
Supplementary Materials

Supplementary Materials
Diabetic Foot Ulcer Ischemia and Infection Recognition using EfficientNet Deep Learning
Models
Ziyang Liu, Josvin John, Emmanuel Agu

I. MATERIALS AND METHODS

A. Inverted Residual Block

The residual block module (Figure 1a) was first proposed as
part of the ResNet [1] architecture, while the inverted residual
block (Figure 1b) was first introduced in the MobileNet archi-
tecture [2] [3]. Shortcuts can improve the gradient’s ability to
propagate across multiplier layers. The inverted residual block
is more memory efficient and works slightly better than the
residual block [3]. MobileNet applies depthwise separable con-
volutions inside the residual block with depthwise convolution
being applied before pointwise convolution. This architecture
decreases the number of trainable parameters significantly. The
light-colored blocks in Figure 1a and Figure 1b indicate the
beginning of the next block. The thickness of each block
indicates the number of channels it has. The classic residual
connections connect layers with a high number of channels and
they connect the beginning and end of a convolutional block
with a skip connection. However, the inverted residuals connect
the bottlenecks, which are the leftmost layer and rightmost
layer in the inverted residual block in Figure 1b. These two
layers do not contain non-linearities. There exists a natural
separation between the linear bottleneck layers and the layer
transformation, which is the nonlinear function that maps the
input to the output. Here, the bottleneck shows the capacity
of the network at each layer, while the layer transformation
shows the expressiveness.

Non-linear activation functions in neural networks such as
the ReLU function discard values that are below 0, which
ultimately is a loss of information. However, this can be
handled by increasing the number of channels to increase the
capacity of the network. The inverted residual blocks do the
opposite by squeezing the layers that are linked by the skip
connections. The linear bottleneck allows the last convolution
of a residual block to have a linear output before it is added
to the initial activation.

F(x) is a bottleneck block operator shown in Figure 1b.
It can be expressed as a composition of three operators
F(x) = [A ◦ N ◦ B]x. Here A is a linear transformation A :
Rs×s×k → Rs×s×n. N is a non-linear per-channel transformation
N : Rs×s×n → Rs′×s′×n and here N = ReLU6◦dwise◦ReLU6. B
is a linear transformation to the output domain B : Rs′×s′×n →
Rs′×s′×k′ . The inner tensor I can be represented as concate-
nation of t tensors with size n/t so that the function can be

represented as F(x) =
t
∑

i=1
(Ai ◦N ◦Bi)(x).

B. SE Block and Swish Activation in EfficientNet
a) Squeeze and Excitation Block: Squeeze-and-excitation

(SE) block is used extensively throughout EfficientNet. A
Squeeze-and-Excitation (SE) block [4] is a computational unit
that works as a transformation Ftr that maps an input X ∈
RH ′×W ′×C′

to feature maps U ∈ RH×W×C. The transformation
Ftr is a convolutional operator and a corresponding SE block
is constructed to perform feature recalibration for it. The
features U are input into a squeeze operation and it produces
a channel descriptor with the shape 1×1×C by using average
pooling to squeeze each channel to a single numeric value.
This descriptor provides the global distribution of channel-
wise feature responses so that all network layers can use the
information from the global receptive field of the network.
The next step is the excitation operation that uses a simple
self-gating mechanism. It takes the descriptor as input and
outputs the modulation weights with the shape 1× 1×C for
each channel. These weights are applied to the feature maps
U to generate the SE block’s output, which can be utilized by
subsequent layers of the network. Traditional neural networks
weight each of the channels of the output feature maps equally.
However, SE networks add a single parameter to each channel
in order to weight them differently. The SE network can
learn the weight of each feature map adaptively, which scales
each channel according to its importance. A residual network
module that uses the SE block is shown in Figure 1c.

b) Swish Activation: Swish Activation is a more recent
activation function and is used in EfficientNet. The specific
activation function selected can affect the training of the deep
neural network and its performance. The Rectified Linear Unit
(ReLU), f (x) = max(0,x), is one of the most widely used in
many deep neural networks. However, ReLU has the problem
that its derivative is 0 for half of the values of the input, which
results in their parameters never being updated during the Gra-
dient Descent algorithm. Consequently, the Google Brain Team
proposed a new activation function called Swish [5], which is
simply f (x) = x · sigmoid(x) as shown in Figure 1d. Unlike
the ReLU function, Swish is a smooth function that does not
change direction suddenly near x=0 and does not remain 0
or move in one direction. Google Brain Team’s experiments
showed that Swish worked better than ReLU on deeper models
with different datasets. For example, Mobile NASNetA [6]
top-1 classification accuracy on ImageNet increased by 0.9%
and Inception-ResNet-v2 [7] increased by 0.6% after replacing
ReLUs with Swish.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

1



Supplementary Materials

(a) Residual Block (b) Inverted Residual Block

(c) SE-ResNet Module (d) Swish Activation

Fig. 1. Residual Block, Inverted Residual Block, SE-ResNet Module and Swish Activation

and pattern recognition, 2016, pp. 770–778.
[2] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
4510–4520.

[4] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[5] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[6] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

[7] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

2


