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1 Supplementary

1.1 Message passing mechanism

Figure 1: The message passing mechanism of DMPNN (Yang et al., 2019). a) The message from 2->3 is only
propagated to node 4 and after. The message contains both information from atom and bond such as: atom
type, atomic mass, in ring or not etc... b) Hidden state update mechanism.

1.2 Weighted loss function

Imbalanced datasets have posed a challenge for predictive modeling. They result in models with poor predictive
performance, specifically for minority data points. To address this issue, we apply the weighted loss function.L(y,ŷ)1 = α× 1

N

∑N
i=0(y − ŷi)

2, if(y ∈ [τ1, τ2])

L(y,ŷ)2 = β × 1
N

∑N
i=0(y − ŷi)

2, if(y /∈ [τ1, τ2])
L = L(y,ŷ)1 + L(y,ŷ)2

(1)

where N is the number of instances and [τ1, τ2] is the criterion. α and β are the weighted constants. Notably, β
is greater than α; using this technique, we intentionally force the model to perform a larger weight update for
data points that are not in the range [τ1, τ2], whereas the other has less impact on the update. We empirical
applied the loss funtion to Davis and KIBA dataset due to their typical uneven distribution. Owning to the
experimental results, we chose α as 0.5 and β as 5. While [τ1, τ2] is picked following the density estimation of
experimental datasets. To be more specific, [τ1, τ2] is [0, 5], and is [11.1, 12] on Davis dataset and KIBA dataset,
respectively.
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1.3 Additional experiments

Figure 2: The visualization of prediction for first folds of each setting from the Davis dataset. From left to
right: DeepDTA (Öztürk et al., 2018), DeepConvDTI (Lee et al., 2019), GraphDTA (Nguyen et al., 2021),
TransformerCPI (Chen et al., 2020), HyperattentionDTI (Zhao et al., 2022), Perceiver CPI (ours), and the
label. Here, we confirmed that the prediction distribution of Perceiver CPI is closely mimic to the distribution
from the label. Which revealed that our method successfully capture the information that is related to the
compound-protein interaction. As can be seen from the distribution, some of the baselines have predictions
that are smaller than five, but, there is no such value in Davis dataset. Nevertheless, our model keeps predicting
the binding affinity greater or equal to five.

Figure 3: The visualization of MSE (the lower, the better) and CI (the higher, the better) for five-fold of three
settings on the Davis dataset. The performance of Perceiver CPI on novel pair and novel compound settings
totally outperformed SOTA baseline models, while it showed the competitive achievement with competitors on
a novel protein setting.
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1.4 Result of Perceiver CPI on classification problem

Table 1: Statistic of GPCR dataset.

Proteins Compounds Positive pairs Negative pairs Density (%)

356 5359 7989 7354 0.8

Table 2: Classification result for the comparison between Perceiver CPI and classifier competitors for novel pair
settings on GPCR dataset.

Model AUC Precision Recall Accuracy

DeepConvDTI 0.451(±0.116) 0.481(±0.180) 0.464(±0.068) 0.460 (±0.089)
TransformerCPI 0.500(±0.038) 0.519(±0.105) 0.496(±0.023) 0.510(±0.052)
HyperattentionDTI 0.511(±0.050) 0.522(±0.126) 0.505(±0.026) 0.525(±0.043)

PerceiverCPI 0.605(±0.110) 0.607(±0.178) 0.544(±0.047) 0.590(±0.070)

Table 3: Statistic of GPCR Subset (5 Targets) and Diverse Subset (7 Targets) from DUD-E database.

Targets (Gpcr Subset) Actives Decoys

AA2AR (Adenosine A2a receptor (GPCR)) 482 31,550
ADRB1 (Beta-1 adrenergic receptor (GPCR)) 247 15,850
ADRB2 (Beta-2 adrenergic receptor (GPCR)) 231 15,000
CXCR4 (C-X-C chemokine receptor type 4 (GPCR)) 40 3,406
DRD3 (Dopamine D3 receptor (GPCR)) 480 34,050

Targets (Diverse Subset) Actives Decoys

AKT1 (Serine/threonine-protein kinase AKT) 293 16,450
AMPC (Beta-lactamase) 48 2,850
CP3A4 (Cytochrome P450 3A4) 170 11,800
GCR (Glucocorticoid receptor) 258 15,000
HIVPR (Human immunodeficiency virus type 1 protease) 536 35,750
HIVRT (Human immunodeficiency virus type 1 reverse transcriptase) 338 18,891
KIF11 (Kinesin-like protein 1) 116 6,850
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1.5 Ablation study

To verify the efficiency of each contribution in the Perceiver CPI architecture, we performed an ablation test in
which we removed each module individually inside the network. The results highlighted the importance of the
entire network in all three tests (the first fold for each setting). To analyze the performance of each network
fairly, the quantity of datasets for the training and test ratios also remained unchanged, as in the previous
experiments. For instance, we detached the D-MPNN in Model 0, which only contained ECFP, 1DCNN, and
CABs, before moving to the MLP layers. The results in Table 4 demonstrate that CABs played an essential role
in extracting CPI features in interaction pairs, improving performance on all three tasks. Strikingly, without the
appearance of CAB-2, the performance of Model 4 was slightly better than that of Model 3, where CAB-1 was
removed. Specifically, when experimenting with the importance of CAB in Models 3, 4, and 5, we replaced CAB
with simple concatenations. When both of CABs were removed from Model 5, its prediction ability decreased
remarkably. Overall, losing any one of the contributions to the framework degraded the model quality.

Table 4: Ablation study of Perceiver CPI on first folds of three settings from Davis dataset (SAB: self-attention
block, CAB: cross-attention block).

Model D-MPNN ECFP SAB
CAB
(1)

CAB
(2)

MSE/CI
(novel pair

novel compound
novel protein)

Model 0 ✓ ✓ ✓ ✓
0.486/0.567
0.420/0.674
0.673/0.687

Model 1 ✓ ✓ ✓ ✓
0.496/0.573
0.403/0.684
0.710/0.748

Model 2 ✓ ✓ ✓ ✓
0.510/0.640
0.437/0.707
0.728/0.748

Model 3 ✓ ✓ ✓ ✓
0.475/0.600
0.443/0.656
0.750/0.720

Model 4 ✓ ✓ ✓ ✓
0.461/0.612
0.391/0.722
0.742/0.736

Model 5 ✓ ✓ ✓
0.844/0.543
0.424/0.678
0.744/0.731

Perceiver CPI ✓ ✓ ✓ ✓ ✓
0.442/0.685
0.358/0.751
0.660/0.755
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Table 5: The Atom’s and Bond’s feature ablation study.

Model
Atom
num

Formal
charge

Chiral
tag

Hs Hydrization
Bond
feature

MSE/CI
(novel pair

novel compound
novel protein)

MSE/CI
Change

(Compared to
Perceiver CPI)

Model 0 ✓ ✓ ✓ ✓ ✓
0.536/0.540
0.419/0.653
0.749/0.715

0.094/-0.145
0.061/-0.098
0.089/-0.04

Model 1 ✓ ✓ ✓ ✓ ✓
0.475/0.608
0.382/0.703
0.660/0.757

0.033/-0.077
0.024/-0.048

0/0.002

Model 2 ✓ ✓ ✓ ✓ ✓
0.475/0.685
0.358/0.750
0.663/0.753

0.033/0
0/-0.001

0.003/-0.002

Model 3 ✓ ✓ ✓ ✓ ✓
0.531/0.552
0.360/0.740
0.667/0.758

0.089/-0.133
0.002/-0.011
0.007/0.003

Model 4 ✓ ✓ ✓ ✓ ✓
0.477/0.638
0.355/0.744
0.660/0.759

0.035/-0.047
-0.003/-0.007

0/0.004

Model 5 ✓ ✓ ✓ ✓ ✓
0.521/0.571
0.414/0.693
0.674/0.760

0.079/-0.114
0.056/-0.058
0.014/0.005

Perceiver CPI ✓ ✓ ✓ ✓ ✓ ✓
0.442/0.685
0.358/0.751
0.660/0.755

In The Atom’s and Bond’s feature ablation study, we independently turn off testing features by turning
them into 0. Note that in our model we used the same method proposed by original D-MPNN, in which all
of the features were initialized by the open source toolkit for cheminformatics RDKit. The Table 5 shows the
performance of Perceiver CPI while missing atom features. The performance of the model drastically decreases
when the Atom num features (atom type) is not used. Nevertheless, when the Formal charge feature is not
used, the performance of the model is slightly increased on novel protein task.
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1.6 Similarity check

In protein similarity calculation, the number of amino acids in alignment divided by the length of the protein
sequence (we used 500 for Perceiver CPI) as shown in the following equation :

Similarityprot =
number of aligned amino acids

total length of the sequence
(2)

Table 6: Similarity of training set and testing set in terms of Tanimoto similarity (for compounds), Protein
similarity (for proteins).

Experiments
Tanimoto
Similarity

Protein
Similarity

Min/Max Similarity
(Compound)

Min/Max Similarity
(Protein)

Davis 0.135(±0.004) 0.071(±0.009) 0.048/0.697 0.047/0.856
KIBA 0.117(±0.002) 0.071(±0.0001) 0.009/0.857 0.049/0.623
Metz 0.128(±0.003) 0.071(±0.0002) 0.052/0.591 0/1
Cross Domain 0.068(±0.012) 0.098(±0.037) 0.041/1 0/1
DUD-E
(GPCR-GPCR)

0.111(±0.034) 0.092(±0.031) 0.0/0.895 0.052/0.692

DUD-E
(GPCR-Diverse)

0.111(±0.035) 0.069(±0.013) 0.0/0.894 0.044/0.155
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Table 7: Detailed enrichment factor analysis results for GPCR and Diverse subsets from the DUD-E database.(EF1% / BEDROCα=80.5).

Target Family DeepConvDTI TransformerCPI HyperattentionDTI Perceiver CPI (ours) Gold Glide Surflex FlexX Blaster

AA2AR GPRCR 12.95/0.18 2.83/0.09 2.02/0.06 8.23/0.15 -/0.29 -/0.13 -/0.34 -/0.17 22/-
ADRB1 GPRCR 4.76/0.10 0.41/0.00 0.00/0.00 9.12/0.17 -/0.43 -/0.31 -/0.25 -/0.18 11/-
ADRB2 GPRCR 0.00/0.00 0.00/0.00 4.92/0.09 18.23/0.30 -/0.43 -/0.50 -/0.41 -/0.36 4/-
CXCR4 GPRCR 2.49/0.04 0.83/0.00 4.78/0.05 3.12/0.05 -/0.08 -/0.01 -/0.27 -/0.01 18/-
DRD3 GPRCR 28.44/0.44 0.0/0.00 8.19/0.16 43.13/0.51 -/0.18 -/0.04 -/0.15 -/0.06 4/-
AMPC Miscellaneous 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 -/0.04 -/0.09 -/0.00 -/0.04 8/-
CP3A4 CYP450 0.00/0.00 1.17/0.03 2.35/0.03 4.11/0.07 -/0.21 -/0.17 -/0.13 -/0.08 2/-
HIVPR Miscellaneous 2.05/0.04 0.37/0.01 1.30/0.02 2.42/0.04 -/0.30 -/0.14 -/0.10 -/0.05 5/-
HIVRT Miscellaneous 0.00/0.00 2.06/0.03 0.29/0.01 1.76/0.03 -/0.42 -/0.37 -/0.13 -/0.19 7/-
KIF11 Miscellaneous 0.00/0.00 1.71/0.04 1.71/0.04 0.85/0.01 -/0.55 -/0.59 -/0.12 -/0.08 35/-
AKT1 Protein kinases 0.00/0.00 0.00/0.00 0.34/0.01 1.70/0.04 -/0.42 -/0.24 -/0.05 -/0.11 29/-
GCR Nuclear receptors 0.00/0.00 1.15/0.03 1.54/0.05 2.32/0.03 -/0.13 -/0.21 -/0.30 -/0.18 9/-
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2 Data availability

The related links are as follows:
KIBA, Davis: https://github.com/kexinhuang12345/DeepPurpose
Metz: https://github.com/sirimullalab/KinasepKipred
PDBBind: https://github.com/lishuya17/MONN
GPCR (train):https://github.com/lifanchen-simm/transformerCPI
DUD-E GPCR (test):http://dude.docking.org/subsets/gpcr
DUD-E Diverse (test):http://dude.docking.org/subsets/diverse
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