Supplemental information

Oncolytic adenovirus coding for bispecific T cell engager against hu-

man MUC-1 potentiates T cell response against solid tumors

Saru Basnet, Joao M. Santos, Dafne C.A. Quixabeira, James H.A. Clubb, Susanna A.M. Grönberg-Vähä-Koskela, Victor Arias, Santeri Pakola, Tatiana V. Kudling, Camilla Heiniö, Riikka Havunen, Victor Cervera-Carrascon, Suvi Sorsa, Marjukka Anttila, Anna Kanerva, and Akseli Hemminki

Experiment	Antibodies	Manufacturer
Expression of cell	APC anti- human MUC1 (clone 16A)	Biolegend, California,
surface antigens	FITC anti- human CD3 (clone SK7)	USA
Binding assay	Anti-human MUC1 (clone HMFG2)	Merck, New Jersey, USA
T cell activation and	PE-CF594 anti-human CD3 (clone UCHT1)	BioLegend, California,
proliferation assay	PE anti-human CD4 (clone RPA-T4)	USA
	FITC anti-human CD8 (clone RPA-T8)	
	PE-Cy [™] 7 anti-human CD69 (clone FN50)	
	PE-Cy [™] 5 anti-human CD25 (clone M-A251)	
Analysis of immune	FITC anti-human CD3 (clone, OKT3)	BioLegend, California,
cells populations from	AF700 anti-human CD4 (clone, A161A1)	USA
in vivo tumor samples	BV421 anti-human CD8 (clone, SK1)	
	PE-Cy [™] 7 anti-human CD69 (clone, 17A2)	
	APC anti-human CD56 (clone, FN50)	
	PE anti-human TIM3 (clone, F38-2E2)	
	PE-CF594 anti-human PD-1 (clone, NAT105)	

Table S1. List of antibodies used in this study.

Figure S1. Expression of cell surface antigen from different cells. (A) MUC1 expression in a panel of different cell lines. (B) Expression of CD3 T cells in different cell lines used in this study.

Figure S2. TILT-321 virus-derived aMUC1aCD3-BsTe functionality in T cells from three different healthy donors. (A-D) Isolated T cells were incubated with Ad5/3-E2F-d24 and Ad5/3-E2F-d24-aMUC1aCD3 supernatants. Uninfected (Mock) supernatants were used a negative control. 3 days after coculture, CD3+CD4+CD69+ or CD3+CD4+CD25+ and CD3+CD8+CD69+ or CD3+CD8+CD25+ T cells activation was assessed by flow cytometry. Cytokine concentrations in culture supernatants (E) GranzymeB, (F) IL2, (G) TNFa and (H) IFNy were quantified using a cytometric bead array. The mean

 \pm SEM of quadruplets is shown. Statistical significance is represented as *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001.

Figure S3. *In vitro* characterization of virally released aMUC1aCD3-BsTe. Ad5/3-E2F-d24aMUC1aCD3-derived supernatant containing aMUC1aCD3-BsTe was added to cultures of MUC1 positive T47D cells monolayer in the presence of unstimulated T cell at ratio of T: E= 5. Uninfected supernatant was used as a Mock. Total percentage of activated T cells (A) CD3+CD4+CD69+ or CD3+CD4+CD25+ and, (B) CD3+CD8+CD69+ or CD3+CD8+CD25+ that are cytotoxic for MUC1+ tumor cells. The supernatants harvested after 72 hours of co-cultures were analyzed for (C) GranzymeB, (D) IL2, (E) TNFa and (F) IFNy using BD FACS Array bioanalyzer by Flow cytometry. The mean \pm SEM of quadruplets is shown. Statistical significance is represented as *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001.

Figure S4. Evaluation of cytokine expression produced by proliferated T cells (CFSE stained). Supernatants were analyzed for (A) GranzymeB, (B) IL2 and, (C) TNFa by Flow cytometry.

The mean \pm SEM of duplicates is shown. Statistical significance is represented as *p<0.05, **p<0.01, and ***p<0.001.

Figure S5. Cytotoxicity of virus-derived aMUC1aCD3 in co-cultures of T cells with MUC1+ tumor cells using 100 kDa filtered supernatant. (A) Ad5/3-E2F-d24-aMUC1aCD3-derived supernatant containing aMUC1aCD3-BsTe was added to cultures of MUC1 positive T47D cells monolayer in the presence of unstimulated T cell at T: E = 5. Uninfected supernatant is used as a Mock.

The mean \pm SEM of triplicates is shown. Statistical significance is represented as *p<0.05 and ***p<0.001.

Figure S6. Probability of survival and Individual tumor growth curve of A549 humanized xenograft mice. (A) Ad5/3-E2F-d24-aMUC1aCD3+PBMC showed significantly better survival compared to Ad5/3-E2F-d24+PBMC and PBMC control group. Individual tumor growth of (B) PBMC (C) Ad5/3-E2F-d24+PBMC (D) Ad5/3-E2F-d24-aMUC1aCD3+PBMC treated mice. Dashed line is indicating the time point (day 35) for tumor sample collection from mice (n = 5).

Figure S7. aMUC1aCD3-BsTe expression in serum sample collected from PDX-OvCa bearing mice. (A) Competitive binding In-cell ELISA was used to analyze the binding of aMUC1aCD3-BsTe to its target MUC1 antigen expressed by T47D cell monolayer. TILT-321 infected 30 kDa filtered cells supernatant was used as a positive control.