Supplementary Information

Electronic excited states in deep variational Monte Carlo

M. T. Entwistle[®],^{1,*} Z. Schätzle[®],^{1,*} P. A. Erdman[®],¹ J. Hermann[®],^{1,†} and F. Noé[®],^{2,1,3,4,‡}

¹FU Berlin, Department of Mathematics and Computer Science, Arnimallee 12, 14195 Berlin, Germany

²Microsoft Research AI4Science

³FU Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany

⁴Rice University, Department of Chemistry, Houston, Texas 77005, USA

This document provides details on the test systems and our calculations as detailed in the main paper.

SUPPLEMENTARY NOTE I: GEOMETRIES OF TEST SYSTEMS

All calculations presented in Sections II A – C of the main paper were done at the ground-state equilibrium geometries. The geometries for all molecules are listed in Supplementary Table I. For the ethylene structures presented in Section II D, we list the planar (ground-state equilibrium) and twisted ($\tau = 90$) geometries.

Supplementary Table I: Ground-state equ	ilibrium geometries of the test systems.

Molecule	Atom	Position (Å)	Molecule	Atom	Position (Å)
LiH	Li	(0.000, 0.000, 0.000)	BeH	Be	(0.000000, 0.000000, 0.000000)
	Η	(1.595, 0.000, 0.000)		Η	(1.326903, 0.000000, 0.000000)
BH	В	(0.000000, 0.000000, 0.000000)	CH^+	С	(0.00000, 0.00000, 0.00000)
	Η	(0.000000, 0.000000, 1.222874)		Η	(1.13092, 0.00000, 0.00000)
H_2O	Ο	(0.000000, 0.000000, -0.069903)	CO	С	(0.000000, 0.000000, -0.661165)
	Η	(0.000000, 0.757532, 0.518435)		Ο	(0.000000, 0.000000, 0.472379)
	Η	(0.000000, -0.757532, 0.518435)			
NH ₃	Ν	(0.067759, -0.000000, 0.000000)	C_2H_4 (planar)	С	(-0.675000, 0.000000, 0.000000)
	Η	(-0.313823, 0.468746, -0.811891)		С	(0.675000, 0.000000, 0.000000)
	Н	(-0.313823, -0.937491, -0.000000)		Η	(-1.242900, 0.000000, -0.930370)
	Н	(-0.313823, 0.468746, 0.811891)		Η	(-1.242900, 0.000000, 0.930370)
				Η	(1.242900, 0.000000, -0.930370)
				Η	(1.242900, 0.000000, 0.930370)
C_2H_4 (twisted)	С	(-0.688500, 0.000000, 0.000000)	C_6H_6	С	(0.000000, 1.396792, 0.000000)
	\mathbf{C}	(0.688500, 0.000000, 0.000000)		\mathbf{C}	(0.000000, -1.396792, 0.000000)
	Н	(-1.307207, 0.000000, -0.915547)		\mathbf{C}	(1.209657, 0.698396, 0.000000)
	Н	(-1.307207, 0.000000, 0.915547)		\mathbf{C}	(-1.209657, -0.698396, 0.000000)
	Η	(1.307207, -0.915547, 0.000000)		\mathbf{C}	(-1.209657, 0.698396, 0.000000)
	Н	(1.307207, 0.915547, 0.000000)		\mathbf{C}	(1.209657, -0.698396, 0.000000)
				Н	(0.000000, 2.484212, 0.000000)
				Η	(2.151390, 1.242106, 0.000000)
				Н	(-2.151390, -1.242106, 0.000000)
				Н	(-2.151390, 1.242106, 0.000000)
				Н	(2.151390, -1.242106, 0.000000)
				Н	(0.000000, -2.484212, 0.000000)

^{*} M. T. Entwistle and Z. Schätzle contributed equally to this work.

 $^{^{\}dagger}$ science@jan.hermann.name

 $^{^{\}ddagger}$ franknoe@microsoft.com

SUPPLEMENTARY NOTE II: ENERGIES FOR SMALL ATOMS AND MOLECULES

We tabulate the total energies and vertical excitation energies that were obtained for the small systems, as presented in Section II A of the main paper. These are listed in Supplementary Table II.

Supplementary Table II: Total energies and vertical excitation energies (both in Ha) for the small atoms in Section II A.

System	E_n	Correlation energy (%)	ΔE	$\Delta E \ (\sigma^2 \ \text{matching})$
Li	-7.47800(4)	$99.9(1)^{a}$		
	-7.40998(5)		0.06801(7)	0.06807(7)
	-7.40988(7)		0.06812(8)	0.06811(9)
	-7.40977(7)		0.06823(8)	0.06824(9)
	-7.335(4)		0.143(4)	0.143(4)
Be	-14.66736(7)	$100.0(1)^{\rm a}$		_
	-14.5663(6)		0.1011(6)	0.1009(6)
	-14.5664(1)		0.1010(1)	0.1007(2)
	-14.5664(1)		0.1010(1)	0.1004(2)
	-14.4710(2)	—	0.1964(2)	0.1952(2)
В	-24.6509(2)	$97.6(1)^{a}$		_
	-24.6506(2)		0.0004(3)	0.0005(3)
	-24.6498(2)		0.0011(3)	0.0008(3)
	-24.5206(2)		0.1303(2)	0.1300(3)
	-24.5202(2)	—	0.1307(3)	0.1300(3)
С	-37.8388(3)	$96.0(2)^{a}$		
	-37.8388(2)		-0.0001(4)	0.0001(4)
	-37.8378(2)		0.0010(4)	0.0008(4)
	-37.7918(2)		0.0470(4)	0.0470(4)
	-37.7911(3)		0.0477(4)	0.0451(4)
N	-54.5836(3)	$97.0(2)^{a}$	—	_
	-54.4911(4)		0.0925(5)	0.0900(5)
	-54.4885(4)		0.0952(5)	0.0893(6)
	-54.4874(4)		0.0963(6)	0.0883(6)
	-54.4861(4)		0.0975(5)	0.0918(6)
0	-75.0532(5)	$94.6(2)^{a}$	—	_
	-75.0506(5)		0.0027(7)	-0.0003(8)
	-75.0519(5)		0.0013(7)	-0.0011(7)
	-74.9763(6)		0.0769(8)	0.0711(8)
	-74.9771(6)		0.0761(8)	0.0703(9)

^a Exact energy and HF energy at the CBS limit [1]

System	E_n	Correlation energy $(\%)$	ΔE	$\Delta E \ (\sigma^2 \ \text{matching})$
LiH	-8.0695(1)	$98.9(1)^{\rm a}$		
	-7.9497(1)		0.1198(1)	0.1199(1)
	-7.9348(1)		0.1348(2)	0.1347(2)
	-7.9112(1)		0.1584(2)	0.1573(2)
	-7.9114(1)		0.1582(1)	0.1574(2)
	-7.8978(1)		0.1717(2)	0.1710(2)
	-7.8977(1)		0.1718(2)	0.1709(2)
	-7.8549(1)		0.2147(2)	0.2130(2)
BeH	-15.2452(4)	$98.3(4)^{a}$		_
	-15.1516(2)		0.0936(4)	0.0916(3)
	-15.1507(2)		0.0946(5)	0.0914(3)
	-15.0286(3)		0.2166(5)	0.2132(4)
	-15.0259(2)		0.2193(5)	0.2156(4)
	-15.0249(2)		0.2203(5)	0.2138(17)
	-14.9951(4)		0.2500(5)	0.2379(5)
	-14.9528(3)		0.2923(5)	0.2793(16)
Be	-14.6667(1)	$99.3(1)^{a}$		
	-14.5655(2)		0.1012(2)	0.1011(2)
	-14.5654(1)		0.1013(2)	0.1007(2)
	-14.5651(2)		0.1016(2)	0.1009(3)
	-14.4663(3)		0.2004(4)	0.1967(10)
	-14.4671(3)		0.1996(3)	0.1976(5)
	-14.4665(3)		0.2002(3)	0.1982(5)
	-14.3915(2)	_	0.2752(2)	0.2732(4)

Supplementary Table II (continued): Total energies and vertical excitation energies (both in Ha) for the many-state calculations in Section II A.

 $^{\rm a}$ Exact energy and HF energy at the CBS limit [1]

SUPPLEMENTARY NOTE III: ENERGIES AND OSCILLATOR STRENGTHS FOR INTERMEDIATE SYSTEMS

We tabulate the total energies, vertical excitation energies and oscillator strengths that were obtained for the intermediate systems, as presented in Section II B of the main paper. These are listed in Supplementary Table III.

Supplementary Table III: Total energies (in Ha), vertical excitation energies (in Ha) and oscillator strengths (in au) for the systems in Section II B.

Molecule	E_n	Correlation energy $(\%)$	ΔE	$\Delta E \ (\sigma^2 \text{ matching})$	f	$f \ (\sigma^2 \ \text{matching})$
BH	-25.2883(2)	$99.5(1)^{\rm a}$				_
	-25.2361(2)	_	0.0522(3)	0.0511(3)	_	_
	-25.2356(2)	—	0.0527(3)	0.0503(3)		
	-25.1765(2)	—	0.1118(3)	0.1088(3)	0.0276(1)	0.0253(1)
CH^+	-38.0863(2)	—		_		
	-38.0385(2)	—	0.0478(3)	0.0460(3)	—	—
	-38.0375(3)	—	0.0488(4)	0.0465(4)		
	-37.9664(3)	—	0.1199(4)	0.1172(4)	0.00606(4)	0.00576(3)
H_2O	-76.4230(5)	$95.9(1)^{\rm b}$		_		
	-76.1499(6)	—	0.2731(8)	0.2702(8)	—	—
	-76.1343(6)		0.2887(8)	0.2845(9)	0.0395(3)	0.0374(3)
NH ₃	-56.5533(3)	$96.6(1)^{\rm b}$				
	-56.3122(4)	—	0.2411(5)	0.2391(6)	—	—
	-56.2972(4)	—	0.2561(5)	0.2531(6)	0.0630(4)	0.0731(5)
СО	-113.3039(6)	$95.9(1)^{\rm b}$				
	-113.0618(7)	—	0.2421(9)	0.2386(9)	_	—
	-112.9765(7)	—	0.3274(9)	0.3211(9)	0.1048(5)	0.1030(5)

^a Exact energy [2] and HF energy at the CBS limit [3]

^b Exact energy and HF energy at the CBS limit [1]

SUPPLEMENTARY NOTE IV: ENERGIES FOR BENZENE

We tabulate the total energies and vertical excitation energies that were obtained for benzene, as presented in Section II C of the main paper. These are listed in Supplementary Table IV.

Supplementary Table IV: Total energies and vertical excitation energies (both in Ha) for benzene in Section II C.

$\overline{E_0}$	E_1	ΔE	$\Delta E \ (\sigma^2 \ \text{matching})$
-232.0675(11)	-231.8628(9)	0.2047(14)	0.1637(13)

SUPPLEMENTARY NOTE V: ENERGIES FOR ETHYLENE

We tabulate the total energies and vertical excitation energies that were obtained for all ethylene structures, as presented in Section II D of the main paper. These are listed in Supplementary Table V.

Supplementary Table V: Total energies and vertical excitation energies (both in Ha) for ethylene in Section II D.

$\tau \ (\phi = 0)$	E_n	ΔE	$\Delta E \ (\sigma^2 \ \text{matching})$	$\phi~(\tau=90^\circ)$	E_n	ΔE	$\Delta E \ (\sigma^2 \ \text{matching})$
0	-78.5650(4)	_		0	-78.4477(4)	_	
	-78.2617(5)	0.3033(6)	0.2964(7)		-78.3578(5)	0.0899(6)	0.0897(7)
15	-78.5609(4)	_	—	20	-78.4471(4)	_	_
	-78.2755(5)	0.2854(6)	0.2799(7)		-78.3589(5)	0.0882(6)	0.0869(7)
30	-78.5461(4)	_	—	40	-78.4391(4)	_	_
	-78.2925(5)	0.2536(6)	0.2459(7)		-78.3661(5)	0.0730(6)	0.0735(6)
45	-78.5254(4)	_	—	60	-78.4267(5)	_	_
	-78.3171(5)	0.2083(6)	0.2032(7)		-78.3704(5)	0.0563(7)	0.0537(7)
60	-78.4952(4)	_	—	70	-78.4161(5)	_	—
	-78.3339(5)	0.1613(6)	0.1580(7)		-78.3721(5)	0.0440(7)	0.0428(7)
70	-78.4771(4)	_	—	80	-78.3992(4)	_	_
	-78.3416(5)	0.1355(6)	0.1324(7)		-78.3701(5)	0.0291(6)	0.0258(7)
80	-78.4540(5)	—	—	90	-78.3828(4)	—	—
	-78.3449(5)	0.1091(7)	0.1089(7)		-78.3675(5)	0.0153(6)	0.0112(7)
85	-78.4483(4)	_		95	-78.3697(4)	_	
	-78.3512(5)	0.0971(6)	0.0922(7)		-78.3612(5)	0.0085(6)	0.0083(7)
90	-78.4425(5)	—	—	97.5	-78.3634(5)	—	
	-78.3531(5)	0.0894(7)	0.0881(7)		-78.3593(5)	0.0041(7)	0.0023(7)
				100	-78.3587(5)	—	
					-78.3559(5)	0.0028(7)	0.0014(7)
				102.5	-78.3552(5)	—	
					-78.3529(5)	0.0023(7)	0.0042(7)
				105	-78.3509(5)	—	
					-78.3448(5)	0.0061(7)	0.0048(7)
				110	-78.3449(5)	—	
					-78.3224(5)	0.0225(7)	0.0189(7)
				120	-78.3284(5)	—	
					-78.2929(5)	0.0355(7)	0.0231(7)

SUPPLEMENTARY NOTE VI: OVERLAPS OF TRAINED WAVEFUNCTIONS

For each system we compute the pairwise overlaps between all trained wavefunctions and tabulate the mean. These are listed in Supplementary Table VI.

System	$\overline{ S_{ij} }$	System	$\overline{ S_{ij} }$	System	$\overline{ S_{ij} }$	System	$\overline{ S_{ij} }$
Li	0.0010(6)	CH^+	0.0018(7)	$C_2H_4 \ (\tau = 80)$	0.002(2)	$C_2H_4 \ (\phi = 95)$	0.002(1)
Be	0.004(1)	H_2O	0.007(3)	$C_2H_4 \ (\tau = 85)$	0.001(1)	$C_2H_4 \ (\phi = 97.5)$	0.003(2)
В	0.0023(9)	NH_3	0.014(3)	$C_2H_4 \ (\tau = 90)$	0.008(2)	$C_2H_4 \ (\phi = 100)$	0.002(3)
С	0.0030(4)	CO	0.003(1)	$C_2H_4 \ (\phi=0)$	0.009(1)	$C_2H_4 \ (\phi = 102.5)$	0.007(1)
Ν	0.0040(5)	$C_2H_4 \ (\tau=0)$	0.011(3)	$C_2H_4 \ (\phi = 20)$	0.002(2)	$C_2H_4 \ (\phi = 105)$	0.007(2)
0	0.0035(4)	$C_2H_4 \ (\tau = 15)$	0.007(3)	$C_2H_4 \ (\phi = 40)$	0.003(2)	$C_2H_4 \ (\phi = 110)$	0.009(1)
LiH	0.0047(9)	$C_2H_4 \ (\tau = 30)$	0.004(3)	$C_2H_4 \ (\phi = 60)$	0.001(1)	$C_2H_4 \ (\phi = 120)$	0.002(3)
BeH	0.0068(5)	$C_2H_4 \ (\tau = 45)$	0.003(2)	$C_2H_4 \ (\phi = 70)$	0.002(2)	C_6H_6	0.001(4)
Be (many states)	0.0035(5)	$C_2H_4 \ (\tau = 60)$	0.008(2)	$C_2H_4 \ (\phi = 80)$	0.002(3)		
ВН	0.0033(9)	$C_2H_4 \ (\tau=70)$	0.002(2)	$C_2H_4 \ (\phi = 90)$	0.006(2)		

Supplementary Table VI: Mean pairwise overlaps for all systems.

SUPPLEMENTARY NOTE VII: HYPERPARAMETERS

We tabulate the hyperparameters that were used in all calculations. These are listed in Supplementary Table VII. We also tabulate the active spaces and spin configurations $(S^2, M = (N_{\uparrow} - N_{\downarrow})/2$ (eigenvalue of S_z)) used to generate the CASSCF baselines. These are listed in Supplementary Table VIII.

Supplementary Table VII: Hyperparameters used in calculations. (See Ref. [4] for more details.)

Hyperparameter	Value	Hyperparameter	Value
One-electron basis	6-311G	Maximum number of determinants	10
Dimension of \mathbf{e} (# distance features)	32	Dimension of \mathbf{x}_i (embedding dimension)	128
Dimension of \mathbf{z}_i (kernel dimension)	64	Number of layers in \mathbf{w}_{θ}	1
Number of layers in $\mathbf{h}_{\boldsymbol{\theta}}$	2	Number of layers in $\mathbf{g}_{\boldsymbol{\theta}}$	2
Number of interaction layers L:		Number of layers in η_{θ} :	
small/intermediate systems & ethylene	4	small/intermediate systems & ethylene	3
benzene	5	benzene	5
Number of layers in κ_{θ} :		Number of walkers:	
small/intermediate systems & ethylene	3	small/intermediate systems & ethylene	1000
benzene	5	benzene	400
Batch size	2000	Number of equilibration steps	500
Number of training steps:		Optimizer	AdamW
small systems	5000/10000	Learning rate scheduler	CyclicLR
intermediate systems	20000	Minimum/maximum learning rate:	
ethylene	10000	small/intermediate systems & ethylene	0.0001/0.005
benzene	10000	benzene	0.0001/0.001
Cyclic frequency	1000	Clipping window q	5
Minimum/maximum α	0.25/1.0	Epoch size	10
Resampling frequency	3	Number of decorrelation sampling steps:	
Target acceptance	57%	small/intermediate systems & ethylene	5
		benzene	15

Supplementary Table VIII: The active spaces, specifying N electrons across P orbitals, and spin configurations, used to generate the CASSCF baselines for all systems.

System	$\operatorname{CAS}(P, N)$	$\operatorname{Spin}(S^2, M)$	System	$\operatorname{CAS}(P, N)$	$\operatorname{Spin}(S^2, M)$
Li	(5, 3)	$\left(\frac{3}{4}/\frac{3}{4}/\frac{3}{4}/\frac{3}{4}/\frac{3}{4}, 1\right)$	Be (many states)	(6, 4)	(0/2/2/2/0/0/0/2, 1)
Be	(5, 4)	(0/2/2/2/0, 0)	BH	(5, 2)	(0/2/2/0, 0)
В	(5, 5)	$\left(\frac{3}{4}/\frac{3}{4}/\frac{3}{4}/\frac{15}{4}/\frac{15}{4},1\right)$	CH^+	(5, 2)	(0/2/2/0, 0)
С	(5, 6)	(2/2/2/0/0, 0)	H_2O	(5, 2)	(0/2/0, 0)
Ν	(5,7)	$\left(\frac{15}{4}/\frac{3}{4}/\frac{3}{4}/\frac{3}{4}/\frac{3}{4},1\right)$	$\rm NH_3$	(7, 2)	(0/2/0, 0)
0	(5, 8)	(2/2/2/0/0, 0)	СО	(10, 10)	(0/2/0, 0)
LiH	(12, 4)	(0/2/0/2/2/0/0/2, 0)	C_2H_4	(4, 4)	(0/0, 0)
BeH	(12, 5)	$\left(\frac{3}{4}/\frac{3}{4}/\frac{3}{4}/\frac{3}{4}/\frac{3}{4}/\frac{15}{4}/\frac{15}{4}/\frac{3}{4}/\frac{3}{4},1\right)$	C_6H_6	(4, 4)	(0/2, 0)

Supplementary References

- [1] D. P. O'eill and P. M. W. G. *, Benchmark correlation energies for small molecules, Molecular Physics 103, 763 (2005).
- [2] E. Giner, D. Traore, B. Pradines, and J. Toulouse, Self-consistent density-based basis-set correction: How much do we lower total energies and improve dipole moments?, The Journal of Chemical Physics **155**, 044109 (2021).
- [3] R. D. J. III, NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 (2021).
- [4] J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network solution of the electronic schrödinger equation, Nature Chemistry 12, 891 (2020).