Supplementary Information

Gene	5'SE (% of alteration)	SIL-TAL1 (% of alteration)	Other (% of aleration)	5'SE <i>vs</i> . Other (Fisher Test)	5'SE vs SIL-TAL1 (Fisher Test)	Gene	5'SE (% of alteration)	SIL-TAL1 (% of alteration)	Other (% of aleration)	5'SE <i>vs.</i> Other (Fisher Test)	5'SE <i>vs.</i> SIL- TAL1 (Fisher Test)
AKT1	0	0	1	1,000	1,000	KMT2D	0	2	4	1,000	1,000
ASXL1	6	4	5	0,609	0,567	KRAS	0	0	5	1,000	1,000
BCL11B	17	7	19	1,000	0,348	LEF1	17	19	12	0,459	1,000
CDKN2A	100	86	66	0,001	0,186	NF1	6	2	10	1,000	0,425
CTCF	0	2	6	0,612	1,000	NOTCH1	39	56	76	0,001	0,280
DNM2	0	0	19	0,052	1,000	NRAS	6	0	10	1,000	0,240
DNMT3A	0	0	5	1,000	1,000	PHF6	0	7	39	< 0.001	0,567
EED	0	2	5	1,000	1,000	РІКЗСА	6	0	2	0.337	0.240
EP300	0	2	5	1,000	1,000	PIK3R1	6	7	3	0.433	1.000
ETV6	0	0	4	1,000	1,000	PTFN	17	49	10	0 418	0.026
EZH2	0	4	9	0,384	1,000		0	2	1	1,000	1,000
FBXW7	11	16	21	0,386	1,000		0	2	1	1,000	1,000
FLT3	0	0	1	1,000	1,000	P1PN2	0	2	9	0,382	1,000
GATA3	0	0	1	1,000	1,000	RUNX1	0	0	8	0,380	1,000
IDH1	0	0	1	1,000	1,000	SETD2	0	0	5	1,000	1,000
IDH2	6	0	2	0,337	0,240	SH2B3	0	0	5	1,000	1,000
IKZF1	0	4	7	0,617	1,000	STAT5B	11	0	8	0,659	0,055
IL7R	6	0	12	0,706	0,240	SUZ12	6	2	16	0,328	0,425
JAK1	0	2	8	0,381	1,000	TET2	11	4	2	0,083	0,242
JAK3	6	4	19	0,216	0,567	TET3	0	4	2	1,000	1,000
KMT2A	0	5	3	1,000	1,000	TP53	0	2	5	1,000	1,000
		·				WT1	0	0	12	0,239	1,000

Supplementary Table 1. Frequency of gene alterations according to TAL1 status

Genes in red have been reported as associated with poor prognosis in T-ALL

Total: n = 443	n = 60 (14%)	SIL-TAL1 <i>vs.</i> 5'SE	n = 20 (5%)	5'SE <i>vs.</i> Other T-ALL	n = 363
Variable	SIL-TAL1	p-value²	5'SE	p-value ²	Other T-ALLs
Male Age (y) ¹ WBC (G/I) ¹	47 / 60 (78%) 12.8 (3.0-51.8) 165 (4-770)	>0.9 0.5 0.15	16 / 20 (80%) 12.0 (2.8-27.7) 250 (26-980)	0.6 0.015 < 0.001	265 / 363 (73%) 16.5 (1.1-59.1) 47 (0-788)
CNS Involvement	7 / 59 (12%)	0.7	3 / 20 (15%)	0.5	40 / 361 (11%)
Immunophenotype					
ETP phenotype Immature (ΙΜΟ/δ/γ) Cortical (ΙΜΒ, preαβ) Mature TCRαβ	1 / 39 (3%) 0 / 53 (0%) 29 / 53 (55%) 24 / 53 (45%)	>0.9 0.3 0.4 0.3	0 / 11 (0%) 1 / 18 (6%) 12 / 18 (67%) 5 / 18 (28%)	0.13 0.09 0.15 0.07	52 / 255 (20%) 83 / 325 (26%) 156 / 325 (48%) 39 / 325 (12%)
αβ lineage	53 / 53 (100%)	0.2	17 / 18 (94%)	0.002	195 / 325 (60%)
Mature TCRγδ	0 / 53 (0%)	>0.9	0 / 18 (0%)	0.15	47 / 325 (14%)
Oncogenetic classification					
TLX1 TLX3 CALM-AF10	0 / 60 (0%) 0 / 60 (0%) 0 / 60 (0%)	>0.9 >0.9 >0.9	0 / 20 (0%) 0 / 20 (0%) 0 / 20 (0%)	0.09 0.02 >0.9	49 / 321 (15%) 68 / 321 (21%) 11 / 321 (3%)
High Risk Classifier	39 / 58 (67%)	0.6	12 / 20 (60%)	0.10	145 / 360 (40%)
Treatment Response					
Prednisone response Chemosensitivity MRD1 > 10-4 Complete Remission	18 / 56 (32%) 54 / 59 (92%) 21 / 49 (43%) 57 / 60 (95%)	0.6 0.11 0.4 0.6	8 / 19 (42%) 15 / 20 (75%) 5 / 17 (29%) 18 / 20 (90%)	0.2 0.6 0.5 0.7	203 / 359 (57%) 238 / 355 (67%) 103 / 256 (40%) 335 / 363 (92%)
Allograft	7 / 59 (12%)	0.7	1 / 19 (5%)	0.03	97 / 347 (28%)
Outcome 5-year CIR [95% CI] 5-year OS [95% CI]	36% [25;50] 63% [49;74]	0.04 0.02	50% [30;74] 45% [23;65]	0.003 0.001	28% [23;33] 72% [67;76]

Supplementary Table 2. Clinical features of 5'SE mutated T-ALL vs. SIL-TAL1 vs. Other T-ALL

¹ Statistics presented: Median (Minimum-Maximum)

²Statistical tests performed: Fisher's exact test; Wilcoxon rank-sum test. *p*-values <0.05 are indicated in bold WBC, White blood count; CNS, central nervous system; ETP, early thymic precursor; High Risk classifier, NOTCH1/FBXW7-RAS/ PTEN classifier ¹; CR, complete remission; MRD, minimal residual disease; Allo-HSCT, allogeneic hematopoietic stem cell transplantation; CIR, cumulative incidence of relapse; OS, overall survival, CI: confidence interval.

Α

В

Fig. S1.

A) Oncoplot showing the mutation profiles of 5'SE, SIL-TAL1 and other T-ALL and their relative mutation frequencies.

B) Circos plot demonstrating the mutational co-occurrences in 5'SE T-ALL (left) and SIL-

TAL1 T-ALL (right).

ASXL1 ASXL1 BCL11B BCL11B BCL11B BCL11B BCL11B CDRNZ3 EERD EERD EERD EERD CATA3 GATA3 GATA3 GATA3 GATA3 GATA3 CATA	1.01
AKT1 ASXL1 BCL11B CDKN2A CTCF DNM2 DNM2A	_0.82
EED EP300 ETVG	_0.62
EZHZ FBXW7 FLT3 GATA3	_0.43
IDH1 IDH2 IL7R JAK1	0.24
JAK3 KMT2A KMT2D KRAS	_0.05
LEF1 NF1 NOTCH1 NRAS	0.14
PHFO PIK3CA PIK3R1 PTEN	0.33
PTPN11 PTPN2 RUNX1 SETD2	0.53
SH2B3 STAT5B SUZ12 TET2	_0.72
TET3 WT1	0.91

Fig. S2

A) Corroplot showing co-mutations in 5'SE patients and (B) SIL-TAL1 patients. Cooccurrences and mutual exclusions in 5'SE and SIL-TAL1 T-ALL were computed with the DISCOVER algorithm. Strong correlations are indicated by large ellipses whereas weak correlations are indicated by small ellipses. The colors of the scale bar denote the nature of the correlation, with +1 indicating a perfect positive correlation (blue) and -1 indicating a perfect negative correlation (brown) between two genetic alterations.

Fig. S3.

A) Kaplan Meier survival curve (top panel) and cumulative incidence of relapse (bottom panel) for pediatric FRALLE 2000 T-ALL

B) Kaplan Meier survival curve (top panel) and cumulative incidence of relapse (bottom panel) for adult GRAALL 2003-2005 T-ALL

Α

Fig S4.

Viability curves of 5'SE, SIL-TAL1, and Other T-ALL Cell lines (A) and PDX (B) at increasing Mebendazole concentrations. Viability was normalized to DMSO controls. The Mean and SEM are shown of duplicate samples. (Two-way ANOVA; 5'SE *vs.* SIL-TAL1 and Other T-ALL p < 0.0001. IC50s 5'SE cell lines = 0.34μ M, SIL-TAL1 cell lines – 0.97μ M, Other T-ALL cell line = 3.52μ M. IC50s for 5'SE PDXs = 0.38μ M, SIL-TAL1 PDXs= 2.39μ M, TAL1-TCRB PDX = 1.66μ M, Other T-ALL PDXs = 2.94μ M.

Supplementary References

 Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, Lambert J, Beldjord K, Lengliné E et al. Toward a NOTCH1/FBXW7/RAS/PTEN–Based Oncogenetic Risk Classification of Adult T-Cell Acute Lymphoblastic Leukemia: A Group for Research in Adult Acute Lymphoblastic Leukemia Study. J Clin Oncol 2013; 31: 4333–4342.