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Supplementary Note 
 
Single-cell CITE-seq data generation (Nathan, et al. 2021 Nature Immunology) 

 The single-cell CITE-seq data used in this study were previously published in 

Nathan, et al25. Summaries of data collection and processing steps are in Methods.  

In greater detail, upon sample collection, we purified PBMCs with Ficoll-Hypaque 

and cryopreserved them (5 million cells/mL). For the CITE-seq experiment, we 

processed 276 samples from 264 donors. For each sample, we thawed 10 million cells, 

added dropwise to prewarmed complete RPMI (cRPMI; RPMI 1640 supplemented with 

10% heat-inactivated fetal bovine serum (FBS; Gemini), nonessential amino acids 

(Gibco), 2-mercaptoethanol (Gibco), penicillin–streptomycin (Gibco) and l-glutamine 

(Gibco)), washed, and resuspended in 1 mL cRPMI. 

Then, we negatively isolated memory T cells with a Pan T cell magnetic-activated 

cell sorting (MACSR) kit with anti-CD45RA biotin added (using 2x reagents, ~98.4% 

purity). We followed an optimized version of the CITE-seq protocol with TotalSeqTM-A 

(BioLegend) oligonucleotide-labeled antibodies to stain up to 300,000 cells per 

sample57. We used FcX True Stain (BioLegend) with 0.2 μg μl−1 dextran sulfate sodium 

(Sigma-Aldrich, RES2029D-A707X) in labeling buffer (PBS pH 7.4 with 1% UltraPure 

BSA for 10 min at 4 °C. Then, we added an oligonucleotide-labeled antibody mix 

containing TotalSeq-A (BioLegend) anti-CCR6 in 10 μl of labeling buffer and incubated 

at room temperature for 25 minutes, followed by staining with 30 other TotalSeq-A 

antibodies for 25 minutes at 4 °C. We washed cells sequentially with 2 ml, 1 ml and 1 ml 

of labeling buffer and passed each sample through a 40-μm filter. 
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 We sorted up to 10,000 live cells per sample on a BD FACSAria Fusion cell 

sorter, removing non-lymphocytes and dead cells with forward and side scatter gating. 

After 10x Genomics library preparation on batches of six samples, we sequenced pairs 

of libraries on an Illumina HiSeq X with 400 million reads per lane and paired-end 150 

base-pair reads.  

 

Single-cell CITE-seq data quality control (Nathan, et al. 2021 Nat Imm) 

We used Cell Ranger mkfastq and count to align reads to GRCh38 and detect 

cells (n=725,199). We then used Demuxlet to demultiplex samples in each batch of six 

based on 738,194 genotyped and imputed SNPs (INFO = 1) and identify singlets 

(n=640,966, ~12% doublets)58. Next, we removed cells with fewer than 500 genes 

expressed or more than 20% of UMIs from mitochondrial genes (n=518,032 cells 

remaining). We removed five donors whose genotypes called from single-cell RNA-seq 

did not match array-based genotypes (n=514,835 cells remaining). Finally, we removed 

outlier non-memory T cells based on CITE-seq surface protein expression (n=500,089 

CD3+CD45RO+ cells remaining for further analysis.) After normalization, scaling, and 

PCA (Methods), we used Harmony to correct for donor and library preparation batch 

effects59. 

 

Genetic data quality control (Luo, et al. 2019 Nat Comm) 
 
 In Luo, et al., we genotyped 4,002 people from a Peruvian tuberculosis 

progression cohort26. We used a custom Affymetrix array (LIMAArray) designed for this 

Peruvian cohort based on whole exome sequencing of 116 Peruvian individuals. We 



   5 

called genotypes across all samples using apt-genotype-axiom and excluded duplicates 

(identity-by-state > 0.9), TB index cases diagnosed at age > 40, and outliers based on 

excess of heterozygosity (≥3.5 standard deviations) or genetic ancestry. The 259 

samples in this study are a subset of the samples passing quality control in Luo, et al. 

 

Global genetic ancestry analysis (Asgari, et al. 2020 Nature; Nathan, et al. 2021 

Nat Imm) 

 As previously described, to estimate the proportions of global ancestry 

components, we first combined genotyping data for these samples with data from 1000 

Genomes Project Phase 3 (2,054 individuals from 26 populations), Siberians (245 

individuals from 17 populations), and Native Americans (493 individuals from 57 

populations) by matching variants with MAF > 1% on position, reference, and alternate 

allele30. Using PLINK, we performed PCA and removed highly correlated variants (r2 > 

0.1, --indep-pairwise 50 10 0.1)60. Then, we used ADMIXTURE (K = 4) to infer global 

genetic ancestry proportions61. 

 

Comparison to published bulk T cell eQTLs 

We compared lead variants’ effects to published bulk memory CD4+ T cell 

eQTLs from individuals mostly of European or Asian self-reported ancestry in the 

Database of Immune Cell eQTLs (DICE, n=91) to assess directional concordance for 

eQTLs that both studies were powered to detect31. We meta-analyzed eQTL effects 

across six flow-sorted memory CD4+ T cell subsets (Treg, TH1, TH1/17, TH17, TH2, TFH). 

Despite ancestry and technology differences, most of the eQTLs identified in single-cell 
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memory T cells were also nominally significant in this bulk study without multiple testing 

correction (2,214 significant at meta-analysis p<0.05 in DICE/3,162 significant in single-

cell study and measured in DICE); those that were significant in both datasets had 

mostly concordant directions of effect (2,094/2,214=93%, Extended Data Fig. 2a). A 

minority of eQTLs were found exclusively in the single-cell study, as expected given that 

other studies have demonstrated reduced power of pseudobulk eQTL discovery 

compared to bulk53. Fewer eQTL effects were shared with naïve CD4+ T cells in DICE, 

but effects were still largely concordant (1,227/1,293=95%). Therefore, we also 

compared lead variants’ effects to published bulk naïve CD4+ T cell eQTLs from a 

larger study of individuals of European ancestry (BLUEPRINT, n=169)27. Again, we 

observed similarly high concordance (at q<0.05, 2,056 significant in both/3,249 

significant in single-cell study and measured in BLUEPRINT; 1,917/2,056=93% same 

direction of effect, Extended Data Fig. 2b).  

 

Power to replicate pseudobulk eQTLs in single-cell model 

Previous studies have reported limited power to replicate bulk eQTLs with single-

cell resolution models. We downsampled cells from the memory T cell dataset and 

identified eQTLs using the single-cell PME model. We observed through downsampling 

that replication of bulk eQTLs improves with increasing cell count (Supplementary Fig. 

4d)53. 

 

Comparing LME and PME 
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Effects were concordant between LME and PME models but significance varied, 

especially for more sparsely expressed genes (Supplementary Fig. 7a-c). LME 

reported lower standard errors when estimating interaction effects for more sparse 

genes, while PME reported less confidence in its estimates (Supplementary Fig. 7d,e). 

CD4-dependent eGenes from LME are significantly more differentially expressed and 

sparse than those from PME (Extended Data Fig. 3d-f). 

 

Genetic ancestry and cell state 

In previously published analyses in this dataset, genetic ancestry was 

significantly associated with cell state composition, namely Native American genetic 

ancestry and expanded cytotoxic CD4+ cells25. Here, we observe nominal association 

between genotype PCs 1 and 2 (correlated with Native American or European ancestry, 

Supplementary Fig. 2a,b) and CVs 3 and 5 that distinguish cytotoxic CD4+ T cells (all 

multivariate regression betas’ Wald p > Bonferroni threshold .05/100, Supplementary 

Fig. 2d,e, Supplementary Fig. 3a,b). No CVs were significantly associated with 

genotype PCs, and by including genotype PCs in the model we could more robustly test 

whether state-dependent eQTLs explained variance in gene expression beyond cell-

state shifts due to genetic background.  

 

Simulated null for PME interaction model 

For a representative subset of 12 eGenes—including those with and without 

significant interactions—we assessed calibration more rigorously by calculating 

interaction p values against a simulated null model (Methods)62. We observed high 
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concordance between empirical p values and the LRT p values (Supplementary Fig. 

8e).  

 

Comparing Poisson and negative binomial interaction models 

Negative binomial models are also a common strategy to model UMI counts in 

case of overdispersion, but require an additional parameter and are more 

computationally expensive53,63. In this dataset, we find—as previous studies have 

shown—that genes are mostly not overdispersed (Supplementary Fig. 9a)33. Thus, 

when we randomly sampled 500 eGenes with and 500 eGenes without significant CV1 

interactions, we observed high concordance between their z scores and significance 

measures between Poisson and negative binomial models, justifying the use of the 

simpler and faster Poisson model (Supplementary Fig. 9b,c, Supplementary Table 

17). 

 

Cell-state dependence of non-pseudobulk-significant eQTLs 

We also tested eGenes and their lead variants that were not significant in 

pseudobulk analysis and found a smaller proportion with state-dependent effects 

(390/8,692 at q<0.05, Supplementary Table 34). For example, a TIGIT eQTL was not 

significant in pseudobulk (p = 0.17) but had strong effects in regulatory or central-

memory-like CD4+ cells phenotypes, compared to CD8+ cells with higher average 

TIGIT expression (LRT interaction p = 4.76x10-28, Supplementary Fig. 11). To 

minimize multiple testing burden and focus on more robust candidates, we limited 

further analyses to pseudobulk-significant eGenes and their lead variants. 
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GO term enrichment of lead and secondary variants 

eGenes interacting with CVs were often enriched for relevant functions—for 

example, eGenes interacting with CV1 in the multivariate model were strongly enriched 

for the Gene Ontology terms corresponding to immune effector process (GO:0002252, 

OR=2.5, Fisher p=5.33x10-15) and innate immune response (GO:0045087, OR=2.6, 

p=3.28x10-11), in concordance with CV1’s hypothesized innate/effector-like state 

(Supplementary Table 40). But in some cases, lead and secondary eQTLs had 

discordant functional enrichments: only CV6-dependent secondary eQTLs were 

enriched for leukocyte-mediated cytotoxicity (GO:0001909, OR=40.3, p=4.04x10-3), 

unlike the lead eQTLs (OR=2.4, p=0.15). This suggests that secondary eQTL signals 

may still shape key cellular functions with potential disease relevance.  

 

Modeling continuous cell states with mRNA or protein PCs 

When we conducted a multivariate eQTL interaction analysis using single-

modality PCs to define continuous cell states, we identified comparable numbers of 

eGenes that interact with the first seven mRNA or protein PCs (mRNA:2,364, 

protein:1,915, q<0.05, Supplementary Fig. 12a, Supplementary Tables 37 and 38). 

The majority of state-dependent eGenes from the multimodal CV analysis were also 

significantly associated with mRNA or protein PCs (1,446/2,117=68%, Supplementary 

Fig. 12b), and we observed some concordance between interactions with individual 

CVs and PCs (Supplementary Fig. 12c,d). In this dataset, we have previously shown 

that CVs define biologically relevant cell states not discriminated by mRNA PCs25. 
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Furthermore, CVs’ unique interpretability and robustness bolsters state-dependent 

eQTL analyses because they incorporate a panel of memory T cell state-defining 

surface proteins; thus they are less susceptible to technical confounders and more likely 

to point to interpretable biology. 

 

Modeling state-dependent eQTLs in a heterogeneous context 

 Here, we have demonstrated that a single-cell PME model identifies eQTLs that 

vary with continuous T cell states. We also applied the model to other cell types. First, 

we used a published PBMC dataset, which offers mixed cell types in contrast to a single 

cell type24. There were 108,209 unstimulated PBMCs from 89 whole-genome-

sequenced male donors, and >99% of cells per donor, on average, had been classified 

in the original study as monocytes, CD4+ and CD8+ T, B, or NK cells (Supplementary 

Fig. 13a). We confirmed these annotations with canonical markers (Supplementary 

Fig. 13b).  

To identify state-dependent eQTLs, we first defined 962 pseudobulk PBMC 

eQTLs (q<0.05, Methods) to test for state-dependent effects in the single-cell PME 

model. We modeled cell states in two distinct ways: (1) one multivariate model with six 

expression PCs defined across all the PBMCs as the cell state interaction terms, or (2) 

separate univariate models for each of the five cell states, each with one binary cell 

state term. Continuous PCs were highly correlated with individual cell types: for 

example, PC1 separated monocytes from other cell types (Supplementary Fig. 13c). 

As a result, although each of the cell types and PCs was associated with a set of state-

dependent eQTLs (Supplementary Fig. 13d,e), the set of 369 significant state-
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dependent eQTLs identified in the multivariate PC model largely overlapped with the 

pooled set of 370 state-dependent eQTLs from the five univariate cell type models (292 

shared state-dependent eQTLs; Supplementary Fig. 12f, Supplementary Tables 43 

and 44).  

Moreover, eQTL interactions were especially shared between PCs and the cell 

types that they correlated with. For example, nearly all the PC1-dependent and 

monocyte-dependent eQTLs were shared, including an eQTL for EIF5A that was 

weaker in monocytes or cells with low PC1 score (Supplementary Fig. 13g,h). 

Although PC3 did not recapitulate all the eQTLs associated with B cells—its most 

correlated cell type—an eQTL for SERPINB6 that was nearly absent in B cells was also 

weakest in the lowest third of PC3 scores (Supplementary Fig. 13i,j). These results 

demonstrate that the dominant regulatory variation in heterogeneous tissues, which is 

between discrete cell types, can still be modeled at single-cell resolution. 

 

Modeling state-dependent eQTLs in a granular context 

We selected CD4+ T cells and CD8+ T cells based on surface protein expression 

and used CCA to define canonical variates within each compartment. The cell states 

represented by these two sets of CVs appear distinct: for example, TH2 cells are a 

subset of CD4+ cells driven by GATA3 transcription factor and expressing CRTH2, and 

we only observed a CV correlated with these markers in the CD4 analysis (CD4-CV3, 

Supplementary Fig. 14a,c). Among CD8+ T cells, we instead see axes correlated with 

markers of variable CD8+ cytotoxicity such as GNLY, CD27, and granzymes. CD8-CV6 

correlated with markers of mucosal-associated invariant T cells, a distinct CD8+ 
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population (Supplementary Fig. 14b,d)64. The sub-CD4 and sub-CD8 CVs correlated 

with the CVs defined across all memory T cells—especially with CV1 and CV2 

(Supplementary Fig. 14e,f). However, correlations were lower in the CD8+ 

compartment because these cells were less abundant in the dataset (~430K CD4+, 

~56K CD8+) and may have contributed less to overall variation. 

Then, we tested the 6,511 pseudobulk-significant eQTLs defined across all 

memory T cells for interactions with the top six CVs from each compartment. Adjusting 

for the same covariates as in the memory analysis, we found 1,728 and 350 eQTLs 

varied with sub-CD4 and sub-CD8 states (Supplementary Tables 45 and 46). Ninety 

percent of the interactions identified in each sub-state analysis were also identified in 

the memory analysis, but 180 eQTLs only had sub-state-dependent effects. Although 

power to detect interactions with sub-CD8 states was limited by low cell count, 

examples like the two state-dependent eQTLs only associated with CD8-specific CV4 

and not associated with any mRNA or memory CVs suggest that with larger cell counts, 

continuous states defined within subtypes may reveal cell-type-specific regulatory 

heterogeneity. 

 

eQTL interactions with an interferon-correlated trajectory 

From each of the 89 donors in the PBMC dataset, we selected monocytes from 

both mock-treated and IAV-exposed samples (n=24,783 cells total) and corrected 

effects of sample, batch, and infection condition (Supplementary Fig. 15a). We 

constructed a trajectory with DDRTree and computed pseudotime along this trajectory 

with a principal curve (Supplementary Fig. 15b)65,66. The proportion of IAV-exposed 



   13 

cells increased (Supplementary Fig. 15c), and the expression of interferon- and viral-

response genes such as CXCL10 and APOBEC3A also increased along the trajectory 

(Pearson r=0.59 and 0.55, respectively; Supplementary Fig. 15d,e), suggesting that 

the trajectory captured an interferon-response gradient67-69. 

We pooled eQTLs identified in pseudobulk analysis of unstimulated monocytes 

or unstimulated PBMCs to define a set of 997 eQTLs to test for interactions with the 

trajectory in the single-cell PME model, adjusting for donor covariates, technical 

confounders, and random effects for donor and batch (Methods). Despite analyzing a 

relatively small number of cells, we identified 48 eQTLs with effects that varied 

significantly along the trajectory (q<0.05, Supplementary Table 47). Only five remained 

upon permutation of trajectory, demonstrating low type I error. The rs2269524 eQTL for 

SMDT1 was one trajectory-dependent example that decreased in magnitude along the 

trajectory (βGxTraj=0.054, p=3.42x10-5; Supplementary Fig. 15f); in a previous bulk 

study of whole blood, we observed an interferon-dependent decrease in effect for a 

closely linked eQTL variant in the same locus (rs2859438, r2 = 0.97 in 1KG PEL)7. 

 

eQTL interactions with disease cell states through reference mapping 

We used Symphony to project the memory T cell dataset of 500,089 blood 

memory T cells from 259 donors onto a reference of almost 70,000 colon T cells from 

Smillie et al., who assayed 30 ulcerative colitis (UC) patients and healthy donors 

(Supplementary Fig. 16a)70,71. Despite study differences, we observed T cells with 

similar phenotypes mapping close together, such as CD8+ T cells from both datasets 

(Supplementary Fig. 16b,c).  
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In the original study, Smillie, et al. identified a potentially pathogenic CD8+ T cell 

expressing IL-17 that was expanded in people with UC. Upon closer inspection of the 

colon cells, we observed that PC4 separated the IL-17+ population from the other CD8+ 

cells (Supplementary Fig. 16d), suggesting this axis’s disease relevance. We used the 

single-cell PME model to test interactions between the 6,511 eQTLs from the memory T 

cell analysis and the cell states defined by the UC-PCs. We modeled the expression of 

each eGene across the 500,089 memory T cells as a function of the cells’ own 

genotypes and covariates, their scores on a UC-PC, and the interaction between that 

score and genotype. Despite modest correlations between UC-PCs and memory T cell 

CVs, when we tested each of the top four UC-PCs, we observed substantial state-

dependence and recapitulated many interacting eQTLs from the memory T cell analysis 

(Supplementary Fig. 16e,f, Supplementary Table 48). There were, however, some 

eQTLs that only had interactions with UC-PCs. These may reflect tissue- or disease-

specific state dependence. For UC-PC4, 124/541 state-dependent eQTLs were UC-

specific, including eQTLs for PARP14 and FBXO7 (Supplementary Fig. 16g,h). This 

suggests their effects might vary between healthy T cell states and the CD8+ IL-17+ 

state, with implications in disease.  
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Methods 
Single-cell RNA-seq and genotype data and quality control (QC) 
 

We previously published a dataset of memory T cells from a 259-donor subset of 

a Peruvian tuberculosis disease progression cohort (128 former cases, 131 former 

latently infected controls; GEO: GSE158769) along with detailed sample processing 

methods25,72. Briefly, we negatively isolated memory T cells with a modified Pan T cell 

magnetic-activated cell sorting (MACSR) kit with anti-CD45RA biotin and followed an 

optimized version of the CITE-seq protocol with TotalSeqTM-A (BioLegend) 

oligonucleotide-labeled antibodies for a panel of 31 surface proteins57. We pooled cells 

into batches of six donors for 10x Genomics library preparation and sequenced on an 

Illumina HiSeq X. Reads were aligned to GRCh38 with Cell Ranger. After 

demultiplexing donors with Demuxlet, we removed cells labeled as doublets, with < 500 

genes expressed or > 20% of unique molecular identifiers (UMIs) from mitochondrial 

genes, from samples whose genotypes did not match genotypes called from single-cell 

data, or lacking surface markers of memory T cells (CD3 and CD45RO)57. 

A superset of 4,002 donors was genotyped in a separate genetic study on a 

custom Affymetrix array (LIMAArray) based on whole exome sequencing from 116 

individuals with active TB from the same Peruvian cohort (Supplementary Note; 

dbGaP: phs002025). The design of this array has been described previously26. We 

excluded donor outliers based on genotyping quality and genetic ancestry. After calling 

genotypes for all 4,002 donors with the apt-genotype-axiom program, we removed 

variants that were significantly associated with batch (p < 1 x 10-5), duplicated, or had 

low call rate (< 95%), significant differences in the missingness rate between cases and 
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controls (> 10-5), or Hardy-Weinberg p value < 10-5 in controls. After QC, 675,358 

genotyped variants remained.  

We mapped variants to GRCh37/b37 and used SHAPEIT2 to pre-phase 

genotypes and IMPUTE2 to impute genotypes with 1000 Genomes Project Phase 3 as 

the reference panel73,74. To calculate genotype principal components, we combined 

autosomal genotyping data from the full cohort (n = 4,002) with whole-genome 

sequencing data from the 1000 Genomes Project Phase 3 (n=2,045 people from 26 

populations), and with PLINK, matched variants with MAF > 1% on position, reference, 

and alternate allele and removed highly correlated variants (r2 > 0.2, --indep-pairwise 50 

5 0.2)60. Then, we conducted PCA with PLINK (--pca). 

After removing SNPs with an INFO score < .9, minor allele frequency < 0.05, or 

deletions, the remaining variants were converted to GRCh38 with liftOver. After single-

cell and genotype QC, we used 500,089 cells from 259 donors and 5,486,956 variants 

for eQTL analysis. 

 
Single-cell data processing 
 

mRNA and protein data were processed separately, as described25. Briefly, we 

normalized the UMIs for each gene in each cell to log(counts per 10,000) and used 

centered-log-ratio normalization for each protein within each cell. Normalized mRNA 

and protein expression were scaled so that each feature had mean = 0, variance = 1 

across all cells. After selecting the top 1,000 variable genes per donor and removing the 

mouse immunoglobulin G protein (control), we conducted principal component analysis 

of each modality with the irlba R package and corrected the top 20 PCs of each 

modality for donor and library preparation batch effects with Harmony59. 
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Pseudobulk eQTL analysis 
 

To make pseudobulk expression profiles for 259 donors, we removed cells from 

12 technical replicate samples and summed the UMI counts for each gene across all 

cells from each donor, producing one aggregated expression value for each gene in 

each donor. For CD4+ and CD8+ pseudobulk analysis, we constructed pseudobulk 

expression profiles for each donor in each compartment by in-silico gating cells that 

were CD4+CD8- or CD8+CD4-, respectively, based on their normalized surface protein 

expression measured in CITE-seq. Gates were defined through visual inspection. For 

Treg pseudobulk analysis, we used previously defined cluster annotations to construct a 

pseudobulk expression profile for the cells in clusters C-5 (RORC+ Treg) and C-9 (Treg)25.  

Genes were removed if expressed in fewer than half the donors (pseudobulk 

counts > 0 in ≤ 129 donors). For the remaining 15,789 genes, we normalized the 

pseudobulk profiles to log2(counts per million + 1) and applied inverse normal 

transformation. Then, we used probabilistic estimation of expression residuals (PEER) 

implemented in R to regress out age, sex, five genotype PCs (68% of the genetic 

variance explained by the top 20 genotype PCs, Supplementary Fig. 2c), and up to 45 

PEER factors based on previously published optimization by GTEx29,75. The number of 

effective factors is reduced by PEER’s regularization strategy, which selects weights 

such that the overall contribution of less-relevant factors is close to 0 (Supplementary 

Fig. 1d). Age was calculated for the time of blood draw. 

We then conducted a whole-genome eQTL analysis for all 22 autosomal 

chromosomes. For each gene, we associated its residual expression after PEER 

normalization with the dosage at each SNP within 1 MB of the transcription start site. 
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These models were implemented in FastQTL (default settings)76. To ensure robustness, 

we used FastQTL’s beta approximation to compute a permutation p value from 1,000 

permutations. To correct for multiple hypothesis testing, we calculated Storey q values 

for the lead SNP for each gene, and identified eGenes with significant eQTL variants 

with q < 0.05 (with qvalue R package)77. 

For conditional pseudobulk analysis, we iteratively regressed each eGene’s 

PEER-normalized residuals on the dosage of its lead SNP and used the subsequent 

values for FastQTL analysis. We repeated this twice. 

Comparison to DICE 

 We used the eQTL summary statistics reported by DICE from bulk analysis of six 

sorted memory T cell subsets: memory Treg, TH1, TH1/17, TH17, TH2, TFH (downloaded 

from https://dice-database.org/downloads)31. We selected eGenes that were significant 

in our dataset (n = 6,511) and used inverse-variance-weighted meta-analysis to 

compute aggregate betas, standard deviations, and z scores across the K = 6 cell 

states in DICE: 
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We compared the direction of these meta-analysis z scores with the pseudobulk z 

scores from the single-cell memory T cell dataset. 
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 For heterogeneity analysis, we calculated two statistics: (1) a Cochran’s Q 

statistic across K= 6 subsets assayed in DICE (Q = ∑ )
*"!

" (𝛽% 	 − 	𝛽!"#$)&'
%() ) and I2 

(+,-.
+

x100%). 

Comparison to BLUEPRINT  

We used the eQTL summary statistics reported by BLUEPRINT from bulk 

analysis of sorted naïve CD4+ T cells, monocytes, and neutrophils27. We selected 

eGenes that were significant in our dataset (n = 6,511) and, for each BLUEPRINT cell 

type, identified the subset of eGene/lead variant pairs also measured by BLUEPRINT 

and significant in both datasets at q < 0.05 (n = 2,056 for naive CD4+ T cells, 1,651 for 

monocytes, and 1,312 for neutrophils). We compared the direction of effect for these 

variants between the two datasets. 

Continuous cell state definition and annotation 

For multimodal dimensionality reduction, we used canonical correlation analysis, 

as implemented in the cc function from the CCA R package78. We ran CCA on scaled 

mRNA expression for the most variable genes (excluding T cell receptor genes) and 

scaled protein expression for all 30 memory T cell proteins, and computed cells’ scores 

on each canonical variate (CV) based on the weight of each gene on each CV. We then 

corrected scores on the top 20 CVs for donor and batch effects. For visualization, we 

projected this embedding into a two-dimensional Uniform Manifold Approximation 

Projection (UMAP) with the umap function from the uwot R package79. 

To annotate each CV based on its biological correlates, we first measured the 

Pearson correlation coefficient between cells’ CV scores and the normalized expression 
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of each surface protein marker in the protein panel. We measured correlations between 

CV scores and the normalized expression of genes encoding lineage-defining genes.  

We also conducted gene set enrichment analysis. First, we measured the 

correlation of each CV prior to batch correction with the expression of each gene used 

as input for CCA. These correlations defined the ranked gene list for each CV. Then, we 

measured the enrichment of each immunologic gene set (C7, only those annotated as 

“UP”) in MSigDB and a published “innateness” gene list in each CV’s ranked gene list 

with the fgsea function in the fgsea R package80-82. We corrected for multiple hypothesis 

testing with a Bonferroni p value threshold adjusted for 2,360 gene sets tested 

(0.5/2,360 = 2.12 x 10-5). 

To compare CV scores between and within clusters, we used the cluster 

annotations defined in the previous study and computed the average score on each CV 

for cells from each cluster. We also randomly selected two cells each from clusters C-3 

and C-15 to compare to each other and the cluster.  

We repeated CCA within only CD4+ and CD8+ T cells. We isolated each lineage 

based on surface protein gates as described above for pseudobulk analysis and 

identified the most variable genes within each batch based on dispersion (2974 genes 

total for CD4+, 5225 for CD8+). We scaled these genes and cosine-normalized them. 

We also selected the most informative proteins for each lineage based on high 

Kullback-Leibler divergence: comparing the distribution of cells with high protein 

expression (>85th percentile) to the distribution of all cells (KL > KL for lineage marker). 

We removed TCR genes due to lower quality mapping and ran CCA to compute cells’ 

scores on each CV within each lineage. We corrected the top 20 CVs for donor and 
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batch effects with Harmony and projected cells into a two-dimensional embedding with 

UMAP. As with the memory T cell CVs, we measured the correlation between CVs and 

the normalized expression of key lineage-defining genes. 

 
 Single-cell eQTL modeling 
 

We modeled single-cell eQTLs with a Poisson model of each gene’s UMI counts 

as a function of genotype at the eQTL variant and other donor- and cell-level covariates, 

for each gene: 

 
log(𝐸/) = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log	(𝑋/,3678) +	𝛽79𝑋/,79 	

+ 	3𝛽2:;!𝑋-,2:;!

<

%()

+	3𝛽":;!𝑋/,":;!

<

%()

+	(𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 

 
where E is the expression of the gene in cell i, 𝜃 is an intercept, and all other 𝛽s 

represent fixed effects as indicated (nUMI = number of UMI, MT = proportion of 

mitochondrial UMIs, gPC= genotype PC, ePC=single-cell mRNA expression PC pre-

batch correction) for covariates in cell i, donor d, or batch b. Donor and batch are 

modeled as random effect intercepts. 

To test interactions with cell state, we added a fixed effect for cell state and a cell 

state x genotype interaction term (referred to as the univariate model): 

log(𝐸/) = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log	(𝑋/,3678) +	𝛽79𝑋/,79 	

+ 	3𝛽2:;!𝑋-,2:;!

<

%()
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+	𝛽05>"??	*#$#"𝑋-,2"34𝑋/,>"??	*#$#" +	(𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 
 
When testing whether the discrete state (CD4+) or the continuous state (CV1) captured 

more variance, we included cell state and cell state interaction terms for both and 
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removed each interaction term to create the corresponding null model for the likelihood 

ratio test (described below). 

To test interactions with former TB progression status, we used the same model 

but with a fixed effect and genotype-interaction term for TB status.  

To test interactions with multiple state-defining covariates (e.g., multiple CVs), we 

included additive fixed effect and interaction terms for each CV (referred to as the 

multivariate model): 

log(𝐸/) = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log	(𝑋/,3678) +	𝛽79𝑋/,79 	

+ 	3𝛽2:;!𝑋-,2:;!

<
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3

%()

+	3𝛽05;A!𝑋-,2"34𝑋/,;A!

3
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+	(𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 

 
To test eQTLs within discrete cell states (e.g., CD4+), we subsetted the full dataset to 

cells in the state of interest (using gates or clusters). Then, we ran the Poisson single-

cell model without any cell state terms. 

We fit all single-cell Poisson mixed models with the glmer function in the lme4 R 

package, with family=“poisson”, nAGQ=1, and control=glmerControl(optimizer = 

"nloptwrap")83. To determine the significance of this model, we used a likelihood ratio 

test comparing the models with and without the genotype term (for the memory T cell 

analysis) or the cell state interaction term(s) (for the cell-state-specific analyses) and 

calculated a p value for the test statistic against the Chi-squared distribution with one 

degree of freedom. We corrected for multiple hypothesis testing by calculating Storey q 

values across all tested eQTLs77. To compare significance between models, we used a 

statistic based on the LRT p value, I-1(LRT p/2)*sign(beta): determine the upper critical 

value for the LRT p value, then adjust the sign to match beta’s sign. To compare effect 
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sizes for terms between models, we used Wald statistic z scores (beta/standard error) 

for the term of interest. 

For comparison, we also used a single-cell linear mixed effects (LME) model to 

test eQTLs across all memory T cells and for state dependence with CD4+ state or 

continuous CV1. The model included the same covariates as the Poisson models. For 

example, across all memory T cells: 

𝐺/ = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log(𝑋/,3678) +	𝛽79𝑋/,79 	

+ 	3𝛽2:;!𝑋-,2:;!

<

%()

+	3𝛽":;!𝑋/,":;!

<
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+	(𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 

 
where G is the log2(counts per 10K) normalized expression of the gene in cell i. We fit 

all single-cell linear mixed models with the lmer function in the lme4 R package, with 

REML = F and determined the significance of the model as described for Poisson 

models. 

 We also tested multivariate PME interaction models with 7 mRNA PCs, 7 protein 

PCs, 6 CD4-CVs, or 6 CD8-CVs (all defined above, post-batch correction). The models 

contained the same covariates as the all-memory-T cell model, and we used an LRT 

and q values (q < 0.05) to determine significance. 

We also used a single-cell negative binomial mixed effects model to test eQTL 

interactions with CV1 for a subset of 500 genes with significant CV1 dependence and 

500 randomly sampled genes without significant CV1 dependence in the PME model. 

The model included the same covariates as the Poisson models. We fit all negative 

binomial mixed models with the glmer.nb function in the lme4 R package, with nAGQ=1 

and control=glmerControl(optimizer = "nloptwrap") and determined the significance of 

the model as described for Poisson models. 
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Type I error estimation 
 

To estimate the false positive rate for the single-cell PME model of memory T cell 

eQTLs, we permuted genotype across donors and ran the PME model once for each 

gene (n = 6,511). Then, we used a likelihood ratio test to compute a p value for each 

gene under the permutation, pooled these permutations across genes, and measured 

the proportion of trials with a p value < alpha = 0.05. To estimate the false positive rate 

for the single-cell PME model of cell state-dependent eQTLs, we used the same 

permutation approach but permuted cell state across cells to preserve the main 

genotype effect. 

For further evidence of model calibration, we simulated data under the null 

hypothesis, as previously described by Buzkova, et al., to calculate empirical p values 

for the CV1 interaction61. Briefly, for each gene, we fit the null model: 

log(𝐸/) = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log	(𝑋/,3678) +	𝛽79𝑋/,79 	
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<
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We used the beta estimates from this model to predict the expression of the gene in 

each cell under the null hypothesis (i.e., no cell-state interaction effect). With these 

estimates as the lambda, we sampled 1,000 expression values for each cell to construct 

1,000 null datasets of 500,089 cells. For each null dataset, we fit the full model: 

log(𝐸/) = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log	(𝑋/,3678) +	𝛽79𝑋/,79 	

+ 	3𝛽2:;!𝑋-,2:;!
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%()
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<
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+	(𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 
 



   25 

Then, we calculated a two-sided empirical p value for the gene by comparing the βGxCV1 

estimated in the actual dataset to the null distribution composed of the βGxCV1 estimates 

from the 1,000 null datasets. We conducted these simulations for 12 genes, including 

eGenes with and without significant CV1-eQTL interactions. 

 
Simulating differential expression 
 

We selected genes with non-significant cell state and cell-state interaction terms 

in the PME model with CD4+ as the cell state of interest. To test robustness of the 

single-cell models to differential expression, we uniformly reduced the expression level 

of each gene in each cell to 50%, 20%, and 10% of baseline expression. For PME, we 

did this in log2-space, converted back to counts, and rounded to the nearest whole 

number. For LME, we reduced expression in log2(counts per 10,000) space. Then, we 

ran the single-cell Poisson model with cell-state interaction (cell state = CD4+ cells). 

 
Clustering eQTLs  
 
 We selected cell-state-dependent eGenes (Wald p value for at least two CVs in 

multivariate model < 0.05/7/6511 = 1.1 x 10-6). For each eGene, we extracted the beta 

estimate for each cell state interaction term from the Poisson model and multiplied them 

by the sign of the main genotype beta to standardize directions of effect, i.e., positive 

value means interaction amplifies baseline genotype effect, negative value means 

interaction dampens effect. For each gene, we scaled the betas across CVs, keeping 

the center at 0 and scaling the maximum absolute value to 1 or -1. Using Seurat, we 

built a shared nearest neighbor graph and used Louvain clustering with n.start = 20, 

n.iter = 20, and resolution = 3 to define ten clusters of eGenes84. 
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 We explored the potential biological significance of the clusters by measuring the 

enrichment of MSigDB Gene Ontology (C5) gene sets (n = 5,917). For each gene set, 

we used a Fisher’s exact test to compare the proportion of eGenes in the cluster that 

overlapped with the gene set versus the proportion in other clusters that overlapped 

with the gene set. 

Transcription factor binding motif enrichment 

 We used HOMER [v.4.8.3] to measure the enrichment of transcription factor 

binding motifs near eGenes associated with specific CVs36. First, we conducted a gene-

level analysis. For each CV, we selected eGenes with significant state dependence and 

used HOMER’s findMotifs function to search for transcription factor binding motifs of 

length 8 and 10 within +/-2kb of the transcription start site. Next, we conducted a 

variant-level analysis. For each CV, we selected the lead eQTL variants with significant 

state dependence, converted them to hg19 coordinates, and made a BED file 

containing the +/- 20 bp windows around these variants. We used HOMER’s 

findMotifsGenome function to search for transcription factor binding motifs within these 

given windows. 

CV GO term enrichment 

 For each CV, we selected the eGenes with state-dependent lead or secondary 

eQTLs in the multivariate model. Then, we measured the enrichment of lead and 

secondary interacting genes for each CV in the multivariate model separately (2 x 7 = 

14 analyses) in MSigDB Gene Ontology (C5) gene sets (n = 5,917 from msigdbr R 

package) with a Fisher’s exact test, as described above. 
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Cumulative eQTL interaction effect 
 

The effect of each eQTL in each cell is the cumulation of the main genotype 

effect and all of the genotype x CV interactions. We calculated the overall effect for 

each eQTL in each cell by summing the genotype beta and the products of each CV 

score and the corresponding beta: 

𝛽#4#$? =	𝛽0 +3𝛽05;A!𝑋/,;A!

B

%()

 

 
For interpretation in some analyses, we defined cluster-level betas by averaging cell-

level betas for all cells assigned to that cluster in the previous study. 

 
GWAS variant enrichment: 
 
 We downloaded the GWAS Catalog as of July 30, 2020, restricted to GWAS in 

European populations, and identified variants associated with each of 194 traits at p < 

5x10-8 and pruned with PLINK to remove variants with LD r2 > 0.238,60. We also 

constructed a set of background variants by pooling variants associated with any trait at 

p < 5x10-8 and pruning with plink to remove variants with LD r2 > 0.2. 

For each memory-T cell eQTL, we identified all other variants with LD r2 ≥ 0.5 in 

both the 1000 Genomes Peruvians in Lima, Peru (PEL) and European (EUR) 

populations. We then matched these variants with variants from the GWAS Catalog for 

194 traits and the background variant set. We calculated all enrichments with a two-

sided Fisher test. To calculate memory-T-cell eQTL enrichments for specific traits, we 

compared the proportion of eQTL-colocalizing GWAS variants for each trait with the 

proportion of eQTL-colocalizing background variants. To calculate the enrichment of 

GWAS variants colocalizing with state-dependent eQTLs, we compared the proportion 
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of eQTL lead variants with significant cell-state interaction (LRT q < 0.05 from the model 

with 7 CVs) that colocalize with the background variant set compared to the proportion 

of eQTLs without significant cell-state interaction that colocalize. 

We then used coloc (coloc.abf function in coloc R package) to conduct a 

Bayesian test of whether the eQTL and GWAS associations in each locus were driven 

by the same causal variant85. We prioritized 15 immune and non-immune traits for this 

deeper colocalization analysis: atopic dermatitis86, ankylosing spondylitis87, asthma88, 

coronary artery disease89, Crohn’s disease42, height90, inflammatory bowel disease42, 

lymphocyte count90, multiple sclerosis91, osteoporosis92, rheumatoid arthritis93, 

psoriasis94, systemic lupus erythematosus95, type 1 diabetes96, and type 2 diabetes97, 

and obtained summary statistics from the GWAS Catalog or UK Biobank (for height and 

lymphocyte count). We designated loci with significant colocalization as those with 

posterior probability of H4 (“both traits are associated and share a single causal variant”) 

> 0.5. 

 
Fine-mapping memory-T cell eQTLs 
 

For each locus (eGene), we used CAusal Variants Identification in Associated 

Regions (CAVIAR) software allowing only a single causal variant in each locus (-c 1) to 

estimate the probability that each variant in a +/- 250kb window around the transcription 

start site (TSS) is causal45. We ran CAVIAR on pseudobulk eQTL z scores for these 

variants and pairwise Pearson correlation coefficients between the variants (calculated 

with plink version v1.9b)60. 

For joint multi-ancestry analysis, we obtained raw data for naive CD4+ T cells 

(genotypes called from whole genome sequencing, and whole-transcriptome gene 
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expression from bulk RNA-seq) from BLUEPRINT. We used IMPUTE2 to impute 

genotypes at uncalled loci with 1000 Genomes Project Phase 3 dataset as a reference 

panel, and we removed variants with INFO scores < 0.9, MAF < 0.5, call rate < 95%, 

and Hardy-Weinberg p < 1e-0530. To align the two datasets, we lifted the imputed 

genotypes to GRCh38 with liftOver and matched variants on chromosome, position, 

reference, and alternate alleles. This produced a merged genotype dataset with a set of 

shared variants and 428 donors (259 from TBRU, 169 from BLUEPRINT). 

The gene expression data obtained from BLUEPRINT were already normalized 

and batch-corrected. We inverse-normal transformed each gene so that its expression 

was normally distributed across donors and then conducted PEER normalization 

(correcting for donor age, sex, and top three genotype PCs, with K = 30 as 

recommended for this sample size by GTEx)75. We merged the matrix of PEER 

residuals from BLUEPRINT with the matrix of PEER residuals from TBRU (produced as 

described above)—matching on genes—and regressed out a dataset covariate in order 

to account for systematic differences between the bulk European BLUEPRINT data and 

the pseudobulk Peruvian TBRU data. 

We then performed eQTL analysis on this final merged dataset with a linear 

model implemented in FastQTL to associate each gene’s expression with variants 

within 1 MB of its TSS. We fine-mapped each locus with CAVIAR using z scores from 

the joint analysis, as described in the Peruvian dataset. 

Enrichment of eQTLs in regulatory regions 
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We defined promoters as the region +/- 2kb from the transcription start site of 

each of the 6,511 significant eGenes based on the Cell Ranger 3.1.0 GTF. This 

annotation was binary.  

We defined cell-state-specific regulatory regions with a probabilistic annotation of 

the genome by Inference and Modeling of Phenotype-related ACtive Transcription 

(IMPACT)46. First, we collected public T-bet (TBX21) ChIP-seq data for in CD4+ TH1 

cells from NCBI as a gold standard for CD4+ TH1 regulatory elements98. We also 

previously aggregated 5,345 public epigenetic features from NCBI, ENCODE, and 

Roadmap spanning all possible cell types99. Then, we used IMPACT’s logistic 

regression model to distinguish 1,000 T-bet bound sequence motifs from 10,000 

unbound T-bet sequence motifs genome-wide based on epigenetic feature 

characterization. We used HOMER [v.4.8.3] to identify T-bet sequence motif matches 

as previously done36,46. We then characterized every nucleotide genome-wide using the 

same set of epigenetic features and estimated the probability (between 0 and 1) of a 

regulatory element important to the cell type. 

For both the Peruvian and multi-ancestry analyses, we restricted loci to those 

that were also significant eQTLs in the Peruvian-only eQTL analysis. We computed 

enrichments in each locus containing a variant with posterior inclusion probability ≥ 0.5 

and averaged across loci. To compute enrichments for the binary promoter annotation, 

we determined whether each variant in the locus overlapped with a promoter region (X 

= 0 if no overlap, X = 1 if overlap). Then, we calculated the enrichment across n variants 

in the locus as: 

3
𝐸(𝑃𝐼𝑃 ∗ 𝑋)

𝐸(𝑃𝐼𝑃) ∗ 𝐸(𝑋)

3

/()
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To compute enrichments for the probabilistic IMPACT T cell regulatory region 

annotations, we used the same strategy but X = the IMPACT score between 0 and 1 for 

each variant. We determined the significance of each enrichment by comparing the true 

enrichment score to a null distribution constructed by permuting the PIPs across 

variants in each locus 1,000 times and calculating an enrichment score. We determined 

the significance of the difference between the enrichments in interacting vs. non-

interacting eGenes by comparing the true difference to a null distribution constructed by 

permuting interacting vs. non-interacting labels across eGenes and calculating an 

enrichment score. Both p values were computed with a one-sided comparison. 

We also computed eQTL enrichment in ATAC-seq peaks from eight sorted T cell 

subsets published in Calderon, et al. 2019 (GSE118189): naive CD8+, naive CD4+ 

effector, naive CD4+ Treg, central memory CD8+, effector memory CD8+, memory CD4+ 

effector, memory CD4+ Treg, and gamma delta48. We downloaded peak counts files, 

normalized to counts per million within each sample, and for each T cell subset, 

averaged each peak’s values across samples. We constructed a binary annotation in 

which peaks were considered open at a threshold of >5 CPM. To compute enrichments 

and determine significance, we used the same strategies described above for promoter 

enrichments. 

Re-analysis of PBMC single-cell and genotyping data 

We used a published single-cell dataset of PBMCs from an influenza A virus 

(IAV) exposure study24. The original study included pairs of mock-treated and IAV-

exposed samples from each of 90 male donors. Methods for PBMC isolation and IAV 
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infection are detailed in the original study. Starting with the counts matrix, we first 

removed UMIs that mapped to 10 IAV genes (PB2, PB1, PA, HA, NP, NA, M2, M1, 

NEP, NS1). Then, we removed cells with < 500 genes expressed or > 10% 

mitochondrial UMIs, and used the 208,223 remaining high-quality cells for further 

analysis. We processed single-cell data first for mock-treated samples only, and then for 

all samples together. After QC there were 108,209 cells from mock-treated samples and 

100,014 cells from IAV-exposed samples. In each analysis, we selected the top 300 

most variable genes per sample based on variance-stabilized transformation and 

pooled them together. Then, we normalized the expression of all genes within each cell 

to log2(counts per 10,000), scaled variable genes to have mean = 0/variance = 1, and 

cosine (L2) normalized the scaled values. We used truncated PCA (irlba R package) to 

define 20 PCs and corrected donor and batch effects with Harmony. We produced two-

dimensional embeddings for visualization with UMAP. 

All donors were sequenced with low-pass (4x) whole-genome sequencing. 

Methods for genomic data processing, variant calling, and imputation are detailed in the 

original study. Starting with imputed genotypes for 89 donors passing QC in the original 

study, we followed the same QC procedures they described and set positions with GP < 

0.9 to missing and then filtered out variants with missing call rate > 1%, minor allele 

frequency < 5%, and Hardy-Weinberg equilibrium p < 10-5. After this QC, 5,194,816 

genetic variants remained genomewide. We selected 508,883 independent variants 
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using Plink (--indep-pairwise 50 5 0.2 ) and performed principal component analysis 

using the R package SNPRelate. 

State-dependent eQTL analysis across five cell types in untreated PBMCs 

First, we defined a set of PBMC eQTLs to test for state dependence through 

pseudobulk analysis. We removed lowly expressed genes, aggregated the mock-

treated single cells into pseudobulk samples, and normalized to log2(counts per million) 

as described above for the memory T cell pseudobulk analysis. We inverse-normal 

transformed these values and used PEER normalization to regress out the effects of 

age, 5 genotype PCs (explaining 46.5, 9.47, 5.07, 4.50, and 2.63%, respectively, of the 

genetic variance captured by the top 20 PCs, Supplementary Fig. 2c), and up to 15 

PEER factors based on published optimizations33. 

We conducted pseudobulk eQTL analysis with these residuals in a ±1MB window 

with FastQTL’s permutation mode for all 22 autosomal chromosomes with default 

settings. We calculated q values for the lead SNP for each gene and selected eGenes 
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with q < 0.05. We then tested these eQTLs for interactions with either the first 6 batch-

corrected PCs:	
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or each of five cell types (B cells, CD4+ T cells, CD8+ T cells, NK cells, monocytes) in a 

univariate single-cell PME interaction model: 
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For each, we compared the model to the null model (without the interaction term) and 

calculated an LRT p value, and used q values to determine significance of the 

interaction (q < 0.05). 

eQTL interaction testing in mock-treated and IAV-exposed monocytes 

Starting by selecting cells labeled in Randolph, et al. as “monocytes” or “infected 

monocytes” from all mock- and IAV-treated cells (n=24,783 cells total), we first used 

SCTransform to normalize and scale the expression of the top 3,000 variable genes31,43. 

Then, we ran truncated PCA (prcomp_irlba, from irlba R package) and corrected the top 

10 PCs for donor, batch, and treatment effects with Harmony (HarmonyMatrix: default 

parameters, all thetas = 1, epsilon.cluster = -Inf, epsilon.harmony = -Inf, max.iter.cluster 
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= 10)83. We projected cells into a two-dimensional embedding for visualization with 

UMAP (umap, from uwot R package: default parameters, n_neighbors = 30L, min_dist = 

.1). 

For trajectory analysis, we used DDRTree (R function: ncenter = 137, 

param.gamma = 10, maxIter = 20, tol = 1e-3, sigma = 0.0001)59. We fit a principal curve 

to the resulting low-dimensional embedding to calculate pseudotime for each cell 

(principal_curve from princurve R package)60. 

We conducted a pseudobulk eQTL analysis within the mock-treated monocytes 

as described above, and pooled the significant eQTLs with the significant eQTLs from 

the mock PBMC analysis described above (in total, 997 eGenes at q < 0.05). For the 

single-cell PME interaction model, we used the following PME model, implemented with 

the glmer function in the lme4 R package: 
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+	𝛽059Y$Z">#4YW𝑋-,2"34𝑋/,9Y$Z">#4YW +	(𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 

We compared this model to the null model and calculated an LRT p value: 

log(𝐸/) = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log	(𝑋/,3678) +	𝛽79𝑋/,79 	

+ 	3𝛽2:;!𝑋-,2:;!

<

%()

+	3𝛽":;!𝑋/,":;!

<

%()

+	𝛽9Y$Z">#4YW𝑋/,9Y$Z">#4YW 														

+ (𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 
We considered eQTLs with q < .05 to be significant. 

eQTL interactions with states projected from an inflamed colon T cell reference 

 We obtained single-cell UMI count matrices from Smillie, et al. 2019 (Single Cell 

Portal accession SCP259)49. From the immune cells, we selected cells that had been 
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annotated as T cells in the original study (n=73,084) and removed cells with more than 

20% mitochondrial UMIs or fewer than 300 genes expressed (n=69,460 remaining). We 

selected the 200 most variable genes per donor based on variance stabilizing 

transformation, normalized the expression of all genes in each cell to log2(counts per 

10,000), and scaled and L2 normalized variable genes, excluding cell cycle genes. We 

calculated 20 PCs with the prcomp_irlba function and built a reference with Symphony 

that corrected for donor batch effects. Then, we mapped the 500,089 cells from the 

blood memory T cell dataset (Nathan, et al. 2021 Nat Imm) to this reference with 

Symphony (symphony R package) to correct for donor and library preparation batch 

effects. 

 Next, we conducted a state-dependent eQTL analysis using the PME model with 

the memory T cells’ projections onto individual PCs from the ulcerative colitis dataset 

(UC-PCs) as the cell states: 

log(𝐸/) = 	𝜃 +	𝛽0𝑋-,2"34 +	𝛽$2"𝑋-,$2" +	𝛽*"5𝑋-,*"5 +	𝛽3678log	(𝑋/,3678) +	𝛽79𝑋/,79 	

+ 	3𝛽2:;!𝑋-,2:;!

<

%()

+	3𝛽":;!𝑋/,":;!

<

%()

+	𝛽6;,:;𝑋/,6;,:; 	

+ 	𝛽056;,:;𝑋-,2"34𝑋/,6;,:; + (𝜙- 	|	𝑑) + (𝜅=	|	𝑏) 

We compared this to a null model without the interaction term, measured significance 

with an LRT, and corrected for multiple testing with q values (significance at q < 0.05).  
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Supplementary Figures 
 

 

Supplementary Figure 1. Single-cell data quality and normalization. a, Histogram of 
500,089 cells by number of UMIs and b, number of genes. c, Histogram of 259 samples 
by number of cells. Red dotted lines indicate the mean of each measurement. d, PEER 
factor relevance. Each dot represents the alpha for each factor.  
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Supplementary Figure 2: Genetic data structure. a, Donors plotted by proportion of 
Native American genetic ancestry compared to genotype PC1 score or b, proportion of 
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European genetic ancestry compared to genotype PC2. c, Donors plotted according to 
scores on pairs of genotype PCs. Gray dots are from the original GWAS (n=4002), blue 
dots are from the single-cell study (n = 259). d, Heatmap of beta Wald z scores from 
multivariate linear mixed effects model of each CV’s scores regressed on five genotype 
PCs, with a random effect for donor. e, Heatmap of -log(p) for betas from the same 
multivariate linear mixed effects model.  
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Supplementary Figure 3. Continuous canonical variates (CVs) capture single-cell 
heterogeneity. a, UMAP of memory T cells (n = 500,089) colored by score along each 
of the top 15 CVs from CCA-based integration of mRNA and protein expression in 
Nathan, et al. b, UMAP of 31 memory T cell clusters defined with Louvain clustering in 
Nathan, et al. c and e, UMAP of memory T cells colored by normalized expression 
(log2(UMI counts per 10,000)) for GATA3 and TRDC. d and f, Cells plotted based on 
normalized expression of GATA3 and CV4 score or TRDC and CV8 score. For cells 
with non-zero expression, blue line represents linear best-fit line, contours represent 
density of cells, and r is the Pearson correlation coefficient. g, Heatmap colored by 
average score for each CV (1-8) among cells in each cluster. Separate columns on the 
right show CV scores for two cells each from two clusters. Colors range from low 
(green) to high (purple). 
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Supplementary Figure 4. Comparing PME and LME models for single-cell eQTL 
analysis. a and g, Pseudobulk-significant eGenes (n = 6,511) plotted based on z score 
from a, PME or g, LME single-cell model and pseudobulk model. Dashed line 
represents the identity line. b and h, Quantile-quantile plot of pseudobulk-significant 
eGenes plotted based on -log10 p value of genotype beta from b, PME or h, LME 
model with permuted genotypes and uniformly distributed quantiles. c, Number of 
pseudobulk eGenes replicated when downsampling cells. d and i, Type 1 error is 
calculated for d, PME and i, LME as the proportion of eGenes with p < 0.05 with 
permuted genotypes. e and f, Pseudobulk-significant eGenes plotted based on e, Wald 
z score or f, LRT-based statistic from PME and LME single-cell model. r was calculated 
as a Pearson correlation coefficient.  
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Supplementary Figure 5. Modeling discrete CD4+ and CD8+ cell states. A, Cells 
plotted by CLR-normalized CD8 and CD4 protein expression. Orange cells are 
CD4+CD8- and beige cells are CD4-CD8+ and in b, cells are colored by density. c, 
UMAP of 500,089 memory T cells colored by CD4+CD8- (orange) and CD4-CD8+ 
(beige). d, Bar graph of number of CD4+CD8- cells (top) and CD4-CD8+ cells (bottom) 
per sample (n = 259). 
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Supplementary Figure 6: Cross-comparisons of eQTLs between lineages and 
statistical models. We compared CD4+ and CD8+ dependent effects estimated from 
the interaction model with the effects measured in the same and opposite lineages with 
non-interaction models, i.e., pseudobulk or single-cell eQTL models of gated CD4+ or 
CD8+ memory T cells. In the top row of plots, each dot is an eGene plotted according to 
its Wald z score in the interaction model and its LRT-based statistic (I-1(LRT 
p/2)*sign(beta)) from pseudobulk. In the bottom row of plots, each dot is an eGene 
plotted according to its Wald z score in the interaction model and in the single-lineage 
(non-interaction) single-cell model. Deming regression betas and Pearson r2 values are 
noted in the plots and the table below. 
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Supplementary Figure 7: Comparison of PME and LME interaction estimates. a, 
Comparison of Wald z scores for the GxCD4 term in PME and LME interaction models. 
In all plots, each point represents an eGene and the gray dashed line is the identity line. 
b, Comparison of LRT-based statistics (I-1(LRT p/2)*sign(beta)) representing the 
significance of GxCD4 interaction in PME and LME models. c, Comparison from (b) 
subsetted by eGenes’ sparsity. d, Standard error of the GxCD4 interaction estimate for 
each eGene, plotted against the gene’s sparsity, from the LME and e, PME models. 
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Supplementary Figure 8. Calibration of the PME interaction model. Dot plot of 
memory-T-cell eGenes (n = 6,511) based on z score for a, cell state beta (βCV1) or b, 
genotype (βG) and z score for cell state interaction beta (βGxCV1) in PME model. c, Box 
plot of sparsity of eGenes with and without significant CV1 interactions (q < 0.05). Each 
point represents a gene. Box plots show median (horizontal bar), 25th and 75th 
percentiles (lower and upper bounds of the box, respectively) and 1.5 times the IQR (or 
minimum/maximum values if they fall within that range; end of whiskers). P value is from 
a two-sided Wilcoxon rank-sum test (nint=1,094 genes, nno=5,417). d, Proportion of 
eGenes with significant βGxCV1 under genotype permutation. Each dot represents the 
proportion significant at the given alpha threshold. e, Comparison of simulation-based 
empirical p value and LRT p value for the GxCV1 interaction effect on 12 genes. Each 
dot represents one gene, and genes discussed elsewhere in this paper are labeled. 
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Supplementary Figure 9: Comparing Poisson and negative binomial models. a, 
Plot of genes’ dispersion. In all plots, each point represents one of the pseudobulk-
significant eGenes (n=6,511), here plotted based on its variance and mean UMI count 
across all 500,089 cells. In all plots, the gray dashed line is the identity line. b, 
Comparison of Wald z scores for the GxCV1 interaction term from negative binomial 
and Poisson models. c, Comparison of LRT-based statistic for significance of variance 
explained by the model with GxCV1 interaction compared to the null model without that 
term.  
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Supplementary Figure 10. Concordance of cell-state-dependent eQTL interactions 
from multivariate and univariate models. a, Dot plots of interaction z scores for each 
CV from multivariate model with 7 CVs and univariate model with one CV. Dashed line 
represents the identity line. r is calculated as the Pearson correlation coefficient. b, 
Number of eGenes with significant interaction with each CV in a corresponding 
univariate PME model. 
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Supplementary Figure 11. State-dependence of a non-pseudobulk-significant 
eQTL. a, Box plot of rs6777586 eQTL for TIGIT across all memory T cells. b, UMAP of 
total effect size of eQTL at rs6777586 for TIGIT. In the UMAP, each cell is colored by its 
βtotal, scaled to be centered on βG with max (red) and min (blue) determined by the most 
extreme absolute βtotal for that eQTL in any cell. For all box plots, each point represents 
the average log2(UMI counts + 1) across all cells in the indicated cluster in a donor (n = 
259), grouped by genotype. Box plots show median (horizontal bar), 25th and 75th 
percentiles (lower and upper bounds of the box, respectively) and 1.5 times the IQR (or 
minimum/maximum values if they fall within that range; end of whiskers). Beta values 
are the average βtotal for all cells in the cluster. 
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Supplementary Figure 12. Clustering eGenes based on CV interactions. a, 
Heatmap colored by average scaled interaction beta for each CV in the multivariate 
PME model, averaged across eGenes in each cluster. Clusters were defined through 
Louvain clustering on seven scaled betas calculated for 204 eGenes (at least one βGxCV 
with Wald p < .05/7/6511 = 1.10x10-6). Betas were scaled with respect to maximum 
interaction beta for each gene, and signs are relative to the main genotype effect. 
Colors are scaled from dampening the effect (blue) to amplifying the main effect (red). 
b, Line plots of scaled CV interaction betas for eGenes in each cluster. Each gray line 
represents one eGene and connects points corresponding to its scaled interaction beta 
for each CV. The red mean line connects points corresponding to the mean scaled 
interaction beta for each CV in each cluster. 
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Supplementary Figure 13: eQTL interactions with unimodal PCs. a, Bar plot of the 
number of eGenes interacting with the top seven multimodal CVs, protein PCs, or 
mRNA PCs in multivariate models (significant at q < 0.05). b, Venn diagram of 
overlapping state-dependent eGenes from multivariate eQTL interaction models with 
the top seven multimodal CVs, protein PCs, or mRNA PCs. c, Concordance of Wald z 
scores for eQTL interaction terms between pairs of CVs and mRNA PCs (e.g., 
comparing z scores for GxCVx and GxmRNA PCx) or d, between pairs of CVs and 
protein PCs. 
  



   56 

 



   57 

Supplementary Figure 14: Single-cell eQTL analysis in mixed cell types. a, UMAP 
of unstimulated (mock-treated) PBMCs from Randolph, et al. Cells are colored by five 
major cell type annotations from the original study. b, UMAPs colored by expression of 
major lineage defining markers: CD3D for T cells, CD8A for CD8+ T cells, MS4A1 for B 
cells, CD14 for monocytes, and FCGR3A for some NK cells and monocytes. Cells are 
colored from low (blue) to high (yellow) expression. c, (left) Violin plots of cell types’ 
distributions along batch-corrected PC to which they are strongly associated, as shown 
in the heatmap (right). The heatmap is colored by betas from logistic regression models 
using the six PCs to predict cells’ membership in each cell type. Betas are scaled within 
each cell type. d, Bar plot of the number of eGenes with significant interactions with 
each discrete cell type in univariate PME models or e, with each PC in a multivariate 
PME model (q < 0.05). f, Venn diagram of overlapping and distinct eQTLs between the 
6-PC and five individual cell type analyses. g, Venn diagram comparing PC1 and 
monocyte-dependent eQTLs. h, eQTL for EIF5A plotted for monocytes vs. other cells 
on the left, or by tertiles of PC1 on the right. i, Venn diagram comparing PC3 and B cell-
dependent eQTLs. j, eQTL for SERPINB6 plotted for B cells vs. other cells on the left, 
or by tertiles of PC3 on the right. For all box plots, each point represents the average 
log2(UMI counts + 1) across all cells in the indicated subset of cells in a donor (n = 89), 
grouped by genotype. Box plots show median (horizontal bar), 25th and 75th 
percentiles (lower and upper bounds of the box, respectively) and 1.5 times the IQR (or 
minimum/maximum values if they fall within that range; end of whiskers). 
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Supplementary Figure 15: State-dependent eQTL analysis within lineages. a, 
UMAP of CD4+ memory T cells colored by CD4-CVs 1-3 (top) or by the expression of 
CV-correlated marker genes (bottom). b, UMAP of CD8+ memory T cells colored by 
CD8-CVs 1 and 3 (top) and marker genes (bottom). CV UMAPs are colored from low 
(green) to high (purple) CV score. Marker gene UMAPs are colored from low (blue) to 
high (yellow) gene expression. c, Heatmap of correlations between CD4-CVs or d, 
CD8-CVs and marker genes. Heatmap is colored based on Pearson r scaled within 
each CV relative to the maximum value and centered at 0. e, Heatmap of correlations 
between CD4-CVs or f, CD8-CVs and all-memory-T-cell CVs. Heatmap is colored 
based on Pearson r. g, Venn diagram of significant state-dependent eGenes (q < 0.05) 
overlapping between the 7-memory-CV, 7-CD4-CV, and 7-CD8-CV multivariate PME 
interaction models. 
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Supplementary Figure 16: eQTL interactions with an interferon-response 
trajectory in monocytes. a, UMAP of monocytes from Randolph, et al. colored by 
condition. NI = mock-treated, flu = exposed to influenza A virus. b, UMAP of monocytes 
from Randolph, et al. colored by trajectory pseudotime. This pseudotime was defined as 
a principal curve along a DDRTree trajectory c, Proportion of cells from flu and NI 
conditions along the trajectory. Each bar represents one decile of pseudotime, and the 
colors correspond to the proportion of cells in that decile from flu (orange) or mock-
treated (turquoise) samples. d, Boxplots of normalized CXCL10 and e, APOBEC3A 
expression in each quintile along the trajectory. Boxplots in d-f show median (horizontal 
bar), 25th and 75th percentiles (lower and upper bounds of the box, respectively) and 
1.5 times the IQR (or minimum/maximum values if they fall within that range; end of 
whiskers) n = 24,783 for all box plots. f, rs2269524 eQTL for SMDT1 in each quintile 
along the trajectory. Betas are the average single-cell beta across cells in the quintile. 
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Supplementary Figure 17: eQTL interactions through projections onto colon T 
cell states in ulcerative colitis. a, UMAP of cells from the healthy blood memory T cell 
dataset (Nathan et al. 2021, orange) projected onto a reference of ulcerative colitis (UC) 
colon T cells (Smillie, et al. 2019, turquoise). b, UMAP of cells from Nathan, et al. 
colored by major lineage. c, UMAP of T cells from Smillie, et al. colored by clusters. d, 
Distribution of colon T cells’ scores along PC4 from Smillie, et al. Each graph depicts 
the distribution of UC-PC4 scores for cells from each of the CD8+ clusters. e, Heatmap 
of Pearson correlations between CVs from blood memory T cells and UC-PCs. f, Bar 
plot of state-dependent eQTLs for each UC-PC, estimated by modeling eQTLs in 
memory T cells from Nathan et al. projected onto each PC in separate univariate PME 
interaction models. The yellow portion of each bar represents the interacting eGenes 
that were only found to be state-dependent in the UC-PC analyses. g, Examples of 
eQTLs for PARP14 and h, FBXO7. Box plots show eQTL effect for cells in the bottom 
(left), middle (center), and top (right) thirds of CV1 scores. Each point in a box plot 
represents the average log2(UMI counts + 1) across all cells in the indicated subset of 
cells in a donor (n = 259), grouped by genotype. Box plots show median (horizontal 
bar), 25th and 75th percentiles (lower and upper bounds of the box, respectively) and 
1.5 times the IQR (or minimum/maximum values if they fall within that range; end of 
whiskers). Beta is calculated through a PME model run on only cells in that tertile. P 
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value is calculated from a likelihood ratio test comparing models with and without 
GxCV1 interactions. 
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Legends for Supplementary Tables 1-48 

Supplementary Table 1. Pseudobulk memory T cell eQTLs in a Peruvian cohort. 
(See Nathan_etal_SuppTables.xlsx, tab 1) 
Lead eQTL variant for each eGene tested in a linear model of pseudobulk gene 
expression assayed in memory T cells from a Peruvian cohort. All SNP coordinates are 
from GRCh38. The model adjusts for donor’s age and sex, 5 genotype PCs, and 45 
PEER factors. P values are from FastQTL beta approximation-based permutation. 

Supplementary Table 2. Ancestry-specific eQTL variants. (See 
Nathan_etal_SuppTables.xlsx, tab 2) 
eQTL variants in the Peruvian dataset driven by variants that are rare (MAF < 0.05) in 
1KG EUR population. 

Supplementary Table 3. Conditional pseudobulk memory T cell eQTLs. (See 
Nathan_etal_SuppTables.xlsx, tab 3) 
Secondary eQTL variant for each eGene tested in a linear model of pseudobulk gene 
expression assayed in memory T cells from a Peruvian cohort, after regressing out the 
lead effect. The model adjusts for donor’s age and sex, 5 genotype PCs, and 45 PEER 
factors. P values are from FastQTL beta approximation-based permutation. 

Supplementary Table 4. Blueprint cell-type-specific concordance of pseudobulk 
eQTLs (See Nathan_etal_SuppTables.xlsx, tab 4) 
Comparison of eQTL effects between pseudobulk memory T cells and Blueprint naïve T 
cells, monocytes, and neutrophils. Effects are marked as either significant in both 
studies in the same direction (green) or opposite direction (red), not significant in the 
Blueprint study (yellow), or not measured in the Blueprint study (white).  

Supplementary Table 5. CV markers and Gene set enrichment (See 
Nathan_etal_SuppTables.xlsx, tab 5) 
a, Top 5 marker genes and proteins for each of the top 7 CVs, based on Pearson 
correlation with each batch-corrected CV. b, Top 10 gene sets enriched for each CV 
based on genes’ loadings. P values and enrichment statistics are from the fgsea R 
package. 

Supplementary Table 6. Average CV scores by memory T cell cluster (See 
Nathan_etal_SuppTables.xlsx, tab 6) 
Average score along each CV for cells in each cluster. Clusters were defined in Nathan, 
et al. by projecting cells into a low-dimensional embedding based on CCA of paired 
mRNA and surface protein, constructing a shared nearest neighbor graph, and 
conducting Louvain clustering at resolution = 2. Clusters were annotated based on 
differentially expressed genes and proteins. 
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Supplementary Table 7. Single-cell Poisson model of memory T cell eQTLs. (See 
Nathan_etal_SuppTables.xlsx, tab 7) 
eQTL effects calculated with the PME model (without cell state interactions) for 
significant eGenes and lead variants identified in the pseudobulk analysis. The model 
adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 
genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. P values are from an LRT comparing the model with and without the 
genotype term. 

Supplementary Table 8. Single-cell Poisson model of memory T cell eQTLs’ 
interaction with prior TB status. (See Nathan_etal_SuppTables.xlsx, tab 8) 
eQTL interactions with donors’ prior TB progression status calculated with the PME 
model for significant eGenes and lead variants identified in the pseudobulk analysis. 
The model adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per 
cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. P values are from an LRT comparing the model with and without the 
TB status term. 

Supplementary Table 9. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CD4+ state. (See Nathan_etal_SuppTables.xlsx, tab 9) 
eQTL interactions with cells’ CD4+ state calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. CD4+ cells were 
defined based on normalized surface protein expression measured in CITE-seq 
(CD4+CD8-). The model adjusts for donor’s age and sex, percent MT UMIs and number 
of UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor 
and library preparation pool. Model p values are from an LRT comparing the model with 
and without the CD4+ state interaction term. Interaction-term p values are from Wald z 
scores of the betas. 

Supplementary Table 10. Pseudobulk memory T cell eQTLs in CD4+ cells only. 
(See Nathan_etal_SuppTables.xlsx, tab 10) 
eQTLs in CD4+ memory T cells calculated with a pseudobulk linear model in FastQTL 
for significant eGenes and lead variants identified in the pseudobulk analysis. CD4+ 
cells were defined based on normalized surface protein expression measured in CITE-
seq (CD4+CD8-). The model adjusts for donor’s age and sex, 5 genotype PCs, and 45 
PEER factors and we calculated a nominal P value for the genotype effect. 

Supplementary Table 11. Single-cell Poisson model of memory T cell eQTLs in 
CD4+ cells only. (See Nathan_etal_SuppTables.xlsx, tab 11) 
eQTL in CD4+ memory T cells calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. CD4+ cells were defined based 
on normalized surface protein expression measured in CITE-seq (CD4+CD8-). The 
model adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 
5 genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. Model p values are from an LRT comparing the model with and 
without genotype term. Interaction-term p values are from Wald z scores of the betas. 
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Supplementary Table 12. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CD8+ state. (See Nathan_etal_SuppTables.xlsx, tab 12) 
eQTL interactions with cells’ CD8+ state calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. CD8+ cells were 
defined based on normalized surface protein expression measured in CITE-seq (CD4-
CD8+). The model adjusts for donor’s age and sex, percent MT UMIs and number of 
UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor 
and library preparation pool. Model p values are from an LRT comparing the model with 
and without the CD8+ state interaction term. Interaction-term p values are from Wald z 
scores of the betas. 

Supplementary Table 13. Single-cell Poisson model of memory T cell eQTLs in 
CD8+ cells only. (See Nathan_etal_SuppTables.xlsx, tab 13) 
eQTL in CD8+ memory T cells calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. CD8+ cells were defined based 
on normalized surface protein expression measured in CITE-seq (CD4-CD8+). The 
model adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 
5 genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. Model p values are from an LRT comparing the model with and 
without genotype term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 14. Single-cell linear model of memory T cell eQTLs. (See 
Nathan_etal_SuppTables.xlsx, tab 14) 
eQTL effects calculated with the LME model (without cell state interactions) for 
significant eGenes and lead variants identified in the pseudobulk analysis. The model 
adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 
genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. Model p values are from an LRT comparing the model with and 
without the genotype term. Interaction-term p values are from Wald z scores of the 
betas. 

Supplementary Table 15. Single-cell linear model of memory T cell eQTLs’ 
dependence on CD4+ state. (See Nathan_etal_SuppTables.xlsx, tab 15) 
eQTL interactions with cells’ CD4+ state calculated with the LME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. CD4+ cells were 
defined based on normalized surface protein expression measured in CITE-seq 
(CD4+CD8-). The model adjusts for donor’s age and sex, percent MT UMIs and number 
of UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor 
and library preparation pool. Model p values are from an LRT comparing the model with 
and without the CD4+ state interaction term. Interaction-term p values are from Wald z 
scores of the betas. 
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Supplementary Table 16. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV1. (See Nathan_etal_SuppTables.xlsx, tab 16) 
eQTL interactions with cells’ CV1 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV1 interaction term. 
Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 17. Single-cell negative binomial model of memory T cell 
eQTLs’ dependence on CV1. (See Nathan_etal_SuppTables.xlsx, tab 17) 
eQTL interactions with cells’ CV1 calculated with the negative binomial mixed model for 
significant eGenes and lead variants identified in the pseudobulk analysis. The model 
adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 
genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. Model p values are from an LRT comparing the model with and 
without the CV1 interaction term. Interaction-term p values are from Wald z scores of 
the betas. 

Supplementary Table 18. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV2. (See Nathan_etal_SuppTables.xlsx, tab 18) 
eQTL interactions with cells’ CV2 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV2 interaction term. 
Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 19. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on Treg state. (See Nathan_etal_SuppTables.xlsx, tab 19) 
eQTL interactions with Tregs calculated with the PME model for significant eGenes and 
lead variants identified in the pseudobulk analysis. The Tregs were identified through 
clustering in Nathan, et al. The model adjusts for donor’s age and sex, percent MT UMIs 
and number of UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random 
effects for donor and library preparation pool. Model p values are from an LRT 
comparing the model with and without the Treg interaction term. Interaction-term p 
values are from Wald z scores of the betas. 
 

Supplementary Table 20. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CVs 1-7. (See Nathan_etal_SuppTables.xlsx, tab 20) 
eQTL interactions with CVs1-7 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
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values are from an LRT comparing the model with and without the CV1-7 interaction 
terms. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 21. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV3. (See Nathan_etal_SuppTables.xlsx, tab 21) 
eQTL interactions with cells’ CV3 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model  
p values are from an LRT comparing the model with and without the CV3 interaction 
term. Interaction-term p values are from Wald z scores of the betas. 
 

Supplementary Table 22. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV4. (See Nathan_etal_SuppTables.xlsx, tab 22) 
eQTL interactions with cells’ CV4 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV4 interaction term. 
Interaction-term p values are from Wald z scores of the betas. 
 

Supplementary Table 23. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV5. (See Nathan_etal_SuppTables.xlsx, tab 23) 
eQTL interactions with cells’ CV5 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. P 
values are from an LRT comparing the model with and without the CV5 interaction term. 
 
Supplementary Table 24. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV6. (See Nathan_etal_SuppTables.xlsx, tab 24) 
eQTL interactions with cells’ CV6 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV6 interaction term. 
Interaction-term p values are from Wald z scores of the betas. 
 

Supplementary Table 25. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV7. (See Nathan_etal_SuppTables.xlsx, tab 25) 
eQTL interactions with cells’ CV7 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 



   67 

expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV7 interaction term. 
Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 26. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV8. (See Nathan_etal_SuppTables.xlsx, tab 26) 
eQTL interactions with cells’ CV8 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV8 interaction term. 
Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 27. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV9. (See Nathan_etal_SuppTables.xlsx, tab 27) 
eQTL interactions with cells’ CV9 calculated with the PME model for significant eGenes 
and lead variants identified in the pseudobulk analysis. The model adjusts for donor’s 
age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV9 interaction term. 
Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 28. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV10. (See Nathan_etal_SuppTables.xlsx, tab 28) 
eQTL interactions with cells’ CV10 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV10 interaction 
term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 29. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV11. (See Nathan_etal_SuppTables.xlsx, tab 29) 
eQTL interactions with cells’ CV11 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV11 interaction 
term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 30. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV12. (See Nathan_etal_SuppTables.xlsx, tab 30) 
eQTL interactions with cells’ CV12 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
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values are from an LRT comparing the model with and without the CV12 interaction 
term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 31. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV13. (See Nathan_etal_SuppTables.xlsx, tab 31) 
eQTL interactions with cells’ CV13 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV13 interaction 
term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 32. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV14. (See Nathan_etal_SuppTables.xlsx, tab 32) 
eQTL interactions with cells’ CV14 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV14 interaction 
term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 33. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CV15. (See Nathan_etal_SuppTables.xlsx, tab 33) 
eQTL interactions with cells’ CV15 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV15 interaction 
term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 34. Single-cell Poisson model of non-pseudobulk-
significant memory T cell eQTLs’ dependence on CVs 1-7. (See 
Nathan_etal_SuppTables.xlsx, tab 34) 
eQTL interactions with CVs1-7 calculated with the PME model for non-significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CV1-7 interaction 
terms. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 35. GO Term enrichment in eGene clusters. (See 
Nathan_etal_SuppTables.xlsx, tab 35) 
Top 5 Gene Ontology gene sets enriched for overlap with eGenes in each of the ten 
eGene clusters. These clusters were defined through Louvain clustering on the betas 
for each eGene’s interactions with each of the 7 CVs, scaled relative to the largest-
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magnitude value and with signs corrected to be relative to the main genotype effect for 
that eGene. P values are from a one-sided Fisher test. 

Supplementary Table 36. HOMER analysis of CV-interacting eGenes. (See 
Nathan_etal_SuppTables.xlsx, tab 36) 
a, Top 5 transcription factor binding motifs enriched in the promoters of eGenes 
interacting with each CV in the multivariate 7-CV model. in variants associated with 
traits in the GWAS Catalog. b, Top 5 transcription factor binding motifs enriched in the 
+/- 20bp window around the lead SNP for eGenes interacting with each CV in the 
multivariate 7-CV model. 

Supplementary Table 37. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on mRNA PCs 1-7. (See Nathan_etal_SuppTables.xlsx, tab 37) 
eQTL interactions with mRNA PCs 1-7 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the mRNA PC1-7 
interaction terms. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 38. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on protein PCs 1-7. (See Nathan_etal_SuppTables.xlsx, tab 38) 
eQTL interactions with protein PCs 1-7 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the protein PC1-7 
interaction terms. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 39. Single-cell Poisson model of conditional/secondary 
memory T cell eQTLs’ dependence on CVs 1-7. (See Nathan_etal_SuppTables.xlsx, 
tab 39) 
eQTL interactions with CVs 1-7 calculated with the PME model for significant eGenes 
and conditional/secondary variants identified in the pseudobulk analysis. The model 
adjusts for donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 
genotype PCs, 5 expression PCs, and has random effects for donor and library 
preparation pool. Model p values are from an LRT comparing the model with and 
without the CV1-7 interaction terms. Interaction-term p values are from Wald z scores of 
the betas. 

Supplementary Table 40. GO Term enrichment in state-dependent eGenes. (See 
Nathan_etal_SuppTables.xlsx, tab 40) 
Top 10 Gene Ontology gene sets enriched for overlap with eGenes interacting with 
each of the seven CVs in the multivariate model. P values are from a one-sided Fisher 
test. 
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Supplementary Table 41. eQTL enrichment among GWAS variants by trait. (See 
Nathan_etal_SuppTables.xlsx, tab 41) 
Enrichments of memory T cell eQTLs in variants associated with traits in the GWAS 
Catalog. Variants were considered to be overlapping if they had r2 > .5 in both 1KG 
EUR and PEL populations. P values are from a Fisher test comparing the proportion of 
eQTLs in a trait’s GWAS variants to the proportion of eQTLs in GWAS variants for all 
other GWAS Catalog traits.  

Supplementary Table 42. State-dependent eQTL enrichment among GWAS 
variants by trait. (See Nathan_etal_SuppTables.xlsx, tab 42) 
Enrichments of state-dependent memory T cell eQTLs in variants associated with traits 
in the GWAS Catalog. Variants were considered to be overlapping if they had r2 > .5 in 
both 1KG EUR and PEL populations. P values are from a Fisher test comparing the 
proportion of state-dependent eQTLs in a trait’s GWAS variants to the proportion of 
non-state-dependent eQTLs in GWAS variants for that trait.  

Supplementary Table 43. Single-cell Poisson model of PBMC eQTLs’ dependence 
on mRNA PCs 1-6. (See Nathan_etal_SuppTables.xlsx, tab 43) 
eQTL interactions with mRNA PCs 1-6 calculated with the PME model for significant 
eGenes and lead variants identified in the PBMC pseudobulk analysis. The model 
adjusts for donor’s age, percent MT UMIs and number of UMIs per cell, 5 genotype 
PCs, 5 expression PCs, and has random effects for donor and batch. Model p values 
are from an LRT comparing the model with and without the mRNA PC1-6 interaction 
terms. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 44. Single-cell Poisson model of PBMC eQTLs’ dependence 
on major cell types. (See Nathan_etal_SuppTables.xlsx, tab 44) 
eQTL interactions with major cell types (CD4+ T, CD8+ T, B, NK, monocytes) calculated 
with separate univariate PME models for significant eGenes and lead variants identified 
in the PBMC pseudobulk analysis. The models adjust for donor’s age, percent MT UMIs 
and number of UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random 
effects for donor and batch. Model p values are from an LRT comparing the model with 
and without the respective cell type interaction term. Interaction-term p values are from 
Wald z scores of the betas. 

Supplementary Table 45. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CD4 CVs 1-6. (See Nathan_etal_SuppTables.xlsx, tab 45) 
eQTL interactions with CD4 CVs 1-6 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CD4 CVs 1-6 
interaction terms. Interaction-term p values are from Wald z scores of the betas. 
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Supplementary Table 46. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on CD8 CVs 1-6. (See Nathan_etal_SuppTables.xlsx, tab 46) 
eQTL interactions with CD8 CVs 1-6 calculated with the PME model for significant 
eGenes and lead variants identified in the pseudobulk analysis. The model adjusts for 
donor’s age and sex, percent MT UMIs and number of UMIs per cell, 5 genotype PCs, 5 
expression PCs, and has random effects for donor and library preparation pool. Model p 
values are from an LRT comparing the model with and without the CD8 CVs 1-6  
interaction terms. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 47. Single-cell Poisson model of monocyte eQTLs’ 
dependence on an interferon response trajectory. (See 
Nathan_etal_SuppTables.xlsx, tab 47) 
eQTL interactions with an interferon trajectory calculated with the PME model for 
significant eGenes and lead variants identified in the monocyte or PBMC pseudobulk 
analysis. The model adjusts for donor’s age, percent MT UMIs and number of UMIs per 
cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor and batch. 
Model p values are from an LRT comparing the model with and without the trajectory 
interaction term. Interaction-term p values are from Wald z scores of the betas. 

Supplementary Table 48. Single-cell Poisson model of memory T cell eQTLs’ 
dependence on UC colon T cell PCs 1-4. (See Nathan_etal_SuppTables.xlsx, tab 48) 
eQTL interactions with UC-PCs 1-4 (Smillie, et al.) calculated with separate univariate 
PME models for significant eGenes and lead variants identified in the pseudobulk 
analysis. The model adjusts for donor’s age and sex, percent MT UMIs and number of 
UMIs per cell, 5 genotype PCs, 5 expression PCs, and has random effects for donor 
and library preparation pool. Model p values are from an LRT comparing the model with 
and without the respective UC-PC. Interaction-term p values are from Wald z scores of 
the betas. 
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