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Glioblastoma (GBM) is the most common aggressive malignant
brain cancer and is chemo- and radioresistant, with poor thera-
peutic outcomes. The “double-edged sword” of virus-induced
cell death could be a potential solution if the oncolytic virus spe-
cifically kills cancer cells but spares normal ones. Zika virus
(ZIKV) has been defined as a prospective oncolytic virus by selec-
tively targeting GBM cells, but unclear understanding of how
ZIKV kills GBM and the consequences hinders its application.
Here, we found that the cellular gasdermin D (GSDMD) is
required for the efficient death of a human GBM cell line caused
by ZIKV infection. The ZIKV protease specifically cleaves hu-
manGSDMD to activate caspase-independent pyroptosis, harm-
ing both viral protease-harboring and naive neighboring cells.
Analyzing human GSDMD variants showed that most people
were susceptible to ZIKV-induced cytotoxicity, except for those
with variants that resisted ZIKV cleavage or were defective in
oligomerizing the N terminus GSDMD cleavage product.
Consistently, ZIKV-induced secretion of the pro-inflammatory
cytokine interleukin-1b and cytolytic activity were both stopped
by a small-molecule inhibitor targeting GSDMD oligomeriza-
tion. Thus, potential ZIKV oncolytic therapy for GBM would
depend on the patient’s GSDMD genetic background and could
be abolished by GSDMD inhibitors if required.

INTRODUCTION
Cancer is one of the leading causes of death in the world. Among
brain tumors, glioblastoma (GBM) was classified as a grade IV glioma
by the World Health Organization because of its malignancy.1 This
aggressive tumor sustains proliferation, immune escape, and drug
resistance because GBM stem cells are multipotent, self-renewing,
and apoptosis resistant.2,3 Despite the availability of surgery followed
by radiotherapy and chemotherapy for treatment, the effectiveness of
current treatments is poor, and recurrence is common.4 New strate-
gies that specifically kill GBM cells are needed.

An oncolytic virus could be desirable for cancer therapy if the virus
selectively kills the infected cancer cells with no harm to normal
cells.5,6 Regardless of DNA or RNA as the genome, several viruses
have been proposed as oncolytic viruses, including herpes simplex
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virus 1, vaccinia virus, reovirus, adenovirus, parvovirus, poliovirus,
and Newcastle disease virus.7–9 Recently, Zika virus (ZIKV), which
causes microcephaly in the fetus,10,11 was defined as an oncolytic virus
because it preferentially infects and kills GBM stem cells12,13 but
seems to not harm adult neurons.14,15 Although both adult and pedi-
atric brain tumor cells could be killed by ZIKV,12 adult GBMs were
preferentially studied to illustrate the oncolytic mechanisms, e.g.,
the requirement of T cells to increase the efficacy.16,17 The ZIKV neu-
rotropism may result from the specific expression of SOX2 and avb5
on GBM stem cells.18 The expression of the ZIKV receptor tyrosine
kinase AXL renders GBM cells highly permissive to ZIKV and thus
the killing effects; however, expression of the viral receptor is the pre-
requisite for virus infection but does not guarantee the killing.19 How
ZIKV kills GBM cells after infection needs in-depth examination to
assess the pros and cons of precision virotherapy.

Among various types of virus-induced cell death, pyroptosis was
recently defined as gasdermin family protein-mediated cell death
accompanying inflammatory responses mechanistically distinct
from apoptosis.20–22 Among the six human gasdermin family mem-
bers, the best characterized are gasdermin D (GSDMD) and E
(GSDME), mainly activated by caspase-mediated cleavage.23 The pro-
teolytic cleavage releases the N-terminal pore-forming domain to oli-
gomerize and form pores on the cell membrane, thus leading to cell
swelling, membrane rupture, and eventually cell lysis.24,25 The pores
also facilitate the release of pro-inflammatory cytokines interleukin-
1b (IL-1b)26 and IL-1827 and the cytokine mediator high-mobility
group box 1,28 thus contributing to inflammatory pyroptosis.

Here, we found ZIKV induces cytolysis by caspase-independent py-
roptosis besides apoptosis. The ZIKV protease specifically cleaved
GSDMD for pyroptosis to kill infected and nearby uninfected cells.
The GSDMD variants and small-molecule inhibitors could dominate
thors.
vecommons.org/licenses/by/4.0/).
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ZIKV-triggered cytotoxicity outcomes. Thus, ZIKV as an oncolytic
virotherapy against GBM cells could be genetically prognostic and
pharmacologically regulated.

RESULTS
Caspase-independent pyroptosis governs ZIKV-induced human

GBM cell death

To evaluate the ZIKV oncolytic potential, we established a ZIKV
infection model in a cell culture system by using the human GBM
cell line SF268. ZIKV infection was confirmed by immunostaining
for ZIKV protein (Figures 1A and 1B). Phase-contrast imaging
showed that ZIKV induced cytotoxicity (Figure 1C), which was
further quantified by measuring cell viability (Figure 1D) and lactate
dehydrogenase (LDH) released in the culture supernatant (Fig-
ure 1E). Propidium iodide (PI) staining revealed dead cells and an-
nexin V staining ZIKV-induced apoptosis (Figure 1F). Because not
all the dead cells (PI positive) were annexin V positive (Figure 1G),
we wondered whether the ZIKV oncolytic activity could be non-
apoptotic. This scenario was confirmed by the pan-caspase inhibitor
zVAD partially blocking the ZIKV-induced cytotoxicity (Figure 1H,
top panel) when ZIKV-activated caspase-3 was mainly blocked (Fig-
ure 1H, bottom panel). To test whether pyroptosis was responsible
for the caspase-independent oncolysis upon ZIKV infection, we
knocked down the expression of endogenous GSDMD in SF268
cells. ZIKV-triggered LDH release in shLacZ control cells was signif-
icantly reduced by silencing GSDMD with the two independent
short hairpin RNAs (shRNAs) (#013 and #394) (Figure 1I). Thus,
ZIKV infection triggered caspase- and GSDMD-mediated cytotox-
icity in human GBM SF268 cells.

GSDMD is required for ZIKV-induced cytotoxicity

To understand how ZIKV induces pyroptosis in human cells, we first
used an infection-transfection A549 cell model to check cleavage of
the pyroptosis marker gasdermin family protein. A cleaved product
of GSDMD, but not GSDME, was readily detected in ZIKV-infected
cells (Figure 2A). To clarify the roles of GSDMD in ZIKV infection
without the effects of incomplete GSDMD knockdown (Figure 1I),
we knocked out endogenous GSDMD in SF268 cells by using the
CRISPR-Cas9 system. GSDMD knockout (GSDMD�/�) was verified
by sequencing the genomic DNA of SF268-GSDMD�/� cells (Fig-
ure 2B). Consistent with the GSDMD knockdown cells, ZIKV-
induced cytotoxicity was greatly reduced by GSDMD knockout (Fig-
ure 2C). In line with the GSDMD-mediated pyroptosis accompanying
inflammatory cytokine IL-1b production, the bioactivity and quantity
of ZIKV-induced IL-1b was greatly reduced by GSDMD ablation
(Figure 2D). Phase-contrast imaging revealed ZIKV-induced killing
of wild-type (WT) GBM cells, with infectedGSDMD�/� cells remain-
ing intact (Figure 2E). We used ZIKV to infect a coculture pool of
RFP-labeled WT and GFP-labeled GSDMD�/� cells to confirm the
observation. The synchronized ZIKV infection revealed that WT,
rather than GSDMD�/�, cells were more sensitive to the ZIKV killing
effects (Figure 2F). Thus, GSDMD positively contributed to the
ZIKV-induced cell death and pro-inflammatory cytokine secretion
in human GBM SF268 cells.
ZIKV protease is sufficient to trigger GSDMD-mediated cell

death

TheNS2B3 should be the only exogenous protease introduced by ZIKV
infection despite the various host proteases that could be activated.
Activating canonical pyroptosis depends on the cellular caspases,29

so we wondered whether ZIKV triggers caspase-independent pyropto-
sis by the viral protease. Cotransfection of ZIKV protease NS2B3 and
GSDMD showed that expressing the viral protease alone, but not its
protease-dead mutant (S135A), was sufficient to cleave GSDMD (Fig-
ure 3A) and trigger cell death (Figure 3B). The cleavage seemed species
specific because missing the corresponding cleavage sitemakes themu-
rine GSDMD resistant to ZIKV protease (Figure S1), indicating species
concerns of animal models used in ZIKV therapy studies. According to
the cleaved GSDMD product molecular weight, and putative viral
cleavage site motifs (a short side chain following two basic residues)30

analysis, ZIKV protease seemed to specifically cleave GSDMD at the
KRYS250 (Figure 3C). This hypothesis was further confirmed by the co-
transfection of ZIKV protease with the GSDMD(S250V)mutant. ZIKV
protease cleaved the GSDMD(WT), but the GSDMD(S250V) mutant
was resistant to the cleavage (Figure 3D). Hence, ZIKV protease-trig-
gered cytotoxicity was greatly attenuated by the S250V mutant
(Figure 3E). The cellular caspase- (gray arrows and triangle) and
ZIKV protease-mediated GSDMD cleavage products (black arrows)
were further investigated by treating the ZIKV-infected cells harboring
the GSDMDs of interest with zVAD or not (Figure S2). To understand
the timeline of GSDMD-mediated cell death after ZIKV infection, we
checked the GSDMD cleavage events in cells stably expressing the
V5-tagged GSDMDs. ZIKV protease-mediated GSDMD cleavage was
detected as early as 9 h (Figure 3F, lane 2, black arrow), but the cas-
pase-mediated GSDMD cleavage was observed later, at 18 h (Figure 3F,
lane 3, gray arrow). Of note, ZIKV protease-resistant GSDMD(S250V)
slightly reduced the caspase-mediated cleavage (Figure 3F, lane 3 versus
8, gray arrow), which suggests ZIKV protease-intiated, rather than cas-
pase-initiated, pyroptosis in ZIKV-infected SF268 cells. At all events,
cells with GSDMD(S250V) showed more resistance to ZIKV-induced
cytotoxicity than did GSDMD(WT) cells (Figure 3G) after ZIKV infec-
tion. In sum, ZIKV protease alone was sufficient to induce cell death by
cleaving GSDMD at the KRYS250 site.

Cleaved GSDMD disseminates damage over adjacent cells

ZIKV elicited an extremely high level of cell damage in SF268 cells ex-
pressing GSDMD(WT) but not GSDMD(S250V) (Figure 3G), indi-
cating that the viral protease-mediated GSDMD cleavage might
amplify cell demolition to cause massive cell death. Thus, we trans-
fected the cytotoxic GSDMD cleavage product mimic GSDMD(1–
249) into cells to test this hypothesis. As expected, an LDH release assay
showed that the N-terminal GSDMD cleavage product caused massive
death of the transfectant cells regardless of caspase activities (Fig-
ure 4A). Analyzing the culture supernatant of GSDMD(1–249) trans-
fectants (Figure 4B) showed that the 1–249 mimics were also released
and formed oligomers, which may permeabilize the cell membrane,
thus leading to rupture (Figure 4C). Hence, we cultured fresh Vero cells
with conditionedmedia to determine whether the secretedGSDMD(1–
249) harms naive cells. Live staining assay showed that conditioned
Molecular Therapy: Oncolytics Vol. 28 March 2023 105

http://www.moleculartherapy.org


BA

D F

G

E

H

ZIKV: - - ++ - +

shLacZ shGSDMD
013 394

SF268 stably expressing shRNA

R
el

at
iv

e 
LD

H
 re

le
as

e

GSDMD

Actin

shLacZ 013 394
shGSDMD

***
***

0

1

2

I

C
N

S3
D

AP
I

mock ZIKV (moi 5)

100 M

ZIKVmock

50 M

%
 o

f c
el

l v
ia

bi
lit

y

0

20

40

60

80

100

ZIKV: - +

***
R

el
at

iv
e 

LD
H

 re
le

as
e

0

0.5

1

1.5

2

2.5

ZIKV: - +

***
R

el
at

iv
e 

LD
H

 re
le

as
e

***

0

1

2

- - +
- +

zVAD:
ZIKV:

NS3

Actin

cleaved 
CASP3

1 2 3

100 101 102 103
100

101

102

103
7.68%

70.4%

17.7%

4.24%

100 101 102 103
100

101

102

103

0.47%

94.3%

2.95%

2.27%

Annexin V

PI
m

oc
k

ZI
KV

NS3

Actin

0 9 16 24p.i. (h):
ZIKV

1 2 3 4

PI

Annexin VPI/Annexin V

50 M

CTBZI
KV

Live

Figure 1. ZIKV-induced caspase-independent cell lysis in human glioblastoma cells

(A–E) SF268 cells were infected with ZIKV. Cells were stained with anti-NS3, and nuclei were counterstained with DAPI (A). ZIKV protein level examined by Western blot

analysis (B). p.i., post-infection. The morphology of the cytopathic effect of ZIKV observed by phase-contrast imaging (C). Cell viability measured by trypan blue exclusion

assay (D). The supernatant was analyzed for lactate dehydrogenase (LDH) release (E). ZIKV-infected SF268 cells were live stained with propidium iodide (PI; red), annexin V

(green), and control counterstain CellTracker Blue (CTB; blue) (F). Cells were photographed by fluorescence microscopy. Yellow arrows, PI-positive but annexin V-negative

cells. SF268 cells were live stained with PI and annexin V and then analyzed by flow cytometry (G). SF268 cells were infected with ZIKV in the absence (�) or presence (+) of

zVAD (50 mM) (H). Released LDH in the supernatant (top panel) and the expression of indicated proteins in the cell lysates (bottom panel). CASP3, caspase-3. SF268 cells

stably expressing shRNA targeting control LacZ and human GSDMD confirmed by western blot analysis (I). The shLacZ- or shGSDMD-SF268 cells were infected with ZIKV

for LDH release assay. #013 and #394 represent two different shRNAs targeting GSDMD. Data are mean ± SD, n = 3 per group. ***p < 0.001.
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Figure 2. GSDMD is responsible for ZIKV-induced cytotoxicity in human glioblastoma cells

(A) A549 cells with or without ZIKV infection were transfected with V5-tagged GSDMD or GSDME. Cell lysates were examined by western blot analysis. White arrows, full-

length GSDMD or GSDME; black arrow, cleaved product. (B) GSDMD genomic DNA sequencing of SF268 wild-type (WT) and knockout (GSDMD�/�) cells. The single guide
RNA sequence designed for CRISPR-Cas9 genome editing is marked in a black frame. (C–E) WT and GSDMD�/� SF268 cells were infected with ZIKV for western blot

analysis (C, bottom panel), LDH release (C, top panel), IL-1b secretion (D), and phase-contrast imaging (E). Data are mean ± SD (n = 3 per group). ***p < 0.001. (F) WT (stably

RFP-labeled) and GSDMD�/� (stably GFP-labeled) SF268 cells were cocultured overnight and synchronize infected with ZIKV for another 24 h, then were examined by

fluorescent and phase-contrast microscopy. Yellow arrows, damaged cells.
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media harboring GSDMD(1–249) were sufficient to permeabilize the
naive Vero cell membrane for PI staining (Figure 4D). We infected
SF268 cells with ZIKV to check whether the GSDMD(1–249)-mediated
remote-killing phenomenon was reflected in natural ZIKV infection of
GBM cells (Figure 4E). At 31 h post-infection, when the ZIKV-infected
cells were permissive to PI staining (Figure 4F), secreted GSDMD was
also detected in the culture supernatant (Figure 4G). The conditioned
culture media was then UV irradiated to inactivate ZIKV and used to
treat naive SF268 cells. In the absence of infectious ZIKV, the
conditionedmedia remained able to damage the naive SF268 cell mem-
brane (Figure 4H). Consistently, live staining of the cell surface ZIKV
NS1 and PI thus showed that uninfected cells (NS1 negative) could die
(PI positive) from being exposed to a cytotoxic environment created by
the infected cells (Figure S3). The pan-caspase inhibitor zVAD did not
block the ZIKV-induced GSDMD-mediated cell injury (Figures 4I and
4J), which suggests that ZIKV infection harmed the infected human
GBM cells and disseminated GSDMD-mediated injury to nearby
uninfected cells.
Molecular Therapy: Oncolytics Vol. 28 March 2023 107
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GSDMD single-nucleotide polymorphisms (SNPs) affect ZIKV-

induced cytotoxicity

ZIKV activates pyroptosis by viral protease, specifically cleaving
GSDMD at KRYS250, which suggests that oncolytic ZIKV viral
108 Molecular Therapy: Oncolytics Vol. 28 March 2023
therapy would depend on the GSDMD vulnerability to ZIKV prote-
ase. We replaced the S residue of human GSDMD with the
corresponding residue V found in murine and restored the SF268-
GSDMD�/� cells with either the WT or S250V mutant for ZIKV
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infection. ZIKV-induced LDH release (Figure S4A), IL-1b production
(Figure S4B), and disseminated GSDMD-mediated injury to neigh-
boring uninfected cells (Figures S4C and S4D) were all attenuated
with the S250V mutant. Thus, blocking caspase-1-mediated
GSDMD activation (Figure S4E, lane 4, gray triangle) could reduce
ZIKV-induced cytotoxicity in the cells with the S250V mutant to
the level comparable to the absence of endogenous GSDMD (Fig-
ure S4F). We next checked whether the natural SNP of human
GSDMD affects ZIKV-induced cell killing. As expected, the
GSDMD R249H variant (SNP rs138749323) resisted ZIKV prote-
ase-mediated cleavage (Figure 5A) and thus did not trigger cell death
(Figures 5B and 5C).

We next checked other natural SNPs from two databases to investi-
gate theGSDMD genetic background for potential ZIKV oncotherapy
responders. Overall, 5,616 GSDMD SNPs were identified in the global
dbSNP database, and 175 GSDMD variants were in the local Taiwan
BioBank.31 We narrowed down the SNPs of interest to the coding re-
gion (593 in dbSNP, 12 in Taiwan BioBank), which resulted in
missense variants (379 in dbSNP, 7 in Taiwan BioBank)
(Figures S5A and S5B). Because activated GSDMD forms pores to
permeabilize the cell membrane, we focused on the two missense var-
iants, A109T (SNP rs200806004) and T205M (SNP rs149736517),
that reside in the pore-forming domain (Figures S5B and S5C). Co-
transfection of the GSDMD variants with ZIKV protease showed
that both A109T and T205M variants remained susceptible to
ZIKV protease (Figure 5D) and capable of mediating cell death (Fig-
ure 5E) after cleavage. Thus, we did not find the GSDMD genetic
background of possible ZIKV oncotherapy non-responders in Taiwa-
nese people by this strategy.
The variant and inhibitor disturbing GSDMD oligomerization

attenuates ZIKV-induced cell lysis

Although most human GSDMDs seemed capable of mediating ZIKV
protease-triggered oncolysis, the marginal cell death attenuation of
the A109T variant drew our attention. The A109T GSDMD variant
resides in the pore-forming domain, which suggests that a variant
with defects in GSDMD pore formationmight prevent ZIKV-triggered
pyroptosis. Therefore, we investigated the F240L variant (SNP
rs140608348; Figure S5D) that aborts GSDMD oligomerization.32

Because the F240L variant did not affect the KRYS250 cleavage site,
the ZIKV protease remained able to cleave GSDMD(F240L) and the
GSDMD(WT) in a cotransfection assay (Figure 6A). However, cleaving
Figure 4. Transferring the cleaved GSDMD product produces cell death in neig

(A) 293T/17 cells were transfected with GSDMD full-length or GSDMD cleavage product

analyzed. Data are mean ± SD (n = 3 per group). ***p < 0.001. (B–D) Experimental desig

cells were transfected with GSDMD(1–249), and the supernatant was harvested and su

used as the conditionedmedia to treat naive Vero cells. Red, PI live staining; BF, bright fie

neighboring cells (E). ZIKV-infected SF268 cells were live stained with PI (red) or fixed st

ZIKV-infected SF268 cells was examined by western blot analysis (G). The culture super

conditioned media incubating the naive SF268 cells. Cells were live stained with PI to ch

UV inactivated (H). PI, red; NS3, green; DAPI, blue. (I and J) The experiment carried out in

inactivated conditioned media from mock- or ZIKV-infected SF268 cells for 24 h. Cells
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F240L did not induce LDH release (Figure 6B) or cell damage (Fig-
ure 6C) as did cleaving GSDMD(WT). Therefore, we restored the
SF268-GSDMD�/� cells with theWT or F240L variant for ZIKV infec-
tion. ZIKV protein expression seemed equivalent among GSDMD�/�

cells restored with the GSDMD(WT) or GSDMD(F240L) variant:
both the WT and F240L remained sensitive to ZIKV cleavage, but
F240Ldidnot formoligomers and secrete after the cleavage (Figure 6D).
Consistently, ZIKV-induced LDH release (Figure 6E) and IL-1b pro-
duction (Figure 6F) were greatly attenuated with the F240L variant as
for without endogenous GSDMD. This finding was also supported by
the GSDMD cleavage product mimic with F240L losing its cytotoxicity
(Figure S6). Thus, targeting GSDMD oligomerization could abolish
ZIKV-induced cytotoxicity and the inflammatory response.

Because ZIKV protease-triggered pyroptosis depended on the cleaved
GSDMD product pore-forming capability, we sought some small
molecules targeting this step for better pharmacological control of
ZIKV-induced oncolysis if required. We tested the killing effects un-
der treatment with necrosulfonamide (NSA), a small molecule
directly interacting with GSDMD to prevent its oligomerization.33

NSA successfully protected SF268 cells against death triggered by
GSDMD(1–249) (Figure 7A) or ZIKV protease-cleaved GSDMD
(Figures 7B and 7C). NSA alone was sufficient to reduce ZIKV-
induced cell death (Figure 7D) and IL-1b secretion (Figure 7E). We
tested another inhibitor, punicalagin (PUN), which reversibly blocks
plasma membrane permeabilization,34 for protection against ZIKV-
induced cell death. PUN successfully attenuated cell death triggered
by transfecting GSDMD(1–249) (Figure S7A), cotransfecting full-
length GSDMD with ZIKV protease (Figure S7B), or ZIKV infection
(Figure S7C). However, PUN did not rescue ZIKV-induced IL-1b
production (Figure S7D), probably because of the significant but mar-
ginal protection effect of PUN. Together, the results indicate that
ZIKV protease-triggered, GSDMD-mediated oncolysis depends on
the host GSDMD genetic background and could be pharmacochemi-
cally aborted if needed.
DISCUSSION
Virus-induced cell death could be a “double-edged sword” for the in-
fected host: killing the healthy tissue cells is pathogenic, but elimi-
nating the malignant tumor cells is therapeutic. ZIKV seems prefer-
entially harmful to the neurons of fetuses and children35 but
seldomly adults, so pathogenic ZIKV infection could be a potential
oncolytic therapy against adult GBM.36,37 However, a safe and
hboring cells

mimic 1–249 in the absence (�) or presence (+) of zVAD (50 mM). Released LDHwas

n to study the effects of cleaved GSDMD product on neighboring cells (B). 293T/17

bjected to western blot analysis of secreted GSDMD (C). The supernatant was then

ld (D). (E–H) Experimental design of study of the effect of ZIKV-activated GSDMD on

ained with anti-NS3 antibody (green) and DAPI (blue) (F). The culture supernatant of

natant from mock- or ZIKV-infected SF268 cells was UV inactivated and used as the

eck viability or fixed stained with DAPI and anti-NS3 antibody to confirm viruses were

the presence or absence of zVAD (I). Naive SF268 cells were incubated with the UV-

were live stained with PI or fixed stained with anti-NS3 antibody and DAPI (J).
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aspirational viral therapy requires investigation of the mechanism of
how, beyond the phenotypic observations, the virus causes specific
cell death. Here, we showed that ZIKV could be an oncolytic virus
by killing human GBM via viral protease-mediated GSDMD activa-
tion. The species-specific GSDMD cleavage also suggested that a hu-
manized animal or human GSDMD transgenic mouse rather than a
simple murine GBM model would provide convincing experimental
conclusions of preclinical ZIKV oncotherapy.

GSDMD is a novel biomarker for evaluating the cancer prognosis
because of the high protein expression level in glioma and its associ-
ation with significant survival of GBM patients.38 GSDMD-mediated
pyroptosis accompanies the release of the pro-inflammatory cytokine
IL-1b,26,39 which supports the tumor-specific T helper 1 cell-medi-
ated immune response against cancer.40 The conventional pyroptosis
release of mature IL-1b is by caspase-1- or caspase-11/4/5-mediated
GSDMD cleavage that releases the GSDMD-N perforating the plasma
membrane.29,41 Because the process can be negatively regulated by
caspase-3-mediated cleavage of GSDMD-N,42 the ZIKV protease-
activated pyroptosis might be manipulated by infection-elicited cas-
pases. Whether the ZIKV-induced caspase profiles or specific caspase
inhibitors affect the therapeutic outcomes of ZIKV tumor therapy
awaits further investigation.

Virulence factors contributing to ZIKV-induced cell death need to be
identified to provide the foundations of applying ZIKV. Overexpress-
ing ZIKV E protein alone is sufficient to suppress cell proliferation
and induce caspase-mediated apoptosis.43 A 10-nt deletion in the 30

untranslated region of the ZIKV genome produces a live-attenuated
ZIKV both in vitro and in vivo and has been proposed as a vaccine
candidate against ZIKV44 and as virotherapy against malignant
GBM.45 Therefore, to eliminate uncertainty about other ZIKV com-
ponents, nanoparticles or single-round infectious particles harboring
the ZIKV protease or GSDMD-N should be safer than the live virus
for cancer therapy.

Among various proteins and cytokines secreted after infection,
GSDMD-N release upon ZIKV infection interested us. The released
GSDMD-N may harm the uninfected tumor cells to expand the ther-
apeutic effects or normal tissue to cause side effects. Considering that
GBM is a solid, not a liquid, tumor, with local GSDMD-N secretion
and ZIKV replicating capability, a small dose of ZIKV would be suf-
ficient for the therapy. The extracellular GSDMD-N may also benefit
patients with brain cancer who are susceptible to bacterial infection
because GSDMD is an antibacterial peptide.46 Of note, the entero-
virus protease 3C stops pyroptosis by further cleaving GSDMD-
N,47 so ZIKV oncotherapy would be complicated when coinfecting
microbes capable of antagonizing GSDMD activation.
Figure 6. GSDMD oligomerization-deficient variant decreases ZIKV-induced c

(A–C) 293T/17 cells were cotransfected with the ZIKV protease and the GSDMD varia

supernatant was collected for LDH assay (B). Phase-contrast photography is shown in (C

infected with ZIKV as indicated. Cell lysates and the culture supernatant were examine

(E) and IL-1b secretion (F). White arrows, full-length GSDMD-V5; black arrows, ZIKV prot
To date, no ZIKV-based clinical trial has been conducted for oncology
therapies. Pros and cons coexist and complicate the virotherapy. A
suitable animal model for ZIKV therapy against human GBM re-
mains for development, but we demonstrated that ZIKV protease-
activated GSDMD is involved in the management and prognosis of
ZIKV therapy. A GSDMD genetic background could be used to
screen positive responders for the virotherapy. In an out-of-control
ZIKV infection, ZIKV protease should be the target to stop the treat-
ment. Nevertheless, the small molecules regulating GSDMD activa-
tion might serve to abort the virotherapy independent of ZIKV
protease activity. Until we obtain a better understanding of the mech-
anisms underlying ZIKV-induced cell lysis, our study provides a
reference base for preclinical evaluation for predicting treatment out-
comes and the possible impact of therapeutic effects combined with
drugs targeting GSDMD oligomerization or caspase activity.
MATERIALS AND METHODS
Inhibitors

Caspase inhibitor I (zVAD) (627610) and NSA (480073) were from
Merck (Kenilworth, NJ, USA).
Plasmids

The cDNA of human GSDMD or GSDME was amplified from total
cDNA from A549 cells by PCR with the primers 50-GCGTC
GACGGGTCGGCCTTTGAGCG-30 and 50- GCTCTAGACCGTGG
GGCTCCTGGCTCAGT-30 for GSDMD and 50- GCGTCGACTTTG
CCAAAGCAACCAGGAAT-30 and 50- GCTCTAGACCTGAATGT
TCTCTGCCTAAAGCACAG-30 for GSDME. The GSDMD mutants
were obtained by single-primer PCRmutagenesis48 with GSDMD-V5
used as a template and the following primers: 50-GCAAAGATCG
CAGGCGGCGCCACGGTGTCTGACAGCTCCAGC-30 for GSD
MD(A109T); 50-GGCCATCTGAGCCAGAAGAAGATGGTCACC
ATCCCCTCAGGATCCACCCTCGCATTCCGGGT-30 for GSDMD
(T205M); 50-CGGATAAGAAGCAGAGGACCCTGCAGCCACC
CGCGACA-30 for GSDMD(F240L); 50-CCAGCCACCCGCGAC
CGGTCACAAGCATTCCACGAGCGAAGGCG-30 for GSDMD
(R249H); and 50-CGACAGGCCACAAGCGTGTCACGAGCGAAG
GCGC-30 for GSDMD(S250V). Truncated GSDMD(1–249) was
cloned from GSDMD-V5 by PCR with the 50-CCCAAGCTTAC
CATGGGGTCGGCCTTTGA-30 and 50-CTAGTCTAGACCACGC
TTGTGGCCTGTCG-30 primers. ZIKV NS2B3 was cloned by using
the 50-GTGTGGTGGAATTCGGCTGAAAATGAGCTGGCCCCC
TAGCG-30 and 50-GACGCATGCGAATTCGGATCCTTCTTTTC
CCAGCGGCAA-30 primers. The S135A mutant of ZIKV NS2B3
was generated by single-primer mutagenesis48 with the primer
50-GCTGGATTACCCAGCAGGAACCGCGGGATCTCCAATCCT
AGACAAGTGTG-30.
ytotoxicity

nts as indicated. Cell lysates were examined by western blot analysis (A), and the

). (D–F) SF268-GSDMD�/� cells stably restored with each V5-tagged GSDMDwere

d by western blot analysis (D). The supernatant was also measured for LDH release

ease-cleaved GSDMDproducts. Data aremean ±SD (n = 3 per group). ***p < 0.001.
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(A) 293T/17 cells were transfected with GSDMD(1–249) in the absence (�) or presence (+) of necrosulfonamide (NSA; 50 mM). Released LDHwas analyzed. (B) 293T/17 cells

were cotransfected with full-length GSDMD and NS2B3 in the absence (�) or presence (+) of NSA (50 mM). Released LDH was analyzed. (C) 293T/17 cells were transfected

with GSDMD(1–249) or cotransfected with full-length GSDMD and NS2B3 in the absence (�) or presence (+) of NSA (50 mM). Phase-contrast photography is shown. (D and

E) SF268 cells were infected with ZIKV in the absence (�) or presence (+) of NSA (10 mM) or zVAD (50 mM). Released LDH (top panel) was analyzed and cell lysates (bottom

panel) were analyzed for NS3 protein level (D), and IL-1b secretion was determined (E). Data are mean ± SD (n = 3 per group). ***p < 0.001.
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Virus and cell lines

ZIKV strain PRVABC59 (GenBank: KU501215) was from the Centers
for Disease Control, Taiwan. The human GBM cell line SF268 (RRID:
CVCL_1689) was from Dr. Wen-Chi Su (China Medical University,
Taichung, Taiwan). Cells were cultured in DMEM (SH30022.02, Hy-
Clone, Logan, UT, USA) containing 10% fetal bovine serum (FBS).
Mosquito cell line C6/36 (CRL-1660, ATCC) was grown in RPMI
(SH30027.01, HyClone) containing 5% FBS. Human lung epithelial
carcinoma A549 cells (CCL-185, ATCC) were cultured in F-12K
(21127-022, Gibco, Eugene, OR, USA) containing 10% FBS. Endoge-
nous GSDMD-undetected human 293T/17 cells (CRL-11268, ATCC)
were grown in DMEM containing 10% FBS. African green monkey
kidney Vero cells (CCL-81, ATCC) were cultured in MEM
(SF30024.02, HyClone) containing 10% FBS. Stably knocked down
cells were established by transduction of the lentiviral vector harboring
shLacZ (TRCN0000072224) or shGSDMD (TRCN0000180013, the
#013; TRCN0000179394, the #394) from RNAi Core Facility at
Academia Sinica, Taiwan. ZIKV was propagated in the C6/36 cells.
The virus titer was measured by plaque-forming assay using Vero cells
as described.49 For ZIKV infection assays, cells were adsorbed with
ZIKV for 2 h, and the unbound viruses were removedwith freshmedia.
114 Molecular Therapy: Oncolytics Vol. 28 March 2023
Except for the specified multiplicity of infection (MOI) labeled in the
figure, all the others were done using an MOI of 20.

GSDMD knockout SF268 cells

The all-in-one CRISPR vector pAll-Cas9.Ppuro (RNAi core facility,
Academia Sinica, New Taipai, Taiwan) was digested with BsmBI
and ligated with annealed oligonucleotides (GTTGTGCTCTCG
GGGCGGGC and GTGAGGGCTTCCTAACCACC) for specific
sgRNAs targeting human GSDMD. SF268 cells were transfected
with adequate CRISPR plasmid by Lipofectamine 3000 Reagent
(Thermo Fisher Scientific, Eugene, OR, USA) and then selected
with puromycin (0.5 mg/mL) for additional 3 days. Single-cell clone
candidates were obtained by limiting dilution method. Genomic
DNA from candidates was subject for PCR check. A WT (840 bps)
or knockout (676 bps) PCR amplicon spanning the target site was
tested using the following primers: 50-TACCGTAGACAACAGGGA
GAACACTG-3’ and 50- AGAGTCTGCCAGGTGTTAGGGTCC-30.

Immunofluorescence assay

SF268 cells were fixed with 4% paraformaldehyde in phosphate-buff-
ered saline (PBS; BF203-5L, Protech Technology, Taipei, Taiwan) for
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30 min. After blocking with skim milk in PBS, cells were incubated
with primary antibodies against NS3 (AS3-274)50 diluted in skim
milk in PBS overnight, then with Alexa Fluor 488-conjugated goat
antimouse antibody (A21042, Invitrogen, Rockford, IL, USA) for
1 h at room temperature, followed by nuclear DAPI counterstaining
(0.25 ng/mL; D1306, Thermo Fisher Scientific). Cells were photo-
graphed by fluorescence microscopy (Olympus IX73).

Western blot analysis

Cells were lysed with radioimmunoprecipitation assay (RIPA) buffer
(10 mM Tris [pH 7.5], 5 mM EDTA, 150 mM NaCl, 0.1% SDS, 1%
Triton X-100, 1% sodium deoxycholate) including a cocktail of prote-
ase inhibitors (04693132001, Roche,Mannheim,Germany). Equivalent
amounts of proteins were separated on SDS-PAGE and transferred to a
nitrocellulose membrane (XR-IGE-10600003, Amersham, Darmstadt,
Germany). Non-specific antibody binding sites were blocked with
skim milk in PBS with 0.1% Tween 20 (PBST), then reacted with the
indicated primary antibodies for caspase-3 (#9662), GSDMD
(#96458 and #97558), V5 tag (#13202), cleaved IL-1b (#83186), and
Myc tag (#2278) from Cell Signaling Technology (Beverly, MA,
USA); antibodies for ZIKV NS3 (GTX133309), actin (GTX629630),
and ZIKV NS1 (GTX133323) from GeneTex (Irvine, CA, USA); and
anti-FLAG (F1804) from Sigma-Aldrich (St. Louis, MO, USA), and
then incubated with corresponding secondary antibodies. Signals
were detected by Immobilon Western Chemiluminescence HRP Sub-
strate (WBKLS0500, Millipore, Darmstadt, Germany) or SuperSignal
West Femto Maximum Sensitivity Substrate (34096, Thermo Fisher
Scientific) using UVP (ChemiDoc-It Imaging system, Analytik, Jena,
Germany) with VisionWorks LS v.8.20 software.

Trypan blue exclusion assay

CellsweremixedwithGibcoTrypanBlue Solution (15250-061, Thermo
Fisher Scientific), and surviving cells were counted for cell viability.

Cytotoxicity test

Cell death was evaluated by detecting LDH release by using the Cyto-
toxicity Detection Kit (11644793001, Roche).

Detection of cell death

Cells were sampled and live stained with CellTracker Blue (C2110, In-
vitrogen) for 15 min, then washed with medium and stained with PI
and annexinV for 10minwith the Annexin V-FITCApoptosis Detec-
tion Kit (ab14085, Abcam, Cambridge, UK), followed by fluorescence
microscopy (Olympus IX73) to obtain photographs. To quantify cell
death, cells were detached and stained with PI and annexin V for
10 min before analyzing by flow cytometry (BD FACSCalibur).

Measurement of bioactive IL-1b

HEK-Blue IL-1b cells (hkb-il1bv2, InvivoGen, San Diego, CA, USA)
were seeded at 150 mL per 96-well plate overnight, then incubated
with 50 mL UV-inactivated conditioned media for another day. UV
inactivation was done by using the GS Gene Linker UV Chamber
(Bio-Rad, Hercules, CA, USA) following the program setting of sterili-
zation application. For the confirmation of virus inactivation in the
experiments, a parallel experiment was done side by side stained with
ZIKV viral protein to ensure no virus was alive. HEK-Blue IL-1b cells
sense bioactive IL-1b in conditioned media and then activate nuclear
factor kB (NF-kB)/AP-1, leading to the production of secreted embry-
onic alkaline phosphatase (SEAP). The cell culture supernatant was
transferred to a flat-bottom 96-well plate and mixed with 150 mL/well
QUANTI-Blue Solution, a SEAP detection medium (rep-qbs,
InvivoGen). After incubation, the bioactive IL-1b was represented by
measuring the SEAP levels by spectrophotometry at 650 nm.

Trichloroacetic acid solution (TCA) precipitation

TCA precipitation helped to detect trace proteins in the culture super-
natant.51 Briefly, the secreted GSDMD in the culture supernatant was
incubated with 1 mM disuccinimidyl suberate (DSS) (#21655,
Thermo Fisher Scientific) for 30 min. The reaction was quenched
by 1 M Tris-HCl (pH 7.5) for 10 min, and the protein samples
were precipitated using 20% TCA (T0699, Sigma-Aldrich) at a ratio
of 1:1. After incubation on ice for 30min, the mixture was then centri-
fuged at 4�C at 15,000 � g for 15 min. The pellet was washed three
times with ice-cold acetone and centrifuged at 4�C at 15,000 � g
for 10 min. The supernatant was removed, the pellet was air dried,
and then the pellet was reconstituted in 1� SDS sample buffer for
western blot analysis.

Quantification and statistical analysis

Data are shown as mean ± SD. Two-tailed Student’s t test was used to
compare differences between two groups. p <0.05 was considered sta-
tistically significant.
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Figure S1. ZIKV inducing caspase-independent pyroptosis is species-dependent. (A) Corresponding amino
acid sequences surrounding the ZIKV cleavage motif (KRS) of both human and murine GSDMD were aligned. (B,
C) human glioblastoma SF268 cells (B) and murine neuroblastoma N18 cells (C) were infected with ZIKV in the
absence (-) or presence (+) of zVAD (50 µM). (D, E) 293T/17 cells were cotransfected with ZIKV protease
NS2B3 (WT, wild-type; S135A, the protease-dead mutant) and GSDMDs; lysates were examined by western blot
analysis (D), and the supernatant was analyzed for LDH release (E). mGSDMD, murine GSDMD. Data are mean
± SD, n = 3 per group. ***p < 0.001.
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Figure S2. ZIKV-induced caspase-dependent and -independent GSDMD cleavage. (A) Mock- or ZIKV-
infected Vero cells expressing full-length GSDMD-V5 in the absence (-) or presence (+) of zVAD (50 µM) were
examined by western blot analysis. (B) Vero cells stably expressing GSDMD WT or its S250V mutant were
infected with ZIKV in the absence (-) or presence (+) of zVAD (50 µM). (C) Mock- or ZIKV-infected SF268-
GSDMD-/- cells expressing full-length GSDMD-V5 in the absence (-) or presence (+) of zVAD (50 µM) were
examined by western blot analysis. CASP3, caspase-3; CASP1, caspase-1. White arrows, full-length; black
arrows, ZIKV protease-cleaved; gray arrows, CASP3-cleaved; gray triangle, CASP1-cleaved; star, non-specific.
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Figure S6. The cleaved GSDMD product with defective oligomerization lost its cytotoxicity. 293T/17 cells
were transfected with GSDMD(1-249). The supernatant was collected for LDH assay (A). Data are mean ± SD (n
= 3 per group). ***p < 0.001. Phase-contrast photography was shown in (B).

R
el

at
iv

e 
LD

H
 re

le
as

e

GSDMD:

W
T

F2
40

L-

1-249-

0

1

2

3

4

Transfection of 
GSDMD(1-249)

***

W
T

F2
40

L
G

SD
M

D
(1

-2
49

)
-

100 µM

6



A B C D

R
el

at
iv

e 
LD

H
 re

le
as

e

Transfection of 
GSDMD(1-249)

- - +
- 1-249

PUN:

GSDMD:

***

0

1

2

3

4

R
el

at
iv

e 
LD

H
 re

le
as

e

PUN:
GSDMD:

***

- - +
- full-length

Cotransfection of 
NS2B3 & GSDMD

0

1

2

3

ZIKV-

R
el

at
iv

e 
IL

-1
β

se
cr

et
io

n

n.s.

0.5

1

1.5

2

ZIKV infection

PUN: - +-

Figure S7. Punicalagin attenuates ZIKV-induced cytotoxicity. (A) 293T/17 cells were transfected with
GSDMD(1-249) in the absence (-) or presence (+) of punicalagin (PUN, 10 µM). Released LDH was analyzed. (B)
293T/17 cells were cotransfected with full-length GSDMD and NS2B3 in the absence (-) or presence (+) of PUN
(10 µM). Released LDH was analyzed. (C, D) SF268 cells were infected with ZIKV in the absence (-) or
presence (+) of PUN (10 µM) or zVAD (50 µM). Released LDH (upper panel) and cell lysates (lower panel) were
analyzed (C). IL-1β secretion (D) was determined. Data are mean ± SD, n = 3 per group. *p < 0.05, ***p < 0.001,
and n.s., not significant.

ZIKV infection

*

R
el

at
iv

e 
LD

H
 re

le
as

e 
(%

)

PUN:

zVAD:

NS3

Actin

0

25

50

75

100

125

- + - +
- +

1 2 3 4

7



Supplemental Methods and Materials

Inhibitor

Punicalagin (PUN) (P0023) was from Sigma-Aldrich (Saint Louis, MO, USA).

Cell line

Murine neuroblastoma N18 cells1 were grown in RPMI (SH30027.01, HyClone, Logan, UT, USA) containing 5% FBS.

Plasmids

The GSDMD(1-249/F240L) was obtained by single-primer PCR mutagenesis with GSDMD(1-249)-V5 used as a
template and the primer 5′ CGGATAAGAAGCAGAGGACCCTGCAGCCACCCGCGACA-3′. Murine GSDMD
(MR207809) was from OriGene Technologies (Rockville, MD, USA).

Antibodies

The primary antibodies against ZIKV NS1 (YH0023) and Caspase-1 (#3866) were from Yao-Hong Biotechnology
(Taiwan) and Cell Signaling Technology (Beverly, MA, USA), respectively.
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