Supplementary Material

Air Pollution Associated Respiratory Mortality Risk Alleviated by Residential Greenness in the Chinese Elderly Health Service Cohort

Shengzhi Sun, Chinmoy Sarkar^{*}, Sarika Kumari, Peter James, Wangnan Cao, Ruby Siu-yin Lee, Linwei Tian, Chris Webster

Table of Contents

Long-term PM_{2.5} exposure assessment

Nested case-control study

Table S1. Literature review on the modification effects of greenness on the adverse health effects of air pollution.

Table S2. Percent excess risk and 95% confidence interval of respiratory mortality per $10\mu g/m^3$ increase in air pollutants at 4-day moving average in the low and high residential greenness measured by normalized difference vegetation index with 500m.

Table S3. Additional percent excess risk in respiratory mortality associated with $10\mu g/m^3$ increase in air pollutants at the 4-day moving average by greenness quartiles within 500m.

Table S4. Additional percent excess risk in respiratory mortality associated with $10\mu g/m^3$ increase in air pollutants at the 4-day moving average by greenness quartiles within 250m in the nested case-control study.

Fig. S1. Flowchart of data analysis.

Fig. S2. Correlation matrix for fine particulate matter $(PM_{2.5})$ among ten air monitoring stations in Hong Kong.

Fig. S3. Correlation matrix for respirable particulate matter (PM_{10}) among ten air monitoring stations in Hong Kong.

Fig. S4. Correlation matrix for nitrogen dioxide (NO_2) among ten air monitoring stations in Hong Kong.

Fig. S5. Correlation matrix for ozone (O₃) among ten air monitoring stations in Hong Kong.

Reference

Long-term PM_{2.5} exposure assessment

We used a satellite-based spatiotemporal model to estimate the annual concentration of $PM_{2.5}$ at the residential address of each participant between 1998 and 2011, as previously described (Sun et al. 2016; Wong et al. 2015; Zhang et al. 2017). Briefly, we predicted baseline $PM_{2.5}$ exposure based on Surface Extinction Coefficients (SEC) from Aerosol Optical Depth (AOD) retrieved from remote sensing data of the two National Aeronautics and Space Administration (NASA) Earth Observing System satellites (NASA (National Aeronautics and Space Administration) 2013). AOD data were originally retrieved at a 10km ×10km resolution, and were refined into 1km ×1km resolution by modifying the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm (Li et al. 2005). The relationship between SEC and $PM_{2.5}$ for each year from 1998 to 2001 was calibrated using grid cells with both SEC and $PM_{2.5}$ measurements. This yearly calibration was then used to predict $PM_{2.5}$ at the residential location of each participant.

Nested case-control study

We conducted the nested case-control study as a sensitivity analysis to assess the association between air pollution and respiratory mortality. Compared to cohort study with studying time-varying exposures, such as ambient temperature and air pollution, the nested case-control study is computational efficient and estimates are similar to the ones obtained from the entire cohort (Beverland et al. 2012; Essebag et al. 2005; Goldstein and Langholz 1992; Sun et al. 2016). Details of the nested case-control study have been described elsewhere (Beverland et al. 2012; Essebag et al. 2005; Goldstein and Langholz 1992; Sun et al. 2016).

We adopted the same way to constructed nested case-control risk sets as we did to assess the mortality effects of ambient temperature (Sun et al. 2016). Briefly, controls were selected by matching follow-up time, calendar year and month, and date of birth (± 1 calendar year) with the case. We excluded controls when associated date was outside the follow-up period of the cohort. We randomly selected 9 controls to each case from all eligible subjects in the cohort (Beverland et al. 2012).

We fitted a conditional logistic regression after controlled for individual-level confounders including sex, age, smoking status (never, quit, and current smoker), alcohol drinking (never/social, and former/regular drinker), body mass index (BMI) (<21.6, 21.6-26.3, and >26.3 kg/m²), medication taken (yes or no), monthly expenses (<128, 128-384, and \geq 385 USD), education attainment (\geq secondary, primary, and < primary), physical activity, and baseline annual concentration of PM_{2.5} to represent long-term air pollution exposure, tertiary planning unit (TPU)-level confounders including proportion of old people (age \geq 65 years), proportion of tertiary education, and monthly domestic household income, and district-level proportion of smoker. We also controlled for time-varying confounders including influenza epidemics, day of the week, ambient temperature (natural cubic spline with three degrees of freedom), and relative humidity (natural cubic spline with three degrees of freedom). The formula is as follows:

Logit (p) = α +COVs + β Greenness+ γ AP+ λ Greenness×AP

Where COVs represents all other covariates in the model including age, sex, smoking status, alcohol drinking, BMI, medication taken, monthly expenses, education attainment, physical activity, and baseline yearly concentration of PM_{2.5}, TPU-level confounders including proportion of old people (age \geq 65 years), proportion of tertiary education, and monthly domestic household income, district-level proportion of smoker, influenza epidemics, day of the week, and relative humidity (natural cubic spline with three degrees of freedom). Greenness is greenness quartiles, and Quartile 1 is the reference group. AP is air pollution (PM_{2.5}, PM₁₀, NO₂, and O₃). λ is the vector of coefficients representing the additional excess risks in greenness Quartile 2 to 4 compared to risk in greenness Quartile 1.

Publication	Country	Air pollutants	Health outcomes	Greenness definition	Main relevant findings
Vivanco-Hidalgo RM et al., 2018 (Vivanco- Hidalgo et al. 2018)	Barcelona, Spain	PM _{2.5} and BC	Ischemic stroke and its subtypes	NDVI at 100, 300, and 500m buffer	No evidence to indicate the association between PM _{2.5} and BC and the risk of large artery strokes varied by levels of residential greenness.
Heo S and Bell ML, 2019 (Heo and Bell 2019)	364 USA counties	$PM_{2.5}$ and PM_{10}	Cause-specific hospitalizations	NDVI at 250m buffer	The association between air pollution and health was less in areas with more green space.
Keijzer CD et al., 2016 (de Keijzer et al. 2017)	2148 small areas in Spain	PM_{10} , $PM_{2.5}$, NO_{2} , and O_{3}	All-natural mortality	NDVI calculated for all small areas	A protective effect of greenness on mortality effects of air pollution was only found in areas with lower socioeconomic status.
Dimitrova DD and Dzhambov AM et al., 2017 (Dimitrova and Dzhambov 2017)	34 European countries	Questionnai re asking whether you have problems with air quality	A validated 5- category question about self-rated health with the response options "very good", "good", "fair", "bad", and "very bad"	Questionnaire asking the question "how would you describe your access to: Recreational or green areas?", with the response options: "With great difficulty", "with some difficulty", "easily", "very easily" and "service not used"	The risk of air quality on poor self-rated health was higher among participants not using green areas in their neighborhood or reporting a difficult access to those areas.
Yitshak-Sade M, et al. 2019 (Yitshak-Sade et al. 2019)	Massachu setts, USA	PM _{2.5}	Cardiovascular mortality	NDVI at 250m and 1250m buffer	The risk of cardiovascular mortality associated with exposure to PM _{2.5} was not modified by neighborhood greenness
Kloumourtzoglo u MA et al., 2016 (Kioumourtzoglo u et al. 2016)	207 US cities	PM _{2.5}	CHF, MI, COPD, and diabetes	NDVI at 250m buffer	Higher $PM_{2.5}$ effect estimates associated with increasing levels of greenness.

Table S1. Literature review on the modification effects of greenness on the adverse health effects of air pollution.

Abbreviations: $PM_{2.5}$ = particulate matter with an aerodynamic diameter $\leq 2.5 \ \mu\text{m}$; PM_{10} = particulate matter with an aerodynamic diameter $\leq 10 \ \mu\text{m}$; NO_2 = nitrogen dioxide; O_3 = ozone; CHF=congestive heart failure; MI=myocardial infarction; COPD=chronic obstructive pulmonary disease.

Table S2. Percent excess risk and 95% confidence interval of respiratory mortality per $10\mu g/m^3$ increase in air pollutants at 4-day moving average in the low and high residential greenness areas measured by normalized difference vegetation index with 500m^a.

Mortality	Air pollutant	Low greenness	High greenness	<i>p</i> -Value
Total respiratory	PM _{2.5}	1.25 (-3.14, 5.66)	-1.11 (-5.53, 3.32)	0.440
	PM_{10}	1.06 (-2.07, 4.20)	-0.88 (-4.00, 2.24)	0.370
	NO_2	3.96 (-0.69, 8.63)	-1.80 (-6.50, 2.93)	0.069
	O ₃	2.16 (-2.23, 6.57)	-2.23 (-6.72, 2.28)	0.147
Pneumonia	PM _{2.5}	3.05 (-2.46, 8.59)	-3.36 (-8.85, 2.16)	0.094
	PM_{10}	1.87 (-1.97, 5.71)	-2.01 (-5.77, 1.77)	0.143
	NO_2	5.19 (-0.61, 11.01)	-3.88 (-9.82, 2.10)	0.022
	O ₃	2.47 (-2.94, 7.90)	-4.61 (-10.10, 0.92)	0.057
COPD	PM _{2.5}	-0.42 (-8.34, 7.56)	6.55 (-1.62, 14.79)	0.215
	PM_{10}	0.50 (-5.25, 6.29)	4.73 (-1.57, 11.08)	0.312
	NO_2	2.23 (-6.28, 10.81)	7.05 (-1.19, 15.36)	0.399
	O3	0.54 (-7.52, 8.67)	6.18 (-2.24, 14.67)	0.315

Abbreviations: $PM_{2.5}$ =particulate matter $\leq 2.5 \mu m$ in aerodynamic diameter; PM_{10} =particulate matter $\leq 10 \mu m$ in aerodynamic diameter; NO_2 =nitrogen dioxide; O_3 =ozone; COPD=chronic obstructive pulmonary disease.

^aLow and high greenness were defined by the median (0.105) of normalized difference vegetation index within 500m.

Within Soom.						
Mortality	Air pollutant	Quartile 1	Quartile 2	Quartile 3	Quartile 4 (highest)	p for trend
	ponutant	(lowest)			(inglicst)	ucnu
Total	PM2 5	Reference	-5.01 (-13.40, 3.44)	-6.30(-14.70, 2.14)	-3.45(-12.00, 5.16)	0.425
respiratory	2.0				())	
	PM_{10}	Reference	0.57 (-5.45, 6.62)	-1.74 (-7.59, 4.15)	-1.56 (-7.73, 4.66)	0.500
	NO_2	Reference	-3.31 (-11.90, 5.39)	-11.80 (-20.50, -3.08)	-2.91 (-11.60, 5.89	0.302
	O3	Reference	-5.61 (-13.80, 2.68)	-7.66 (-16.00, 0.72)	-6.76 (-15.10, 1.60)	0.106
Pneumonia	PM _{2.5}	Reference	-4.49 (-15.00, 6.10)	-7.51 (-17.90, 3.00)	-9.96 (-20.60, 0.80)	0.059
	PM_{10}	Reference	1.65 (-5.72, 9.07)	-0.95 (-7.98, 6.13)	-5.83 (-13.50, 1.88)	0.104
	NO_2	Reference	-2.65 (-13.30, 8.14)	-11.20 (-21.90, -0.47)	-9.34 (-20.20, 1.65)	0.047
	O3	Reference	-7.96 (-18.10, 2.28)	-9.47 (-19.70, 0.85)	-12.60 (-22.80, -2.37)	0.018
COPD	PM _{2.5}	Reference	-5.30 (-20.50, 10.10)	-2.16 (-17.60, 13.60)	11.00 (-4.91, 27.10)	0.151
	PM_{10}	Reference	-1.47 (-12.50, 9.69)	-1.59 (-12.90, 9.87)	9.60 (-2.34, 21.70)	0.157
	NO ₂	Reference	-0.44 (-16.50, 15.90)	-7.01 (-23.10, 9.36)	16.10 (-0.15, 32.60)	0.074
	O ₃	Reference	-2.61 (-17.70, 12.70)	-0.55 (-16.20, 15.30)	9.00 (-6.66, 24.90)	0.237

Table S3. Additional percent excess risk in respiratory mortality associated with $10\mu g/m^3$ increase in air pollutants at the 4-day moving average by greenness quartiles within 500m.

Abbreviations: $PM_{2.5}$ =particulate matter $\leq 2.5 \mu m$ in aerodynamic diameter; PM_{10} =particulate matter $\leq 10 \mu m$ in aerodynamic diameter; NO_2 =nitrogen dioxide; O_3 =ozone; COPD=chronic obstructive pulmonary disease.

Mortality	Air	Quartile 1	Quartile 2	Quartila 2	Quartile 4	<i>p</i> for
	pollutant	(lowest)		Quartile 5	(highest)	trend
Total	PM _{2.5}	Reference	3.21 (-3.43, 9.85)	-3.21 (-9.82, 3.40)	-2.33 (-8.76, 4.11)	0.209
respiratory						
	PM_{10}	Reference	2.53 (-2.00, 7.05)	-1.12 (-5.64, 3.41)	-1.69 (-6.21, 2.83)	0.190
	NO_2	Reference	1.30 (-3.28, 5.88)	-5.65 (-10.30, -0.97)	-2.47 (-7.12, 2.18)	0.038
	O ₃	Reference	-5.10 (-11.30, 1.09)	-4.24 (-10.50, 1.99)	-6.99 (-13.10, -0.89)	0.051
Pneumonia	PM _{2.5}	Reference	5.54 (-2.58, 13.60)	-3.49 (-11.70, 4.70)	-4.99 (-13.00, 3.05)	0.057
	PM_{10}	Reference	4.03 (-1.43, 9.50)	-0.60 (-6.16, 4.95)	-3.25 (-8.93, 2.44)	0.077
	NO_2	Reference	1.80 (-3.60, 7.20)	-6.29 (-11.90, -0.65)	-6.36 (-12.00, -0.68)	0.002
	O3	Reference	-5.10 (-12.50, 2.32)	-6.22 (-13.70, 1.30)	-9.71 (-17.10, -2.32)	0.013
COPD	PM _{2.5}	Reference	4.68 (-8.70, 18.10)	-3.02 (-16.10, 10.10)	4.60 (-7.87, 17.10)	0.658
	PM_{10}	Reference	4.29 (-4.92, 13.50)	-2.05 (-11.20, 7.05)	2.50 (-6.08, 11.10)	0.851
	NO ₂	Reference	5.57 (-4.26, 15.40)	-4.13 (-13.90, 5.65)	9.65 (0.29, 19.00)	0.166
	O ₃	Reference	3.64 (-16.60, 9.31)	0.60 (-12.50, 13.70)	0.44 (-12.20, 13.10)	0.706

Table S4. Additional percent excess risk in respiratory mortality associated with $10\mu g/m^3$ increase in air pollutants at the 4-day moving average by greenness quartiles within 250m in the nested case-control study^a.

Abbreviations: $PM_{2.5}$ =particulate matter $\leq 2.5 \mu m$ in aerodynamic diameter; PM_{10} =particulate matter $\leq 10 \mu m$ in aerodynamic diameter; NO_2 =nitrogen dioxide; O_3 =ozone; COPD=chronic obstructive pulmonary disease.

^aGreenness quartiles were based on quartiles of NDVI of cases. The additional percent changes were adjusted for age, sex, smoking status, alcohol consumption, physical activity, BMI, education attainment, medication taken, personal monthly expenses, TPU-level confounders including proportion of old people (age ≥ 65 years), proportion of tertiary education, and monthly domestic household income, district-level proportion of smoker, day of the week, ambient temperature, relative humidity, baseline concentration of PM_{2.5}, and influenza epidemics.

Fig. S1. Flowchart of data analysis.

Fig. S2. Correlation matrix for fine particulate matter (PM_{2.5}) among ten air monitoring stations in Hong Kong.

Fig. S3. Correlation matrix for respirable particulate matter (PM_{10}) among ten air monitoring stations in Hong Kong.

Fig. S4. Correlation matrix for nitrogen dioxide (NO₂) among ten air monitoring stations in Hong Kong.

Fig. S5. Correlation matrix for ozone (O₃) among ten air monitoring stations in Hong Kong.

Reference

- Beverland, I.J.; Cohen, G.R.; Heal, M.R.; Carder, M.; Yap, C.; Robertson, C.; Hart, C.L.; Agius, R.M. A comparison of short-term and long-term air pollution exposure associations with mortality in two cohorts in Scotland. Environ Health Perspect 2012;120:1280-1285
- de Keijzer, C.; Agis, D.; Ambros, A.; Arevalo, G.; Baldasano, J.M.; Bande, S.; Barrera-Gomez, J.; Benach, J.; Cirach, M.; Dadvand, P.; Ghigo, S.; Martinez-Solanas, E.; Nieuwenhuijsen, M.; Cadum, E.; Basagana, X.; group, M.-H.S. The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study. Environ Int 2017;99:170-176
- Dimitrova, D.D.; Dzhambov, A.M. Perceived access to recreational/green areas as an effect modifier of the relationship between health and neighbourhood noise/air quality: Results from the 3rd European Quality of Life Survey (EQLS, 2011–2012). Urban Forestry & Urban Greening 2017;23:54-60
- Essebag, V.; Platt, R.W.; Abrahamowicz, M.; Pilote, L. Comparison of nested case-control and survival analysis methodologies for analysis of time-dependent exposure. BMC Med Res Methodol 2005;5:5
- Goldstein, L.; Langholz, B. Asymptotic theory for nested case-control sampling in the Cox regression model. Ann Stat 1992;20:1903-1928
- Heo, S.; Bell, M.L. The influence of green space on the short-term effects of particulate matter on hospitalization in the U.S. for 2000-2013. Environ Res 2019;174:61-68
- Kioumourtzoglou, M.A.; Schwartz, J.; James, P.; Dominici, F.; Zanobetti, A. PM2.5 and Mortality in 207 US Cities: Modification by Temperature and City Characteristics. Epidemiology 2016;27:221-227
- Li, C.; Lau, A.-H.; Mao, J.; Chu, D.A. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans Geosci Remote Sens 2005;43:2650-2658
- NASA (National Aeronautics and Space Administration). NASA's Earth Observing System Homepage. 2013;
- Sun, S.; Tian, L.; Qiu, H.; Chan, K.P.; Tsang, H.; Tang, R.; Lee, R.S.; Thach, T.Q.; Wong, C.M. The influence of pre-existing health conditions on short-term mortality risks of temperature: Evidence from a prospective Chinese elderly cohort in Hong Kong. Environ Res 2016;148:7-14
- Vivanco-Hidalgo, R.M.; Wellenius, G.A.; Basagana, X.; Cirach, M.; Gonzalez, A.G.;
 Ceballos, P.; Zabalza, A.; Jimenez-Conde, J.; Soriano-Tarraga, C.; Giralt-Steinhauer,
 E.; Alastuey, A.; Querol, X.; Sunyer, J.; Roquer, J. Short-term exposure to traffic-related air pollution and ischemic stroke onset in Barcelona, Spain. Environ Res 2018;162:160-165
- Wong, C.M.; Lai, H.K.; Tsang, H.; Thach, T.Q.; Thomas, G.N.; Lam, K.B.; Chan, K.P.; Yang, L.; Lau, A.K.; Ayres, J.G.; Lee, S.Y.; Chan, W.M.; Hedley, A.J.; Lam, T.H. Satellite-Based Estimates of Long-Term Exposure to Fine Particles and Association with Mortality in Elderly Hong Kong Residents. Environ Health Perspect 2015;123:1167-1172
- Yitshak-Sade, M.; James, P.; Kloog, I.; Hart, J.E.; Schwartz, J.D.; Laden, F.; Lane, K.J.; Fabian, M.P.; Fong, K.C.; Zanobetti, A. Neighborhood Greenness Attenuates the Adverse Effect of PM2.5 on Cardiovascular Mortality in Neighborhoods of Lower Socioeconomic Status. Int J Environ Res Public Health 2019;16:814
- Zhang, Z.; Chang, L.-y.; Lau, A.K.; Chan, T.-C.; Chieh Chuang, Y.; Chan, J.; Lin, C.; Kai Jiang, W.; Dear, K.; Zee, B.C. Satellite-based estimates of long-term exposure to fine

particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults. Int J Epidemiol 2017;46:1126-1136