S18
	Structures of synthetized intermediates and final compounds	S19
S	Supplementary biological information	S38
	Literature information on <i>P. aeruginosa's</i> TBDTs	S38
	Figure S1:	S38
	Table S6:	S39

Figure S2:
Biology methodsS40
Fe-Chrome Azurol S (CAS) assayS40
Figure S3:
Table S7:S42
Antimicrobial susceptibility assaysS43
RT-qPCR analysis in PAO1 wildtype and mutant strainsS43
Growth kinetic in function of time in the absence and presence of vectors and conjugates
Table S8:S44
Table S9S45
Figure S4:S46
Appendix
NMR and MS spectraS47
2D-NMR data and MS/MS spectraS134
LC traces
Supplementary References

General chemical information

Unless otherwise mentioned, reagents were purchased and used without further purification. All employed solvents for workups and purifications were HPLC purity grade. Solid-phase peptide synthesis (SPPS) was performed on an automated Syro Multiple Peptide Synthesizer (MultiSynTech, Witten, Germany) with a Rapp TentaGel® S RAM resin (Rapp Polymere, Tübingen, Germany). Centrifugations were performed on a Universal 32 R centrifuge (Hettich).

With the exception of biphasic reactions or reactions in water, all reactions were carried out in anhydrous solvents. Moisture-sensitive reactions were carried out oven-dried glassware under argon atmosphere. Reaction progress was monitored by TLC (silica gel 60 F_{254} , on aluminum/glass, Merck®).

Automatic preparative column chromatography was performed on a Grace Reveleris® X2 instrument (Büchi®) with disposable columns (Reveleris® Flash Cartridges Silica 40 µm, Büchi).

Purifications by RP-HPLC were performed on a Pure C-850 (Büchi) or Dionex Ultimate (Thermo Fisher Scientific) on a Phenomenex Gemini C18 RP-column 00G-4436-NO, 10 μ m, 110 A, 250×10.00 mm (5 mL/min) or Phenomenex Gemini C18 RP-column 00G-4435-PO-AX, 5 μ m, 110 A, 250×21.20 mm (10 mL/min). Substances were subsequently freeze-dried on an Alpha 2-4 LSCbasic (Christ) instrument.

High resolution mass spectrometry (HRMS) was performed using a Dionex Ultimate 3000 HPLC system equipped with a DAD detector and a Bruker maxis HD QTOF mass detector with electrospray ionization (ESI). Samples were injected directly *via* an Ultimate 3000RS autosampler (Thermo Fisher Scientific). The mass-to-charge ratios (m/z) are indicated.

All isolated compounds were characterized by ¹H-, ¹³C-NMR spectra, and/or ESI-HRMS.

Yields are calculated based on substance purity \geq 95% as confirmed by NMR and MS.

NMR spectra were acquired on Advance III 500 with the probe head PABBO BB/19F-1H/D Z-GRD (500 MHz for ¹H, 125 MHz for ¹³C), and Advance III HD 700 with cryo platform and the probe head CPTCI 1H-13C/15N/D Z-GRD (700 MHz for ¹H, 176 MHz for ¹³C) from Bruker. The measured substances were dissolved in the respective deuterated solvent and the chemical shifts δ are given in ppm. Multiplicities of the individual signals are as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet) and combinations thereof, dd (doublet of doublet), tt (triplet of triplet), dt (doublet of triplet), td (triplet of doublet), etc. Others include: bs (broad singlet) and m (multiplet). All spectra were interpreted as first order spectra. The coupling constants *J* are given in hertz (Hz) and refer to ¹H-¹H couplings.

Chemistry figures, schemes and tables

Scheme S1: Synthesis of siderophore building blocks 36, 38, 40 and 42. (i) BrCH₂COBr, K₂CO₃, H₂O/CH₂Cl₂, 0-23 °C, 2 h, 95% (ii) BrCH₂COBr, K₂CO₃, H₂O/CH₂Cl₂, 0-23 °C, 2 h, 81%, (iii) Ac₂O, TEA, DMAP, THF, 23-60 °C, 2h 96%, (iv) (C₆H₅)₃CS(CH₂)₂COOH, HATU, TEA, CH₂Cl₂/DMF, 23 °C, 21 h, 76%.

Scheme S2: Synthesis of DOTAM siderophores **1** and **2**. (i) **36**, NaOAc, ACN, 23 °C, 21 h, (ii) **38**, K₂CO₃, ACN, 23 °C, 21 h, (iii) 25% TFA, DCM, 0-23 °C, 4 h, 82% over 3 steps, (iv) **40**, (COCI)₂, DCM/DMF, 0-23 °C, 3 h, (v) NaHCO₃, H₂O/1,4-dioxane, 0-23 °C, 6 h, (vi) 20% DIPEA, MeOH, 0-23 °C, 4 h, 80% over two steps.

Scheme S3: Synthesis of MECAM siderophores **3** and **4**. (i) HNO₃ (50%), H₂SO₄, 0-23 °C, 48 h, 98%, (ii) NH₄OH (30%), THF/EtOH, 23 °C, 21 h, (iii) **40**, (COCI)₂, DCM/DMF, 0-23 °C, 3 h, (iv) NaHCO₃, H₂O/1,4-dioxane, 0-23 °C, 6 h, over two steps 68%, (v) Zn dust, AcOH, THF/EtOH, 0-23 °C, 1 h, (vi) 5-hexynoic acid, iBuCF, NMM, THF, 0-23 °C, 6 h, over two steps 56%, (vii) 20% DIPEA, MeOH, 0-23 °C, 4 h, 90%.

Scheme S4: Synthesis of thio-DOTAM (52) and MECAM (53) derivatives. (i) $Zn(CH_3COO)_2$, DMSO/H₂O, 23 °C, 5 min, then 44, DMSO, 23 °C, 5 min, then CuSO₄, sodium ascorbate, THPTA, PBS pH 7.4, 23 °C, 1 h, 76%, (ii) 25% TFA, TIPS, DCM, 0-23 °C, 2 h, 94%. (iii) 44, DMSO/H₂O, 23 °C, 5 min, then CuSO₄, sodium ascorbate, THPTA, PBS pH 7.4, 23 °C, 1 h, 82%, (iv) 25% TFA, TIPS, DCM, 0-23 °C, 2 h, 90%.

Scheme S5: Synthesis of (unmodified) peptide precursors *via* SPPS. * = mark complicated couplings determined by *Peptide Companion* (1.25 CoshiSoft/PeptiSearch, 2000) and were performed with double coupling and capping. For the long peptide sequences, an Fmoc- or Boc-protected amino acid at the *α*-amino group was introduced as the terminal amino acid. (i) piperidine, DMF, 23 °C, 10 min, (ii) Fmoc-Lys(Dde)-OH, HATU, DIPEA, DMF, 23 °C, 1 h, (iii) piperidine, DMF, 23 °C, 10 min, (iv) Fmoc-Lys(Boc)-OH, HATU, DIPEA, DMF, 23 °C, 1 h, (v) piperidine, DMF, 23 °C, 10 min, (vi) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (vii) piperidine, DMF, 23 °C, 10 min, (vii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xii) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xiv) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xiv) piperidine, DMF, 23 °C, 10 min, (xiii) protected Fmoc-aa, HCTU, DIPEA, DMF, 23 °C, 1 h, (xiv) piperidine, DMF, 23 °C, 10 min.

Scheme S6: Synthesis of unmodified peptides **5-10**. * = mark complicated couplings determined by Peptide Companion (1.25 CoshiSoft/PeptiSearch, 2000) and were performed with double coupling and capping. For the long peptide sequences, a Fmoc- or Boc-protected amino acid at the α -amino group was introduced as the terminal amino acid. (i) 1.0 M hydrazine in THF, 23 C, 3 h, (ii) 95% TFA, 3% TIPS, 2% H₂O, 23 °C, 3 h, over 12 to 26 steps 12-52%. (B) Cleavage mechanism of Dde protecting group based on findings by Bradley et al.¹

#	Peptides	aa	Cycles	Time <i>t</i> [h]	Steps	Yield [%]	Yield/step [%]
5	FpvA (I)	20	23	34	22	16	92
6	PfeA (I)	20	27	39	22	27	94
7	HasR (I)	24	27	38	26	12	92
8	FpvA (s)	12	15	21	13	33	92
9	PfeA (s)	11	18	25	12	52	95
10	HasR (s)	11	13	19	12	36	92

Table S1: Synthesis characteristics of the unmodified peptides **5-10**. aa = amino acid, (I) = long peptide, (s) = short peptide.

Scheme S7: Syntheses of *N*- & C-terminal PEG-modified peptides **61-69**. (i) N₃-PEG₇-CO₂H, HOBt, HATU, NMM, DMF, 23 °C, 21 h, (ii) 1.0 M hydrazine in THF, DMF, 23 °C, 3 h, (iii) N₃-PEG₇-CO₂H, HOBt, HATU, NMM, DMF, 23 °C, 21 h, (iv) 1.0 M hydrazine in THF, DMF, 23 °C, 3 h, (v) N₃-PEG₇-CO₂H, HOBt, HATU, NMM, DMF, 23 °C, 21 h, (vi) 95% TFA; 3% TIPS, 2% H₂O, 23 °C, 3 h, over 13 to 27 steps with 10-33%. (B) Schematic strategy for C-terminal modification of peptides, also employed for PTDP-peptides **70** and for monocatechol conjugates **33** and **34**.

#	Peptides	aa	Cycles	time <i>t</i> [h]	Steps	Yield [%]	Yield/step [%]
61	FpvA (I)	20	23	55	23	11	91
	<i>N</i> -term						
62	PfeA (I)	20	27	60	23	21	93
	<i>N</i> -term						
63	HasR (I)	24	27	59	27	10	92
	<i>N</i> -term						
64	FpvA (I)	20	23	55	23	12	91
	C-term						
65	PfeA (I)	20	27	60	23	23	94
	C-term						
66	HasR (I)	24	27	59	27	12	92
	C-term						
67	FpvA (s)	12	15	42	14	24	90
	<i>N</i> -term						
68	PfeA (s)	11	18	46	13	33	92
	<i>N</i> -term						
69	HasR (s)	11	13	40	13	15	86
	<i>N</i> -term						

Table S2. Synthesis characteristics of the PEG-modified peptides **61-69**. aa = amino acid, (I) = long peptide, (s) = short peptide.

Scheme S8: (A) Synthesis of *C*-terminal PDTP-modified *PfeA* 33-51 peptide **70**. (i) 1.0 M hydrazine, in THF, DMF, 23 °C, 3 h, (ii) 3-(pyridin-2-yldisulfaneyl)propanoic acid (SPDP acid), HOBt, HATU, NMM, DMF, 23 °C, 21 h, (iii) 95% TFA, 3% TIPS, 2% H₂O, 23 °C, 3 h, over 23 steps 11%.

Conjugate synthesis

Table S3: Overview over the yields of the peptide DOTAM siderophore conjugates **11-21** for the finalCuAAC. I = long, s = short peptide.

#	Peptide	Siderophore	Conjugation	Yield [%]
11	FpvA (I)	DOTAM-OH	N-term PEG	91
12	PfeA (I)	DOTAM-OH	N-term PEG	99
13	HasR (I)	DOTAM-OH	N-term PEG	87
14	<i>FpvA</i> (s)	DOTAM-OH	N-term PEG	91
15	PfeA (s)	DOTAM-OH	N-term PEG	96
16	HasR (s)	DOTAM-OH	N-term PEG	81
17	FpvA (I)	DOTAM-OH	C-term PEG	94
18	PfeA (I)	DOTAM-OH	C-term PEG	99
19	HasR (I)	DOTAM-OH	C-term PEG	79
20	PfeA (I)	DOTAM-OAc	C-term PEG	82
21	PfeA (I)	DOTAM-OH	C-term disulfide	76

Scheme S9: Conjugation of the TonB box containing peptides to the MECAM siderophores. (i) **61/62/63/67/68/69**, DMSO, H₂O, 23 °C, 5 min, CuSO₄, sodium ascorbate, THPTA, PBS pH 7.4, 23 °C, 1 h, 86-97%, (ii) **64/65/66**, DMSO, H₂O, 23 °C, 5 min, CuSO₄, sodium ascorbate, THPTA, PBS pH 7.4, 23 °C, 1 h, 85-95%, (iii) **70**, HEPES buffer pH 7.4, DMF, DMSO, 23 °C, 48 , 78%.* indicates a complicated coupling.

#	Peptide	Siderophore	Conjugation	Yield [%]
22	FpvA (I)	MECAM-OH	<i>N-</i> term PEG	95
23	PfeA (I)	MECAM-OH	<i>N-</i> term PEG	97
24	HasR (I)	MECAM-OH	<i>N-</i> term PEG	86
25	FpvA (s)	MECAM-OH	N-term PEG	88
26	PfeA (s)	MECAM-OH	N-term PEG	96
27	HasR (s)	MECAM-OH	N-term PEG	86
28	FpvA (I)	MECAM-OH	C-term PEG	95
29	PfeA (I)	MECAM-OH	C-term PEG	96
30	HasR (I)	MECAM-OH	C-term PEG	85
31	PfeA (I)	MECAM-OAc	C-term PEG	80
32	PfeA (I)	MECAM-OH	C-term disulfide	78

Table S4: Overview over the yields of peptide MECAM siderophore conjugates **22-32** for the final CuAAC. I = long, s = short peptide.

Scheme S10: Syntheses of *C*-terminal mono catechol-modified peptides 33 and 34. (i) 1.0 M hydrazine in THF, DMF, 23 °C, 3 h, (ii) 40, HOBt, HATU, NMM, DMF, 0-23 °C, 21 h, (iii) 20% DIPEA, MeOH, 0-23 °C, 4 h, (iv) 95% TFA, 3% TIPS, 2% H_2O , 23 °C, 3 h, over 24 steps 9-15%.

Table S5: Comparison of yields of the mono catechol-modified peptides **33** and **34**. aa = amino acids, (I) = long peptide.

#	Peptides	aa	Cycles	Time t [h]	Steps	Yield [%]	Yield/step [%]
33	<i>FpvA</i> (I) <i>C-</i> term	20	23	59	24	9	90
34	<i>PfeA</i> (I) <i>C-</i> term	20	27	64	24	15	92

Structures of synthetized intermediates and final compounds

The compounds are given in the same order as the experimental in the main text.

Compound 36^{2, 3}

Chemical Formula: C₉H₁₇BrN₂O₃ Exact Mass: 280,0423 Molecular Weight: 281,1500

Compound 38²

Br

Chemical Formula: C₅H₆BrNO Exact Mass: 174,9633 Molecular Weight: 176,0130

Compound 40²

Chemical Formula: C₁₁H₁₀O₆ Exact Mass: 238,0477 Molecular Weight: 238,1950

Compound 42^{4, 5}

0 N₃

 $\begin{array}{l} \mbox{Chemical Formula: } C_{34} H_{44} N_4 O_6 S \\ \mbox{Exact Mass: 636,2982} \\ \mbox{Molecular Weight: 636,8080} \end{array}$

Compound 44^{2, 3}

Chemical Formula: C₃₅H₆₈N₁₀O₉ Exact Mass: 772,5171 Molecular Weight: 772,9900 Compound 45^{2, 3}

Chemical Formula: C₄₀H₇₃N₁₁O₁₀ Exact Mass: 867,5542 Molecular Weight: 868,0910

Compound 46^{2, 3}

Chemical Formula: C₂₅H₄₉N₁₁O₄ Exact Mass: 567,3969 Molecular Weight: 567,7400

Compound 1^{2, 3}

Chemical Formula: C₅₈H₇₃N₁₁O₁₉ Exact Mass: 1227,5084 Molecular Weight: 1228,2800 Compound 2^{2, 3}

Chemical Formula: C₄₆H₆₁N₁₁O₁₃ Exact Mass: 975,4450 Molecular Weight: 976,0580

Compound 48⁶

B В ŃΟ

Chemical Formula: C₉H₈Br₃NO₂ Exact Mass: 398,8105 Molecular Weight: 401,8800

Compound 49⁶

H₂N H₂N .NH₂ ŃO₂

Chemical Formula: C₉H₁₄N₄O₂ Exact Mass: 210,1117 Molecular Weight: 210,2370

Compound 50⁶

 $\begin{array}{l} \mbox{Chemical Formula: } C_{42}H_{38}N_4O_{17} \\ \mbox{Exact Mass: 870,2232} \\ \mbox{Molecular Weight: 870,7770} \end{array}$

Compound 51⁶

Chemical Formula: C₄₂H₄₀N₄O₁₅ Exact Mass: 840,2490 Molecular Weight: 840,7950

Compound 3⁶

 $\begin{array}{l} \mbox{Chemical Formula: } C_{48} H_{46} N_4 O_{16} \\ \mbox{Exact Mass: 934,2909} \\ \mbox{Molecular Weight: 934,9080} \end{array}$

Compound 4⁶

Chemical Formula: C₃₆H₃₄N₄O₁₀ Exact Mass: 682,2275 Molecular Weight: 682,6860 Compound 52a

 $\label{eq:chemical-Formula: C_{80}H_{105}N_{15}O_{19}SZn^{2+}} \\ Exact Mass: 1675,6712 \\ Molecular Weight: 1678,2449 \\ \end{tabular}$

Compound 52

 $\begin{array}{l} \mbox{Chemical Formula: } C_{61} H_{91} N_{15} O_{19} SZn^{2+} \\ \mbox{Exact Mass: } 1433,5617 \\ \mbox{Molecular Weight: } 1435,9239 \end{array}$

Compound 53a

Chemical Formula: C₇₀H₇₈N₈O₁₆S Exact Mass: 1318,5256 Molecular Weight: 1319,4940

Compound 53

Chemical Formula: C₅₁H₆₄N₈O₁₆S Exact Mass: 1076,4161 Molecular Weight: 1077,1730

FpvA 121-139 peptide 5

H H—aa—K —NH₂

aa: DSSVDLG*A*T*MITSNQLGTI

 $\label{eq:chemical Formula: C_{85}H_{148}N_{24}O_{32}S} \\ Exact Mass: 2049,04122 \\ Molecular Weight: 2050,31500 \\ \end{tabular}$

PfeA 33-51 peptide 6

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₉₄H₁₆₂N₂₆O₃₄ Exact Mass: 2199,17468 Molecular Weight: 2200,47800

HasR 122-144 peptide 7

H H—aa—K—NH₂

aa: SLIRVSQDDLVQMSPS*V*I*SAARP

Chemical Formula: C₁₁₁H₁₉₄N₃₄O₃₅S Exact Mass: 2595,41665 Molecular Weight: 2597,03600

FpvA 124-134 peptide 8

aa: VDLG*A*T*MITSN

 $\begin{array}{l} Chemical \ Formula: \ C_{52}H_{93}N_{15}O_{18}S\\ Exact \ Mass: \ 1247,65437\\ Molecular \ Weight: \ 1248,46300 \end{array}$

H H—aa—k⊤NH₂

aa: GE*Q*T*V*V*A*T*AQ

Chemical Formula: C₄₇H₈₃N₁₅O₁₇ Exact Mass: 1129,60914 Molecular Weight: 1130,26900

HasR 129-138 peptide 10

H H—aa—K —NH₂

aa: DDLVQMSPS*V*

Chemical Formula: C₅₁H₈₈N₁₄O₁₈S Exact Mass: 1216,61217 Molecular Weight: 1217,40500

Compound 61

H —aa—k⊂−NH₂ N₃- $\langle \rangle$ -Ó ò

aa: DSSVDLG*A*T*MITSNQLGTI

Chemical Formula: C₁₀₇H₁₈₈N₂₈O₄₃S Exact Mass: 2585,31058 Molecular Weight: 2586,89400

Compound 62

-NH O H → aa−k NH₂ O O N₃--Ó Ó Ò

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₁₆H₂₀₂N₃₀O₄₅ Exact Mass: 2735,44403 Molecular Weight: 2737,05700

Compound 63

 $\dot{\mathbf{N}}$ \mathbf{H} \mathbf{O} $\dot{\mathbf{N}}$ \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{H}_2 \mathbf{A} \mathbf{A} \mathbf{H}_2 \mathbf{A} \mathbf{A} \mathbf{H}_2 \mathbf{A} $\mathbf{$ $N_3 - 2$

aa: SLIRVSQDDLVQMSPS*V*I*SAARP

Chemical Formula: C₁₃₃H₂₃₄N₃₈O₄₆S Exact Mass: 3131,68601 Molecular Weight: 3133,61500

Chemical Formula: C₇₄H₁₃₃N₁₉O₂₉S Exact Mass: 1783,92373 Molecular Weight: 1785,04200

Compound 68

 $N_3 - 2$ `–ó Ó ò– ò

aa: GE*Q*T*V*V*A*T*AQ

Chemical Formula: C₆₉H₁₂₃N₁₉O₂₈ Exact Mass: 1665,87849 Molecular Weight: 1666,84800

Compound 69

aa: DDLVQMSPS*V*

Chemical Formula: C₇₃H₁₂₈N₁₈O₂₉S Exact Mass: 1752,88153 Molecular Weight: 1753,98400

Compound 70

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₀₂H₁₆₉N₂₇O₃₅S₂ Exact Mass: 2396,17158 Molecular Weight: 2397,74800

Compound C33

aa: DSSVDLG*A*T*MITSNQLGTI

Chemical Formula: C₉₂H₁₅₂N₂₄O₃₅S Exact Mass: 2185,05726 Molecular Weight: 2186,42100

Compound C34

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₀₁H₁₆₆N₂₆O₃₇ Exact Mass: 2335,19072 Molecular Weight: 2336,58400

Compound N33L

-NH₂

aa: DSSVDLG*A*T*MITSNQLGTI Chemical Formula: C₉₂H₁₅₂N₂₄O₃₅S Exact Mass: 2185,05726 Molecular Weight: 2186,42100

Compound N34_L

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₀₁H₁₆₆N₂₆O₃₇ Exact Mass: 2335,19072 Molecular Weight: 2336,58400

Compound N33_D

-NH₂

aa: DSSVDLG*A*T*MITSNQLGTI D-amino acids

Chemical Formula: C₉₂H₁₅₂N₂₄O₃₅S Exact Mass: 2185,05726 Molecular Weight: 2186,42100

Compound N34_D

-ḱ—NH₂

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ D-amino acids

Chemical Formula: C₁₀₁H₁₆₆N₂₆O₃₇ Exact Mass: 2335,19072 Molecular Weight: 2336,58400

Compound 11 (FpvA 121-139 N-term (PEG)₇-Zn²⁺-DOTAM)

aa: DSSVDLG*A*T*MITSNQLGTI

Chemical Formula: C₁₅₃H₂₄₉N₃₉O₅₆SZn²⁺ Exact Mass: 3624,68366 Molecular Weight: 3628,33090

Chemical Formula: $C_{162}H_{263}N_{41}O_{58}Zn^{2+}$ Exact Mass: 3774,81712 Molecular Weight: 3778,49390

Compound 13 (HasR 122-144 N-term (PEG)₇-Zn²⁺-DOTAM)

Compound 12 (PfeA 33-51 N-term (PEG)₇-Zn²⁺-DOTAM)

aa: SLIRVSQDDLVQMSPS*V*I*SAARP

Chemical Formula: $C_{179}H_{295}N_{49}O_{59}SZn^{2+}$ Exact Mass: 4171,05909 Molecular Weight: 4175,05190

Compound 14 (FpvA 124-134 N-term (PEG)7-Zn²⁺-DOTAM)

aa: VDLG*A*T*MITSN

Chemical Formula: C₁₂₀H₁₉₄N₃₀O₄₂SZn²⁺ Exact Mass: 2823,29681 Molecular Weight: 2826,47890

Compound 15 (PfeA 37-46 N-term (PEG)₇-Zn²⁺-DOTAM)

Chemical Formula: C₁₁₅H₁₈₄N₃₀O₄₁Zn²⁺ Exact Mass: 2705,25158 Molecular Weight: 2708,28490

Compound 16 (*HasR* 129-138 *N*-term (PEG)₇-Zn²⁺-DOTAM)

aa: DDLVQMSPS*V*

Chemical Formula: C₁₁₉H₁₈₉N₂₉O₄₂SZn²⁺ Exact Mass: 2792,25461 Molecular Weight: 2795,42090

Compound 17 (*FpvA* 121-139 C-term (PEG)₇-Zn²⁺-DOTAM)

Chemical Formula: C₁₅₃H₂₄₉N₃₉O₅₆SZn²⁺ Exact Mass: 3624,68366 Molecular Weight: 3628,33090

Compound 18 (PfeA 33-51 C-term (PEG)₇-Zn²⁺-DOTAM)

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₆₂H₂₆₃N₄₁O₅₈Zn²⁺ Exact Mass: 3774,81712 Molecular Weight: 3778,49390

Compound 19 (HasR 122-144 C-term (PEG)₇-Zn²⁺-DOTAM)

aa: SLIRVSQDDLVQMSPS*V*I*SAARP

Chemical Formula: C₁₇₉H₂₉₅N₄₉O₅₉SZn²⁺ Exact Mass: 4171,05909 Molecular Weight: 4175,05190

Compound 20 (PfeA 33-51 C-term (PEG)₇-Zn²⁺-DOTAM-OAc)

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₇₄H₂₇₅N₄₁O₆₄Zn²⁺ Exact Mass: 4026,88050 Molecular Weight: 4030,71590

Compound 21 (PfeA 33-51 C-term disulfide-(PEG)₅-Zn²⁺-DOTAM)

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₅₈H₂₅₅N₄₁O₅₄S₂Zn²⁺ Exact Mass: 3718,71900 Molecular Weight: 3722,50990

Compound 22 (FpvA 121-139 N-term-(PEG)7-MECAM)

aa: DSSVDLG*A*T*MITSNQLGTI

Chemical Formula: C₁₄₃H₂₂₂N₃₂O₅₃S Exact Mass: 3267,53807 Molecular Weight: 3269,58000

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₅₂H₂₃₆N₃₄O₅₅ Exact Mass: 3417,67153 Molecular Weight: 3419,74300

Compound 24 (HasR 122-144 N-term (PEG)7-MECAM)

aa: SLIRVSQDDLVQMSPS*V*I*SAARP

Chemical Formula: C₁₆₉H₂₆₈N₄₂O₅₆S Exact Mass: 3813,91351 Molecular Weight: 3816,30100

Compound 25 (FpvA 124-134 N-term (PEG)7-MECAM)

aa: VDLG*A*T*MITSN

Chemical Formula: C₁₁₀H₁₆₇N₂₃O₃₉S Exact Mass: 2466,15122 Molecular Weight: 2467,72800

aa: GE*Q*T*V*V*A*T*AQ

Chemical Formula: C₁₀₅H₁₅₇N₂₃O₃₈ Exact Mass: 2348,10599 Molecular Weight: 2349,53400

Compound 27 (HasR 129-138 N-term (PEG)7-MECAM)

aa: DDLVQMSPS*V*

Chemical Formula: C₁₀₉H₁₆₂N₂₂O₃₉S Exact Mass: 2435,10902 Molecular Weight: 2436,67000

Compound 28 (FpvA 121-139 C-term (PEG)7-MECAM)

aa: DSSVDLG*A*T*MITSNQLGTI

Chemical Formula: C₁₄₃H₂₂₂N₃₂O₅₃S Exact Mass: 3267,53807 Molecular Weight: 3269,58000

Compound 29 (PfeA 33-51 C-term (PEG)7-MECAM)

Chemical Formula: C₁₅₂H₂₃₆N₃₄O₅₅ Exact Mass: 3417,67153

Molecular Weight: 3419,74300

Compound 30 (HasR 122-144 C-term (PEG)7-MECAM)

aa: SLIRVSQDDLVQMSPS*V*I*SAARP

Chemical Formula: C₁₆₉H₂₆₈N₄₂O₅₆S Exact Mass: 3813,91351 Molecular Weight: 3816,30100
Compound 31 (PfeA 33-51 C-term (PEG)7-MECAM-OAc)

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₆₄H₂₄₈N₃₄O₆₁ Exact Mass: 3669,73492 Molecular Weight: 3671,96500

Compound 32 (PfeA 33-51 C-term disulfide-(PEG)₅-MECAM)

aa: VIELGE*Q*T*V*V*A*T*AQEETKQ

Chemical Formula: C₁₄₈H₂₂₈N₃₄O₅₁S₂ Exact Mass: 3361,57341 Molecular Weight: 3363,75900

Supplementary biological information

Literature information on P. aeruginosa's TBDTs

no crystal structure

	FpvA	PfeA	HasR
Name	Ferripyoverdine receptor	Ferric enterobactin receptor	Heme assimilation system receptor
UniProt #	P48632 (FPVA_PSEAE)	Q05098 (PFEA_PSEAE)	Q9HYJ7 (Q9HYJ7_PSEAE)
Genome DB tag	PA2398 (fpvA)	PA2688 (pfeA)	PA3408 (hasR)
Gene	fpvA	pfeA	hasR
MW [kDa]	91.2	81.0	97.9
Location	ОМ	OM	ОМ
Organism	PAO1 DSM 22644	PAO1 DSM 22644	PAO1 DSM 22644
Induction	pyoverdine, under iron starvation conditions	enterobactin, iron	-
TonB box & framing aa	¹²¹ DSSV <mark>DLGATMITSN</mark> QLGTI ¹³⁹	³³ VIELG <mark>EQTVVATAQ</mark> EETKQ⁵¹	¹²² SLIRVSQD <mark>DLVQMSPSV</mark> ISAARP ¹⁴⁴

Figure S1: (Top) Crystal structures of *FpvA*-PYO-Fe (PDB 2W6T) and *PfeA*-ENT-Fe (PDB 5M9B) of *P. aeruginosa*, no crystal structure determined for *HasR*.^{7 8} (Bottom) Summary on the three selected OMRs FpvA, PfeA and HasR regarding their name, UniProt accession numbers, Genome DB tag, gene, MW = molecular weight [kDa], location = outer membrane (OM), organism, induction of TBDT expression, the TonB box and framing amino acid (aa) sequences.

Table S6: Natural and synthetic siderophores and the corresponding TBDTs of *P. aeruginosa*. PYO: pyoverdine, PCH: pyochelin, ENT: enterobactin.^{9, 10, 11, 12, 13, 14}.

Figure S2: Clustal alignment of reviewed *P. aeruginosa* TonB box sequences from FpvA (FPVA_PSEAE), PfeA (PFEA_PSEAE) and HasR (Q9HYJ7_PSEAE) from the Uniprot database with ClustalΩ.

Biology methods

Fe-Chrome Azurol S (CAS) assay

The Fe-chrome azurol S (FeCAS) assay was conducted following a known procedure.^{15, 2} All glassware needed for the assay was cleaned with concentrated hydrochloric acid and milliQ water. Water and aqueous solutions of iron(III) chloride (1 mM in 10 mM HCl, 150 μ L) and Chrome Azurol S (50 μ L, CAS) were added to an aqueous solution of hexadecyltrimethylammonium bromide (600 μ L HDTMA 10 mM). A buffer solution consisting of piperazine (431 mg, 5 mmol) and concentrated hydrochloric acid (625 μ L) in water (5 mL) was added. The resulting solution was diluted with dH₂O to a total volume of 10 mL. The stock solution used for the assay was generated by further addition of 5-sulfosalicylic acid dihydrate (10.2 mg, 40 μ mol). Solutions of the test compounds (15 μ M, 120 μ L each), as well as water (40 μ L) were added to 40 μ L of stock solution. The assay was conducted in technical triplicates in transparent, untreated 96-well plates. Absorbance from 300 to 800 nm was determined after 17 h using a plate reader, the curves were plotted and evaluated using Microsoft Excel 2016 and GraphPad Prism 9.

Figure S3: Absorbance spectra from 300-800 nm of Fe-CAS, the free unmodified TonB box peptides **5-10** and siderophore conjugates **11-34** upon incubation with the Fe-CAS complex for 17 hours. (**A**) DOTAM **2** and MECAM **4** (**B**) long, free peptides **5-7**, (**C**) short, free peptides **8-10**, (**D**) long, *N*-term. DOTAM conjugates **11-13**, (E) short, *N*-term. DOTAM conjugates **14-16**, (**F**) long *C*-term. DOTAM conjugates **17-18**, (**G**) long, *N*-term. MECAM conjugates **22-24**, (**H**) short, *N*-term. MECAM conjugates **25-27**, (**I**) long, *C*-term. MECAM conjugates **28-30**, (**J**) special conjugates **20**, **21**, **31-34**. All plots with a FeCAS reference curve, (n = 3).

#	Name	Fe-CAS result
2	DOTAM	Р
4	MECAM	Р
5	FpvA (l)	Ν
6	PfeA (I)	Ν
7	HasR (I)	Ν
8	FpvA (s)	Ν
9	PfeA (s)	Ν
10	HasR (s)	Ν
11	FpvA (l)-N-D	Р
12	PfeA (I)-N-D	Р
13	HasR (I)-N- D	Р
14	FpvA (s)-N-D	Р
15	PfeA (s)-N-D	Р
16	HasR (s)-N- D	Р
17	FpvA (I)-C-D	Р
18	PfeA (I)-C-D	Р
19	HasR (I)-C-D	Р
20	PfeA (I)-C-D-Ac	Р
21	PfeA (I)-DS-C-D	Р
22	FpvA (I)-N-M	Р
23	PfeA (I)-N-M	Р
24	HasR (I)-N-M	Р
25	FpvA (s)-N-M	Р
26	PfeA (s)-N-M	Р
27	HasR (s)-N- M	Р
28	FpvA (I)-C-M	Р
29	PfeA (I)-C-M	Р
30	HasR (I)-C-M	Р
31	PfeA (I)-C-M-Ac	Р
32	PfeA (I)-DS-C-M	Р
33	FpvA-C-catechol	Р
34	PfeA-C-catechol	Р

Table S7: Iron-binding capability measured by the Fe-CAS assay and antimicrobial activity in mutant*P. aeruginosa* strains.

P = positive FeCAS result, absorbance shift (blue to red), N = negative. (I) = long, (s) = short, D = DOTAM and M = MECAM, Ac = acetyl, DS = disulfide.

Antimicrobial susceptibility assays

The *P. aeruginosa* strains used in this study are listed in Table S1. Evaluation of the different compounds activities was carried out in the iron-deficient CAA medium (casamino acid medium, composition: 5 g l⁻¹ low-iron CAA (Difco), 1.46 g l⁻¹ K₂HPO₄ 3H₂O, 0.25 g l⁻¹ MgSO₄ 7H₂O) using the two-fold serial dilution method with an inoculum of 10⁵ bacteria per mL. *P. aeruginosa* $\Delta pvdF\Delta pchA$ strains were first grown overnight at 37 °C in LB broth, then washed and resuspended in CAA medium. The strains were grown for two successive overnight cultures at 30 °C in iron-deficient CAA medium, with a dilution of the cells of 1/10. Data were reported as MIC, which reflects the lowest concentration of antibiotic or test compound that inhibits the visible cell growth after a 24 h or 48 h incubation at 30 °C.

RT-qPCR analysis in PAO1 wildtype and mutant strains

qRT-PCR was used to follow specific gene transcription as previously described. Bacteria (PAO1 or $\Delta pvdF\Delta pchA$) were grown in CAA medium and in 50 mL Falcons, for 8 h, at 30 °C, in the presence or absence of 10 μ M of the tested compounds and with vigorous shaking. Aliquot of 2.5 x 10⁸ cells from these cultures were added to two volumes of RNAprotect Bacteria Reagent (Qiagen) and exactly the same protocol was used as previously described (Perraud *et al.*, 2020). Primers efficiency were determined using serially diluted genomic DNA and the double ΔC_T method was used to analyze qPCR data. The primers used are summarized in Table S8.

Growth kinetic in function of time in the absence and presence of vectors

and conjugates

Bacteria were first grown overnight in LB, washed and then grown in CAA at 30 °C. This culture was washed and resuspended in CAA medium at an $OD_{600 \text{ nm}}$ of 0.02 and 200 µL was distributed in 96 well U-shaped plates (Greiner). Fresh, sterile-filtered aqueous solutions of the tested compounds were added to the different strains tested, at a final concentration of 10 µM. $OD_{600 \text{ nm}}$ was monitored in an Infinite M200 (TECAN, Austria) plate reader for 48 h, with regular agitation and incubation temperature set to 30 °C. More information on the bacterial strains, especially the knockouts, can be found in our previous, recent publication Fritsch et al.

Primer ID	Target	Sequence
uvrD F	uvrD	CTACGGTAGCGAGACCTACAACAA
uvrD R	uvrD	GCGGCTGACGGTATTGGA
pfeA F	pfeA	GCCGAGACCAGCGTGAAC
pfeA R	pfeA	GGCCGGATTCGATCTTGTT
pirA F	pirA	GCCTGAACGCTTCCCAAA
pirA R	pirA	TGAAGGCCCGTGCGATA
fpvA F	fpvA	AGCCGCCTACCAGGATAAGC
fpvA R	fpvA	TGCCGTAATAGACGCTGGTTT
fptA F	fptA	GCGCCTGGGCTACAAGATC
fptA R	fptA	CCGTAGCGGTTGTTCCAGTT

 Table S8:
 Primers used for the RT-qPCR assays.

Table S9. MIC values in *P. aeruginosa* $\Delta pvdF\Delta pchA$ strain for siderophores **2** and **4**, peptides **5-10** and peptide-siderophore conjugates **11-34** μ M and μ g/ml.

Compound	MIC 24 h [µM]	MIC 24 h [µg/ml]	MIC 48 h [µM]	MIC 48 h [µg/ml]
1	-	-	-	-
2	64	62.47	64	62.47
3	-	-	-	-
4	>64	>43.69	>64	>43.69
5	>64	>131.2	>64	>131,2
6	>64	>140.8	>64	>140.8
7	>64	>166.2	>64	>166.2
8	>64	>79,90	>64	>79.90
9	>64	>72.34	>64	>72.34
10	>64	>77.91	>64	>77.91
11	0.5	1.814	1	3.628
12	0.5	1.889	1	3.778
13	4	16.70	32	133.6
14	32	90.45	>64	>180.9
15	32	86.67	32	86.67
16	>64	>178.9	>64	>178.9
17	0.1	0.363	>64	>232.2
18	>64	>241.8	>64	>241.8
19	>64	>267.2	>64	>267.2
20	>64	>258.0	>64	>258.0
21	8	29.78	>64	>238.2
22	>64	>209.3	>64	>209.3
23	>64	>218.9	>64	>218.9
24	>64	>244.2	>64	>244.2
25	>64	>157.9	>64	>157.9
26	>64	>150.4	>64	>150.4
27	>64	>156.0	>64	>156.0
28	>64	>209.3	>64	>209.3
29	>64	>218.9	>64	>218.9
30	>64	>244.2	>64	>244.2
31	>64	>235.0	>64	>235.0
32	>64	>215.3	>64	>215.3
C33	>64	>139.9	>64	>139.9
C34	>64	>149.5	>64	>149.5
N33∟	>64	>139.9	>64	>139.9
N34∟	>64	>149.5	>64	>149.5
N33 _D	>64	>139.9	>64	>139.9
N34 _D	>64	>149.5	>64	>149.5
Gentamicin	1	0.478	4	1.91

Figure S4: Rough structure-activity-relationships (A) and mechanistic summary (B) on TonB box peptide-siderophore conjugates.

Appendix

NMR and MS spectra

Compound 5 (FpvA 121-139 peptide) L H O o H `N Н ′ОН NH₂ DMSO-d6 -2E+08 ך NH₂ -2E+08 — 12.64 4.58 4.58 4.51 4.48 - 5.23 2E+08 -2E+08 -2E+08 -2E+08 2E+08 2E+08 2E+08 2E+08 1E+08 1E+08 1E+08 -1E+08 -1E+08 9E+07 -8E+07 -7E+07 -6E+07 -5E+07 4E+07 . -3E+07 . -2E+07 . -1E+07 - 0 14 13 12 11 10 9 0 6 8 5 3 2 7 f1 (ppm) 1 4 DMSO-d6 -4E+06 -3E+06 3E+06 -3E+06 -3E+06 -3E+06 -2E+06 -2E+06 -2E+06 -2E+06 -2E+06 -1E+06 -1E+06 1E+06 -8E+05 -6E+05 4E+05 2E+05 n ber heine seine sei n den de kompeten en de de heter en de heter de heter het 0 , 190 180 120 110 100 90 f1 (ppm) 80 70 10 . 170 . 160 . 150 . 140 . 130 60 50 40 30 20

Compound 9 (PfeA 37-46 peptide)

Compound 11 (FpvA 121-139 N-term (PEG)₇-Zn²⁺-DOTAM)

Compound 12 (PfeA 33-51 N-term (PEG)7-Zn2+-DOTAM)

Compound 13 (HasR 122-144 N-term (PEG)₇-Zn²⁺-DOTAM)

Compound 18 (PfeA 37-46 N-term (PEG)₇-Zn²⁺-DOTAM)

Compound 14 (FpvA 121-139 C-term (PEG)₇-Zn²⁺-DOTAM)

Compound 16 (HasR 122-144 C-term (PEG)₇-Zn²⁺-DOTAM)

696.50

696.75

695.50

695.25

695.75

696.00

696.25

697.75 m/z

697.50

697.25

697.00

Compound 22 (FpvA 121-139 N-term-(PEG)7-MECAM)

Compound 23 (PfeA 33-51 N-term (PEG)₇-MECAM)

Compound 24 (HasR 122-144 N-term (PEG)7-MECAM)

Compound 25 (FpvA 124-134 N-term (PEG)7-MECAM)

Compound 27 (HasR 129-138 N-term (PEG)7-MECAM)

S82

Compound 30 (HasR 122-144 C-term (PEG)7-MECAM)

Compound 32 (PfeA 33-51 C-term disulfide-(PEG)₅-MECAM)

Compound C33 (FpvA 121-139 C-term 2,3-dihydroxybenzamide)

Compound C34 (PfeA 33-51 C-term 2,3-dihydroxybenzamide)

Compound N33_L (*FpvA* 121-139 *N*-term 2,3-dihydroxybenzamide)

Bruker Compass DataAnalysis 4.2 printed: 28.11.2022 12:14:20 by: amazon Page 1 of 1

Compound N34_L (*PfeA* 33-51 *N*-term 2,3-dihydroxybenzamide)

Compound 42

Compound 52a

Compound 61 (*FpvA* 121-139 *N*-term Carbonyl-(PEG)₇-azide peptide)

Compound 62 (PfeA 33-51 N-term Carbonyl-(PEG)7-azide peptide)

S121

Compound 64 (*FpvA* 121-139 *C*-term Carbonyl-(PEG)₇-azide peptide)

Compound 66 (HasR 122-144 C-term Carbonyl-(PEG)7-azide peptide)

Compound 67 (FpvA 124-134 N-term Carbonyl-(PEG)7-azide peptide)

Compound 68 (PfeA 37-46 N-term Carbonyl-(PEG)7-azide peptide)

Compound 70 (PfeA 33-51 C-term 3-(Pyridin-2-yldisulfanyl)propanamide peptide)

2D-NMR data and MS/MS spectra

PfeA 33-51 peptide 6

HasR 122-144 peptide 7

HasR 129-138 peptide 10

FpvA 124-134 N-term (PEG)7-MECAM-OH 25

LC traces

LC-SQ 5/21/2022 2:41:16 PM System Administrator

Page 1 of 1

Page

1 of 2

LC-SQ 10/25/2021 8:28:06 PM System Administrator

LC-SQ 10/25/2021 8:28:06 PM System Administrator

2 of 2

Page

S 3 1 Injection Date: 10,0020 4:42:59 PM Inj Location: D18-F9 Injection Date: 9,30/2020 4:42:59 PM Inj Volume: 1,000 µl Different Inj Volume from Sample Entry! Actual Inj Volume: 1,000 µl Acq. Method : D:/Chem32/1/Methods/1000_3000.M jVolume: 10.000 µl Last Changed : 12/2/2019 10,003 M by System Administrator Last Changed : 10/59/2020 11:05:45 AM by System Administrator Method Into : Mater Rinse 954 2020-09/2020-09-30/1 TO 96 2 H86 4273 Z 1 -09-3011 TO 96 2 : Walkup method: '1000_3000_positive' Additional Info : Peak(s) manually integrated DAD1A.Sg=254.8 Ref=off(D:MassHunterWakupUDatFles(T 961.1 Walkup method: '1000_3000_positive' Acq. Operator: System Administrator Sample Operator: 1111 Orth Acq. Istrument: 10-50 Injection Date : 9/30/2020 4:42:59 PM HTT. Sample Name: 1 TO 96_2 H86 Sample Info * 8 ulud Ulud **5** -11-<u>8</u> 8 4 8 å 800000 700000 500000 400000 300000 200000 100000 2 ES-API Max: 272978 2750 Data File D:/MassHunter/Malkup/DataFiles/Till/2020-09/2020-09-30/1 TO 96_2 H86_42735. Sample Name: 1 TO 96_2 H86 2020-09-30/1 TO 96 2 H86 42735.D 280 -8 MS Signal: MSDI IIC, MS File, ES-API, Pos, Scan, Frag: 70 Specta averaged over upper half of peaks. Noise Curoff: SOU counts. Reportable fon Abundance: > 10%. 8 *** *** End of Report 1750 Mol. Weight or Ion 1711.60 I 1711.10 I 1710.60 I 1148.30 I 1141.00 I 1500 MS Area 5229324 2 0.18.8 Retention Time (MS) 1.136

1 of 2

Page

LC-SQ 10/25/2021 9:08:43 PM System Administrator

2 of 2

Page

LC-SQ 10/25/2021 9:08:43 PM System Administrator

Compound C34

Compound N33∟

Compound N34_L

$\textbf{Compound N34}_{D}$

Compound N34_D

Supplementary References

1. Díaz-Mochón, J. J.; Bialy, L.; Bradley, M., Full Orthogonality between Dde and Fmoc: The direct Synthesis of PNA-peptide conjugates. *Org. Lett.* **2004**, *6* (7), 1127-1129.

2. Ferreira, K.; Hu, H.-Y.; Fetz, V.; Prochnow, H.; Rais, B.; Müller, P. P.; Brönstrup, M., Multivalent siderophore–DOTAM conjugates as theranostics for imaging and treatment of bacterial infections. *Angew. Chem. Int. Ed.* **2017**, *56* (28), 8272-8276.

3. Peukert, C.; Langer, L. N. B.; Wegener, S. M.; Tutov, A.; Bankstahl, J. P.; Karge, B.; Bengel, F. M.; Ross, T. L.; Brönstrup, M., Optimization of artificial siderophores as ⁶⁸Ga-complexed PET tracers for in vivo imaging of bacterial infections. *J. Med. Chem.* **2021**, *64* (16), 12359-12378.

4. Pinkert, L.; Lai, Y.-H.; Peukert, C.; Hotop, S.-K.; Karge, B.; Schulze, L. M.; Grunenberg, J.; Brönstrup, M., Antibiotic conjugates with an crtificial MECAM-Based siderophore are potent agents against Gram-positive and Gram-negative bacterial pathogens. *J. Med. Chem.* **2021**, *64* (20), 15440-15460.

5. Svedhem, S.; Hollander, C.-Å.; Shi, J.; Konradsson, P.; Liedberg, B.; Svensson, S. C. T., Synthesis of a Series of Oligo(ethylene glycol)-Terminated Alkanethiol Amides Designed to Address Structure and Stability of Biosensing Interfaces. *J. Org. Chem.* **2001**, *66* (13), 4494-4503.

6. Pinkert, L. Synthese von Siderophor-Antibiotika-Konjugaten als neuartige antibakterielle Wirkstoffe. Gottfried Wilhelm Leibniz Universität Hannover, Dissertation, 2021.

7. Moynié, L.; Milenkovic, S.; Mislin, G. L. A.; Gasser, V.; Malloci, G.; Baco, E.; McCaughan, R. P.; Page, M. G. P.; Schalk, I. J.; Ceccarelli, M.; Naismith, J. H., The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. *Nat. Commun.* **2019**, *10* (1), 3673.

8. Brillet, K.; Journet, L.; Célia, H.; Paulus, L.; Stahl, A.; Pattus, F.; Cobessi, D., A β Strand Lock Exchange for Signal Transduction in TonB-Dependent Transducers on the Basis of a Common Structural Motif. *Structure* **2007**, *15* (11), 1383-1391.

9. Nikaido, H., Molecular basis of bacterial outer membrane permeability revisited. *Microbiol. Mol. Biol. Rev.* **2003**, *6*7 (4), 593-656.

10. Smith, A. D.; Modi, A. R.; Sun, S.; Dawson, J. H.; Wilks, A., Spectroscopic Determination of Distinct Heme Ligands in Outer-Membrane Receptors PhuR and HasR of Pseudomonas aeruginosa. *Biochemistry* **2015**, *54* (16), 2601-2612.

11. Cobessi, D.; Celia, H.; Folschweiller, N.; Schalk, I. J.; Abdallah, M. A.; Pattus, F., The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6Å resolution. *J. Mol. Biol.* **2005**, *347* (1), 121-134.

12. Zheng, T.; Bullock, J. L.; Nolan, E. M., Siderophore-mediated cargo delivery to the cytoplasm of *Escherichia coli* and *Pseudomonas aeruginosa*: Syntheses of monofunctionalized enterobactin scaffolds and evaluation of enterobactin–cargo conjugate uptake. *J. Am. Chem. Soc.* **2012**, *134* (44), 18388-18400.

13. Suits, M. D. L.; Pal, G. P.; Nakatsu, K.; Matte, A.; Cygler, M.; Jia, Z., Identification of an &It;em>Escherichia coli&It;/em> O157:H7 heme oxygenase with tandem functional repeats. *Proc. Natl. Acad. Sci. U.S.A.* **2005**, *102* (47), 16955.

14. Ankenbauer, R. G.; Quan, H. N., FptA, the Fe(III)-pyochelin receptor of *Pseudomonas aeruginosa*: A phenolate siderophore receptor homologous to hydroxamate siderophore receptors. *J. Bacteriol.* **1994**, *176* (2), 307-319.

15. Schwyn, B.; Neilands, J. B., Universal chemical assay for the detection and determination of siderophores. *Anal. Biochem.* **1987**, *160*, 47 – 56.