
 

 

Supplementary Information 

Bioactive compounds identified by BABM with novel anti-EBOV, anti-ZIKV, or anti-SARS-CoV-2 activities 

Anti-EBOV compounds: Arbidol (or umifenovir) (IC50 ~5 µM) is an antiviral treatment for influenza 

infection used in Russia and China.1 A more recent study reported in vitro activity of umifenovir at 

preventing entry of the EBOV Zaïre Kikwit.2 Difeterol is used as an antihistamine drug in Japan.3 Difeterol 

(IC50 ~3 µM) was also identified as one of the active compounds from a high throughput screen using the 

EBOV entry assay.4 Colchicine, podofilox, 7-epi-docetaxel and β-peltatin are all microtubule inhibitors. 

Anti-ZIKV compounds: Colchicine is a medication commonly used to treat gout and as an anti-

inflammatory drug for some other clinical conditions. Podofilox, or podophyllotoxin, is used as a medical 

cream to treat genital warts and molluscum contagiosum. 7-Epi-docetaxel is an impurity of docetaxel, a 

chemotherapy medication used to treat several types of cancer. β-Peltatin is a plant metabolite with 

antineoplastic properties that belongs to the same structural class as podophyllotoxin.5 Dolastatin 10, a 

pentapeptide, is also an inhibitor of microtubule assembly and an investigational drug that has been in 

clinical trials for its antineoplastic activity.5 Like colchicine, narciclasine, an amaryllidaceae alkaloid, was 

intensively investigated as an antitumor compound both in vitro and in vivo and have shown anti-

inflammatory actions in vivo.6 Floxuridine is a nucleoside that belongs to the class of antimetabolites. 

Floxuridine is an oncology drug most often used in the treatment of colorectal cancer. The other known 

bioactive compounds include two mycotoxins, diacetoxyscirpenol and T-2 Toxin. 

Anti-SARS-CoV-2 compounds: Spiramide (AMI-193) is an experimental antipsychotic that acts as a 

selective 5-HT2A, 5-HT1A, and D2 receptor antagonist.7 Ftormetazine is a derivative of the 

phenothiazine class of antipsychotic drugs.8  Prenylamine is a calcium channel blocker of the 

amphetamine chemical class, which was used as a vasodilator in the treatment of angina pectoris and 

later withdrawn due to cardiotoxicity. 9,10 BEPP [1H-benzimidazole1-ethanol,2,3-dihydro-2-imino-a-

(phenoxymethyl)-3-(phenylmethyl)-,monohydrochloride] is a synthetic compound that has been 

reported to inhibit viral replication by inducing RNA-dependent protein kinase -dependent apoptosis.11 

Triparanol was the first synthetic cholesterol-lowering drug which was introduced in the U.S. in 1960, 

but was later withdrawn due to severe adverse effects.12,13 Octoclothepine is a tricyclic antipsychotic 

drug for the treatment of schizophrenic psychosis with high affinities for the dopamine receptors.14 

Metaphit, the m-isothiocyanate derivative of phencyclidine, is an investigational drug that acts as an 



 

 

acylator of NMDARAn, sigma and DAT binding sites in the CNS.15 L-703, 606 is a known antagonist of the 

neurokinin-1 (NK1) receptor.16 

Antiviral mechanism of novel anti-SARS-CoV-2 compounds 

The PP entry assay detects inhibitors of spike (S) mediated SARS-CoV-2 cell entry. A cell viability counter-

screen was also run to filter out inhibition caused by compound cytotoxicity artifacts. Compounds that 

showed concentration dependent inhibition in the PP entry assay and were inactive or at least 6-fold 

less potent in the cell viability counter-screen were considered active SARS-CoV-2 cell entry inhibitors. 

The 3CLpro, also known as the main protease, of SARS-CoV-2 is a specific viral enzyme that plays an 

essential role in viral replication. The 3CLpro assay is an enzymatic assay that detects inhibitors of this 

protease. As the 3CLpro assay uses a fluorescence readout, a counter screen was run to eliminate 

fluorescence quenching compounds. Compounds that showed concentration dependent inhibition in 

the 3CLpro assay and were inactive or at least 6-fold less potent in the counter screen were considered 

active 3CLpro inhibitors. Autophagy modulators have been reported to block the SARS-CoV-2 cytopathic 

effect .31 The GFP-LC3 assay is a cell-based imaging autophagic flux assay. Data were expressed as three 

parameters: “% of positive cells”, “Total Spot Area” and “Relative Spot Intensity”. Compounds that 

increased all three parameters in a concentration dependent manner were considered active autophagy 

modulators.  

Comparison of structural spaces covered by BABM and SBM 

BABM was applied to ZIKV NS1 models as a proof-of-concept comparison to traditional modeling 

approaches. Supplementary Figure 2A shows the 652 experimentally confirmed NS1-expression actives 

correctly identified by at least one of the three models (SBM, BABM, and CM). Only 43 of the 652 

compounds were predicted as active by all three models. BABM identified 82%, while the CM and SBM 

identified 76% and 28% of 652 active compounds, respectively. BABM and CM identified the majority of 

the actives, most of which (448 out of 534) were also shared by both models. SBM identified a much 

smaller number of actives, most of which (118 out of 182) were also different from those identified by 

the BABM and CM. Out of the 118 actives picked up by the SBM only, 106 were not predicted by the 

BABM or CM because no assay activity profile data were available on these compounds. The 

distributions of the 85 experimentally confirmed anti-SARS-CoV-2 compounds among the three types of 

models (SBM, BABM, and CM) showed trends similar to those of ZIKV NS1 (Supplementary Figure 2B). 

The compounds identified by the BABM is a subset of the ones identified by the CM (45%). Only a small 



 

 

fraction of the compounds (12%) was identified by the SM. The BABM and SM identified nearly 

completely different sets of compounds with only one overlapping. As structure-based models rely on 

structure similarity to make predictions, these models were not reliable in predicting compounds with 

completely new scaffolds that were not already represented in the training set. Activity-based models 

which rely on activity profile data for training, in contrast, are not restricted by structure similarity and 

thus are potentially more powerful in discovering new scaffolds. Models for all three viral targets in this 

study identified compounds with very low structural similarity to active compounds in the training set 

(e.g., average Tanimoto similarity scores to the training set as low as 0.04-0.07; Table 1). Compared to 

traditional QSAR models built with chemical structure data alone, the BABM identified compounds that 

are structurally distinct from the training set and the compounds identified by the SBM (Supplementary 

Figure 3), demonstrating the advantage of the BABM in discovering new chemical types. 

 

Table 1. Model performances. P-values were calculated using the Fisher’s exact test. 

SARS-CoV2 Model 
AUC-ROC 
(Test Set) 

Cherry Pick Validation 
Training Set 
Active Rate* 

P 

TP FP PPV  

SBM** 
0.71±0.01 

12 26 31.58% 11.46% 8.97×10-4 

BABM-S 0.75±0.02 28 45 38.36% 19.55% 4.64×10-4 

BABM-M 0.79±0.02 25 44 36.23% 17.54% 3.47×10-4 

CM-S 0.77±0.02 83 176 32.05% 19.57% 2.66×10-5 

CM-M 0.81±0.02 60 100 37.50% 17.56% 3.84×10-8 

*The training set active rate for the SBM is close to the SARS-CoV2 CPE qHTS assay hit rate. The training 

set active rates for the activity-based models are higher because the NPC screened for this assay was 

recently updated with many new drugs not in the older version. Profile data in other assays were not 

available for these new drugs, most of which were inactive in the CPE assay, thus they were not included 

in training the activity-based models. 

**Not used to select compounds for experimental validation. 

 

NS1 Model 
AUC-ROC 
(Test Set) 

Cherry Pick Validation 

Training Set Active Rate P TP FP PPV 

SBM 0.82±0.01 182 419 30.28% 1.10% <10-20 

BABM-S 0.82±0.02 532 692 43.46% 15.90% <10-20 

CM-S 0.86±0.01 493 617 44.41% 15.90% <10-20 

 



 

 

EBOV Model 
AUC-ROC 
(Test Set) 

Cherry Pick Validation* 
Training Set 
Active Rate P TP FP PPV 

SBM 
0.66±0.02 

N/A N/A N/A 7.47% N/A 

BABM-S 0.80±0.02 48 12 80.00% 11.79% <10-20 

BABM-G 0.70±0.02 13 2 86.67% 13.41% 7.05×10-10 

CM-S 0.83±0.01 46 12 79.31% 11.81% <10-20 

CM-G 0.78±0.03 16 2 88.89% 13.30% 3.04×10-12 

*Cherry picked 96 compounds, 34 of which killed cells at 30 µM and not tested for Ebola. The remaining 

62 compounds were used to evaluate model performance. 

 

 

Table 2. Training dataset compositions for models 

SARS-CoV2 Data Set Feature Count Active Count Inactive Count Prediction Set 

SBM 729 279 2155 617,947 

BABM-S 130 209 860 109,291 

BABM-M 225 200 940 99,660 

CM-S 859 209 859 103,400 

CM-M 954 200 939 96,142 

 

NS1 Data Set Feature Count Active Count Inactive Count Prediction Set 

SBM 729 1,023 91,643 527,715 

BABM-S 130 281 1,486 108,593 

CM-S 859 281 1,486 102,701 

 

EBOV Data Set Feature Count Active Count Inactive Count Prediction Set 

SBM 729 148 1,833 618,400 

BABM-S 130 128 958 109,274 

BABM-G 29 110 710 70,932 

CM-S 859 128 956 103,384 

CM-G 758 108 704 64,397 

 

 

 



 

 

 

Figure 1. Example ROC curves on the test set. Curves were selected from the NS1 models. BABM = 

biological activity-based model; SBM = structure-based model; CM = combined model. 
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Figure 2. Confirmed active ZIKA NS1 inhibitors (A) and anti-SARS-CoV-2 compounds (B)correctly 

identified by each model. BABM = biological activity-based model; SBM = structure-based model; CM = 

combined model. 



 

 

   

Figure 3. Chemical structure space occupied by compounds predicted as active by the BABM and SBM 

NS1 models, and active compounds in the training set, i.e., the original NS1 screen. The plot shows that 

the compounds identified by the activity-based model occupied structure spaces distinct from those 

identified by the structure-based model. 
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